
LECTURE 1: OVERVIEW

1. Geometric Class Field Theory

Let K be a global field. Let AK be the ring of adèles and GalK/K be the Galois group. The

global class field theory says there is an almost1 isomorphism

θK ∶K×/A×
K → Galab

K/K ≃ GalKab/K .

Here Kab is the maximal abelian extension of K inside K.
The almost isomorphism θK is characterized by the formula

θK(πv) = Frv,

where

● v is any finite place of K;
● πv is the image of an uniformizer of the local field Kv, which is well-defined up to

multiplication by an unit in its ring of integers Ov ⊂Kv;
● Frv is a lift of the geometirc Frobenius automorphism of Galκv/κv

, and is well-defined
up to multiplication by an element in the inertia group Iv.

Hence we obtain the following representation-theoretic interpretation of unramified global
class field theory.

Theorem 1. Let ` be a prime not equal to char(K). There is an almost bijection2

{unramified ξ ∶K×/A×
K → Q

×
` }←→ {unramified ρ ∶ GalK/K → Q

×
` }.

Here a continuous character ξ (resp. ρ) is said to be unramifed if it vanishes on Ov (resp. Iv)
for any finite place v. Also, the above almost bijection is characterized by the formula

(1.1) ξ(πv) = ρ(Frv).

We restrict to the case when K is a function field over a finite field k = Fq. One simplification
in this case is that the topology on K×/A×

K/O×
K is discrete. Let X be the corresponding complete

curve defined over k. Then both sides in the above theorem have geometric interpretation.
According to a theorem of Weil, we have

K×/A×
K/O×

K ≃ Pic(X), πv ↦ O(v)

where Pic(X) is the Picard group of line bundles on X. Hence we have tautological bijection:

{unramified ξ ∶K×/A×
K → Q

×
` }←→ {ξ ∶ Pic(X)→ Q

×
` }.

Date: Sep 19, 2023.
1Do not worry about imprecise words in this lecture. We will give precise statements soon.
2If K is a number field, the bijection is as it is because Q×

` is totally disconnected and therefore the kernel

of θK , which is connected, is irrelevant.

If K is a function field over a finite field k = Fq , we have to replace Gal
K/K

by the Weil group W
K/K

, which

will be explained in future lectures.
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On the other hand, more or less by definition,

GalK/K ≃ π1(Spec(K), η),

where π1(Spec(K), η) is the étale fundamental group of Spec(K) with base geometric point

given by η ∶ Spec(K) → Spec(K). Also, a character ρ is unramified iff it factors through the
surjection

π1(Spec(K), η)→ π1(X,η).
Hence we obtain a bijection

{unramified ρ ∶ GalK/K → Q
×
` }←→ {ρ ∶ π1(X,η)→ Q

×
` }.

More or less by definition, we have

(1.2) {ρ ∶ π1(X,η)→ Q
×
` }←→ {rank one `-adic local system σ on X}.

Hence the almost bijection in Theorem 1 can be rewritten as

{ξ ∶ Pic(X)→ Q
×
` }←→ {rank one `-adic local system σ on X}.

To finish the translation, we have to interpret the equation (1.1) geometrically. We need the
following construction, known as Grothendieck’s sheaf-function correspondence.

Construction 2. Let Y be an algebraic variety over k = Fq and F be an `-adic sheaf on Y .

For any k-point y of Y , let y be the geometric k-point at y. The stalk Fy is a Q`-vector space
equipped with a continuous Galk/k-action. Let Fry be the geometric Frobenius automorphis.

Define
fF(y) ∶= Tr(Fry,Fy)

which is a function on Y (k).

It follows from the definition that if ρ corresponds to σ via (1.2), then

ρ(Frv) = fσ(v) = Tr(Frv, σv),
at least when v is a k-point on X.

Therefore we obtain the following translation of Theorem 1.

Corollary 3. There is an almost bijection

(1.3) {ξ ∶ Pic(X)→ Q
×
` }←→ {rank one `-adic local system σ on X}

characterized by the formula

(1.4) ξ(O(v)) = fσ(v).

We may go one step further by replacing the Picard group by the Picard scheme. The
(relative) Picard scheme PicX/k is defined such that for any affine test scheme S over k,

PicX/k(S) ∶= Pic(X ×
k
S)/Pic(S)

and in particular
PicX/k(k) = Pic(X).

Hence we are attempt to ask for the following dotted arrow:

{ξ ∶ Pic(X)→ Q
×
` } oo // {rank one `-adic local system σ on X}

ss
{`-adic sheaf F on PicX/k}.

