Laumon Il

Last time, we were showing the Vanishing Theorem implies the Clean Theorem. There
was one unfinished claim:
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In this lecture we will deduce this lemma from a result about Laumon's sheaf: 3.;
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Remark: First, there is a technical point we did not discuss last time: we will put one
more assumption on the good open Eb. , such that
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This can be guaranteed by the following:
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This allows us to ignore {h in the proof of the lemma.
Proof of the Lemma: Last time we explained how to deduce the case Mkﬁ.)j from the

vanishing theorem. Namely, in this case:
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Here we can apply the vanishing theorem because d% (he\\ —JZQ Lﬁh\ > “"-[75‘3-\*(«

In general, write

Mp ——

_/
]



Then:
0— Mp—> Mg —T'—0

I

H-= 0 W\ — > ('~ 0

| A

R

o

O—> M —> My —5 T'—s o
[ [ | }
o W — W 3 T — 0

— ext

\or : = i 6\@6\" exﬂ\.t'\' SBﬁL. \1 To(\%
R et §

Tor “— loe  —— Top
le
Toe

/ | > W
Toe < To v "Mi) “Tor ¥ Toc

where
o
N — Tor

— 0= MMy — MM — MW —0 |



The above square is not Cartesian, but we still have base-change isomorphism for it. This is
because
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Note that the dimension of the above affine space is constant on each connected component
of the base. N
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By the surjective case treated before, we only need to prove the following result, which is the
main goal of this lecture.
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Prop: If E— is geometrically irreucible, then:
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Proof of the Prop: Recall the regular semi-simple locus:
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Note that
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The question is local for the étale topology and we can reduce to the case X = [N y
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It translates to
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By base-change, we need to show
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We can choose each yy such that it has minimal possible length. This implies:
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Now the desired complex has a filtration whose graded pieces are
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Each piece is a pure perverse sheaf with weight independent of ‘W, Hence so is the desired
complex. Now we win by

Thm (Deligne): Any pure perverse sheaf is (geometrically) semi-simple.

Namely the theorem implies the above filtration splits.