Const. 2

OO
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But before finding the dotted arrow, we need to answer the following two questions:

(a) What condition on F can guarantee ξ ∶= fF to be a character?
(b) What condition on F can guarantee the equation (1.4)?

It turns out there is a nice geometric answer for both questions.

Definition 4. Let F be a sheaf 3 on PicX/k and σ be a rank one local system σ on X, we say
F is a Hecke eigensheaf with eigenvalue σ if it is equipped with an isomorphism

add∗(F) ≃ σ ⊠F
that satisfies a commutativity law (to be addressed in future lectures). Here add is the morphism

add ∶X ×
k
PicX/k → PicX/k, (v,L)↦ L(v).

We will prove the following lemma in the next lecture.

Lemma 5. Let F be a Hecke eigensheaf with eigenvalue σ such that its restriction to the
unit point O ∈ PicX/k is equivalent to the constant sheaf4. Consider the function ξ ∶= fF on
Pic(X) = PicX/k(k). Then:

(a) The function ξ is a character.
(b) For any place v, the equation (1.4) holds, i.e., fF(O(v)) = fσ(v).

The following theorem is due to Deligne.

Theorem 6. For any rank one local system σ on X, there exists an essential unique5 Hecke
eigensheaf Autσ on PicX/k, which is in fact a local system.

Remark 7. Note that the statement of the above theorem is pure geometric, and, as we will
see in the next lecture, so is Deligne’s proof. Therefore it is fair to call it the unramified global
geometric class field theory, or more ambitiously, the

Unramified Global Geometric Langlands for GL1.

2. Unramified Global Geometric Langlands Correspondence

We want to generalize this story to GLn or even to all split reductive groups6 G over k. From
now on, X is a smooth, complete, geometrically connected over a perfect field k. Let K =K(X)
be the field of rational functors on X. We will consider a well-behaved sheaf theory with an
algebraic closed coeffiencient field e. For nice enough schemes Y over k, the abelian category
of such sheaves on Y is denoted by Shvc(Y )♡ and its derived category is denoted by Shvc(Y ).

Example 8. The author is only aware of the following choices of sheaf theories (or minor
variants of them) in geometric Langlands theory.

● The Betti context where k = C and we consider preverse sheaves for the complex topol-
ogy;

● The `-adic context where k is finite and we consider perverse `-adic Weil sheaves;
● The de Rham context where k is algebraic closed with char(k) = 0 and we consider

coherent right D-modules.

3See Example 8.
4This assumption is to guarantee ξ preserves the unit.
5Note that the tensor product of a Hecke eigensheaf with any object in Shv(Spec(k)) is still a Hecke eigensheaf

with the same Hecke eigenvalue. Here the essential uniqueness says such tensor products are the only source of
ambiguity.

6The story for non-constant reductive group scheme over X is also interesting, but we will not discuss it in
this course.



4 LECTURE 1: OVERVIEW

On the Galois side, the generalization is immediate:

GLn local system σ on X with rank(σ) = n
G G-local system σ on X.

On the automorphic side, as a first task, we need to complete the following chart.

GL1 K×/A×
K/O×

K Pic(X) PicX/k
G G(K)/G(AK)/G(OK) ? ?.

The following result is called Weil’s uniformization theorem7.

Theorem 9. The set G(K)/G(AK)/G(OK) is naturally bijective to the set of isomorphic
classes of principle G-bundles (a.k.a. G-torsors) on X.

However, it is impossible to find a scheme that plays the same role for G as PicX/k did for

GL1: we have to step out of our comfort zone and embrace the world of algebraic stacks8.

Proposition-Definition 10. There exists a smooth Artin stack BunG defined over k that
classifies families of G-torsors on X. In particular,

BunG(k) ≃ G(K)/G(AK)/G(OK).
The precise definition of BunG will be given in the future lectures. Also, a better notation

would be BunG,X/k. But people are lazy.
We also need to generalize the Hecke eigen-property. Recall for G = GL1, it is defined using

the morphism
add ∶X ×

k
PicX/k → PicX/k, (x,L)↦ L(x),

which can be viewed as modifying a line bundle at a point x in a canonical way. However, in
the general case, there is no canonical modification of a G-torsor at a point, but many of them.
Therefore we need to replace add by a multi-valued morphism, a.k.a., a correspondence,

HeckeG,X
←

h

yy

→

h

''
BunG X ×k BunG.

which will be defined in futher lectures.
A more significant point is: the eigenvalues for Hecke eigensheaves will be local systems for

the Langlands dual group Ǧ (defined over e). Of course, this is not surprise from Langlands’
philosophy.

Let us assume the definition of Hecke eigensheaves and state the conjectural unramified
geometric Langlands correspondence:

Conjecture 11. For any geometrically irreducible9 Ǧ-local system σ on X, there is an essen-
tially unique Hecke eigensheaf Autσ on BunG with eigenvalue σ.

For G = GLn, the existence of Autσ is a theorem due to Deligne (n = 1), Drinfeld (n = 2) and
Frenkel–Gaitsgory–Vilonen (for general n).

7We need some assumptions on G and X, which will be articulate in future lectures.
8Roughly speaking, an algebraic stack is a “space” whose “points” are equipped with trivial actions by

certain algebraic groups. Therefore an algebraic stack can remember not only the set of (double) cosets like

G(K)/G(AK)/G(OK), but also the stablizer group for each point. Unlike the case G = GL1, these stablizer
groups are not constant and thereby not ignorable.

9This means σ is not induced from proper parabolic subgroup of Ǧ after base-change to k. If σ is not geomet-
rically irreducible, it is more reasonable to consider Hecke eigenobject in Shv(BunG) rather than Shv(BunG)♡.
Also, the essential uniqueness is false in that case.
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Remark 12. In the `-adic context, taking trace of Frobenius, the above conjecture will provide
a Galois to automorphic construction for Langlands correspondence of function fields. Also,
the automorphic function given by Autσ is cuspidal.

3. Unramified Global Geometric Langlands Equivalence

We might also want to consider the algebro-geometric object LSirreǦ that classifies families of

geometrically irreducible Ǧ-local systems on X, and update Conjecture 11 to a functor

Coh(LSirreǦ )
♡ → Shvc(BunG)♡, δσ ↦ Autσ

where the LHS is the abelian category of coherent sheaves on LSirreǦ , however it is defined. In
fact, by Langlands philosephy, one even expect this functor induces an equivalence between
Coh(LSirreǦ )

♡ and the cuspidal part of Shvc(BunG)♡, however the latter is defined.

For example, in the de Rham context, LSirreǦ is a smooth Artin stack and we have the following
categorical conjecture, which generalizes Conjecture 11.

Conjecture 13. In the de Rham context, there is a canonical t-exact equivalence

LG ∶ DModcoh(BunG)cusp ≃ Coh(LSirreǦ )

such that L−1
G sends the skyscrapter sheaf at an irreducible Ǧ-local system σ to a Hecke eigensheaf

Autσ with eigenvalue σ.

We can even take the reducible local systems into consideration once we give up the t-
exactness.

Conjecture 14. In the de Rham context, there is a canonical equivalence10

LG ∶ DModcoh(BunG) ≃ Coh(LSǦ)

such that L−1
G sends the skyscrapter sheaf at a Ǧ-local system σ to a Hecke eigen-object Autσ

with eigenvalue σ.

Both conjectures are not far away from becoming a theorem. Note that just like the classical
Langlands correspondence, Conjecture 14 has two sides, the automorphic side (RHS) and the
Galois side (LHS), but it is 1-categorical higher than its classical analogue.

Remark 15. The ramified story is beyond my current knowledge.

4. Local Geometric Langlands Equivalence

Let us focus on the de Rham context. Recall the local Langlands correspondence classifies
representations of G(Kv) for a local field Kv, which form a 1-category. It turns out the local
geometric Langlands correspondence is a conjectural classification of categorical representations
of G(Kv), which form a 2-category.

The geometric incarnation of G(Kv) is the loop group LG, which is an group indscheme
whose C-valued points are given by Kv-valued points of G. We want to define the notion of
categories equipped with an LG-action such that it is a reasonable categorification of the notion
of vector spaces equipped with a G(Kv)-action. In future lectures, we will explain the following
definitions.

10 The most reasonable way to define DModcoh(BunG) is to define it as a DG category, realized as an ∞-
category equipped with k-linear structure. At this stage, we have to embrace the world of higher category

theory.
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Definition 16. Let

LG−Mod

be the (∞,2)-category of DG categories acted by the monoidal DG category DMod(LG), where
the monoidal structure is given by convolution.

Given any nice algebro-geometric object Y equipped with a (geometric) LG-action, the DG
category DMod(Y ) is a DMod(LG)-module, and thereby an object in LG−Mod.

Example 17. Interesting examples for Y include:

GrG, FlG, Bun
level∞⋅v

G ,

known as the affine Grassmannian, the affine flag (ind-)variety, and the moduli (ind-)stack of
G-torsors on X equipped with a trivialization on the formal neighborhood Dv at v11.

We can view DMod(LG) as a bi-module of itself. Then any operation with respect to the
right action will produce a DG category that inherits the left LG-action. In fact, the objects

DMod(GrG), DMod(FlG) ∈ LG−Mod

defined above can be equivalently defined as taking L+G-invariance (resp. I-invariance) for the
right LG-action on DMod(LG), where the arc group L+G (resp. the Iwahori subgroup I) are
the geometric incarnation of G(Ov) (resp. G(Ov) ×G(κv) B(κv)).

Example 18. A signification example is the Whittaker model

Whit(LG) ∈ LG−Mod

which is obtained by taking LN -invariance (for the right action) against a generic character χ.
Here N is the unipotent radical of the Borel subgroup B.

Example 19. Another striking object in LG−Mod is given by KMg, the DG category of

representations of the affine Lie algebra L̃g at the critical level. We will explain it in future
lectures.

On the Galois side, we should consider the moduli problem LSǦ(D○) of Ǧ-local systems on
the punctured disk D○ ∶= Spec(Kv).

Definition 20. Let

QCohCat(LSǦ(D
○))

be the (∞,2)-category of QCoh(LSǦ(D○))-module categories, where the monoidal structure is
given by tensor product.

Given any nice algebro-geometric object Z over LSǦ(D○), the DG category QCoh(Z) is a
QCoh(LSǦ(D○))-module.

Example 21. Interesting examples for Z include12:

LSǦ(D), LS
nilp

Ǧ
(D○), LSǦ(X

○),

which classifies Ǧ-local system on the disk D ∶= Spec(Ov) (resp. on the punctured disk with
nilpotent singulary, on the punctured curve X○ ∶=X ∖ x).

Example 22. Of course, we can also consider LSǦ(D○) itself.

11Its C-valued points are bijective to (∏w≠vG(Ow))/G(AK)/G(K).
12 We have LSG(D) ≃ pt/G and LSnilpG (D

○) ≃ N /G, where N is the nilpotent cone of g.
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Example 23. Another significant example is

OpǦ(D
○)

which classifies Ǧ-opers on the puncture disk. We will study them in future lectures.

Examples 17-19 and Examples 21-23 are not listed arbitrarily. We have:

Conjecture 24. There is an almost equivalence13

LG−Mod ≃ QCohCat(LSǦ(D
○))

DMod(GrG) ↦ QCoh(LSǦ(D))(4.1)

DMod(FlG) ↦ QCoh(LSnilp
Ǧ
(D○))(4.2)

DMod(Bunlevel∞⋅v

G ) ↦ QCoh(LSǦ(X
○))(4.3)

Whit(LG) ↦ QCoh(LSǦ(D
○))(4.4)

KMg ↦ QCoh(OpǦ(D
○)).(4.5)

One can pick any two lines from above and calculating the Hom-categories for both sides,
then (after replacing QCoh by Coh and DMod by DModcoh) they would obtain a conjecture
equivalence, and sometimes it is a known theorem. For example:

● Hom((4.1), (4.1)) is the derived geometric Satake equivalence proven by Bezrukavnikov–
Finkelbery;

● Hom((4.1), (4.2)) is a theorem by Arkhipov–Bezrukavnikov–Ginzburg;
● Hom((4.2), (4.2)) is Bezrukavnikov’s equivalence between two geometric realizations of

the affine Hecke algebra;
● Hom((4.1), (4.3)) is Conjecture 14 and Hom((4.2), (4.3)) is a tamely ramified version

of it;
● Hom((4.1), (4.4)) is the geometric Casselman–Shalika formula proven by Frenkel–

Gaitsgpry–Viloner;
● Hom((4.2), (4.4)) is a theorem by Arkhipov–Bezrukavnikov;
● Hom((4.1), (4.5)) is a theorem by Feigin–Frenkel.
● Hom((4.4), (4.5)) is a theorem by Raskin.

5. Quantum Local Geometric Langlands Equivalence

Using the notion of twisted D-modules, we can obtain a deformation of Conjecture 24. We
will explain it in the future lectures:

Conjecture 25. There is an almost equivalence

LG−Modκ ≃ LǦ−Modκ̌

DModκ(GrG) ↦ DModκ̌(GrǦ)
DModκ(FlG) ↦ DModκ̌(FlǦ)

DModκ(Bunlevel∞⋅v

G ) ↦ DModκ̌(Bunlevel∞⋅v

Ǧ
)

Whitκ(LG) ↦ KMǧ,κ̌

KMg,κ ↦ Whitκ̌(LǦ).

Note that the statement is completely symmetric for G and Ǧ.

13The word “almost” has to do with the difference between QCoh and Coh. Unfortunately, at the current
stage, there is no convenient definitions of “coherent” parts of both sides that allow us to conjecture a perfect

equivalence.
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