LECTURE 10

Last time, for a diagram $u : K_1 \times K_2 \to \mathsf{C}$, we constructed a canonical morphism

$$
\underset{y \in \mathsf{K}_2}{\text{colim}} \ \underset{\mathsf{K}_1}{\text{lim}} \ u(-, y) \to \underset{x \in \mathsf{K}_1}{\text{lim}} \ \underset{\mathsf{K}_2}{\text{colim}} \ u(x, -)
$$

when assuming both sides exist. In this lecture, we discuss several cases when the above morphism is invertible.

1. Finite diagrams

Definition 1.1. We say a simplicial set K is **finite** if it has finitely many nondegenerate simplexes.

We say an ∞ -category K is **essentially finite** if it can be represented by a quasi-category which is a finite simplicial set.

1.2. Recall we asy an *ordinary* category K is essentially finite iff the set of equivalence classes of objects and the set of morphisms in K are finite.

Exercise 1.3. Let K be an essentially finite ∞ -category. Show that hK is an essentially finite ordinary category.

Exercise 1.4. Let K be an ordinary category. If K is essentially finite as an ∞ category, then it is essentially finite as an ordinary category.

Warning 1.5. The converse is not true: even a finite ordinary category may fail to be essentially finite as an ∞ -category.

Exercise 1.6. Let Idem be the ordinary category defined by

- There is an unique object ∗;
- Hom(*, *) := {id, e }, with $e \circ e = e$.

Show that N_{\bullet} (Idem) is not equivalent to a finite quasi-category.

Exercise 1.7. Let $\mathbb{B}(\mathbb{Z}/2\mathbb{Z})$ be the ordinary category defined by

- There is an unique object ∗;
- Hom $(*, *) \coloneqq \{id, f\}$, with $f \circ f = id$.

Show that $\mathbb{N}_{\bullet}(\mathbb{B}(\mathbb{Z}/2\mathbb{Z}))$ is not equivalent to a finite quasi-category.

1.8. Nevertheless, for finite partially ordered set, the above abnormality does not appear.

Exercise 1.9. Let J be a finite partially ordered set, viewed as an ordinary category. Show that $\mathbb{N}_{\bullet}(\mathsf{J})$ is a finite simplicial set.

Proposition 1.10 [\(Ker.02NB\)](https://kerodon.net/tag/02NB). For any simplicial set K , there exists a partially ordered set J and an initial morphism $\mathbb{N}_{\bullet}(\mathsf{J}) \to K$. If K is finite, we can take J to be finite.

Corollary-Definition 1.11. Let C be an ∞ -category. The following are equivalent:

Date: Oct. 22, 2024.

2 LECTURE 10

- C admits limits indexed by finite simplicial sets.
- C admits limits indexed by essentially finite ∞ -categories.
- C admits limits indexed by finite partially ordered sets.

We say C **admits finite limits** if it satisfies the above conditions.

Let $F: \mathsf{C} \to \mathsf{D}$ be a functor between ∞ -categories such that C admits finite limits. The following are equivalent:

- \bullet F preserves limits indexed by finite simplicial sets.
- F perserves limits indexed by essentially finite ∞ -categories.
- F preserves limits indexed by finite parially ordered sets.

We say F is left exact if it satisfies the above conditions.

Dually, for a functor $F: C \to D$ such that C admits finite colimits, we say F is right exact if it preserves finite colimits.

Warning 1.12. Let C be an ∞ -category that admits finite limits. It may not admit limits indexed by finite ordinary categories. For example, C may fail to be idempotent complete.

Remark 1.13. In future lectures, we will define left/right exact functors between $general \infty$ -categories.

Proposition 1.14. Let C be an ∞ -category. The following are equivalent:

- (i) C admits finite limits.
- (ii) C admits fiber products and a final object.
- (iii) C admits finite products and equalizers.

We also have similar results for left exact functors.

Sketch. The implications (i)⇒(ii) \Leftrightarrow (iii) are standard. To show (ii) \Rightarrow (i), let $u : K \rightarrow$ C be a finite diagram. We need to show lim u exsits. When $K = \emptyset$, this is the final object of C. If K is nonempty, we can find a pushout square in Set_{Δ}

$$
\begin{array}{ccc}\n\partial \Delta^n & \longrightarrow & K' \\
\downarrow & & \downarrow \\
\Delta^n & \xrightarrow{\subset} & K.\n\end{array}
$$

Note that this is also a homotopy pushout sqaure in $\mathsf{Set}_{\Delta}^{\mathsf{Joyal}}$. By the theorem on decomposition of diagrams [\(Ker.03DB\)](https://kerodon.net/tag/03DB), we have

$$
\lim u \xrightarrow{\simeq} \lim u|_{K'} \underset{\lim u|_{\partial \Delta^n}}{\times} \lim u|_{\Delta^n}
$$

where the source exists if the target does. By induction, we reduce to prove the claim when $\mathsf{K} = \Delta^n$, which follows from the fact that $\Delta^0 \stackrel{0}{\to} \Delta^n$ is initial. \Box

1.15. In fact, an elaboration of the above argument shows:

Proposition 1.16 (HTT.4.4.2.6, 4.4.3.2). Let C be an ∞ -category. The following are equivalent:

- (i) C admits small limits.
- (ii) C admits fiber products and small products
- (iii) C admits small products and equalizers.

We also have similar results for functors preserving small limits.

$\begin{tabular}{ll} \bf \textcolor{red}{\bf \textcolor{blue}{\bf \text$

2. FILTERED ∞ -CATEGORIES

Definition 2.1. We say an ∞ -category C is **filtered** if any finite diagram $u : K \to \mathbb{C}$ can be extended to a diagram $K^{\triangleright} \rightarrow \mathsf{C}.$

Dually, we say C is cofiltered if for any finite diagram $u : K \to \mathsf{C}$ can be extended to a diagram $K^{\triangleleft} \rightarrow \mathsf{C}$.

2.2. Note that C is filtered iff C^{op} is cofiltered. Hence we will focus on filtered ∞-categories.

Exercise 2.3. Being filtered is invariant under equivalences.

2.4. An induction argument, which is similar to but more elaborate than that in the proof of Proposition [1.14,](#page-1-0) gives the following result:

Lemma 2.5 [\(Ker.02Q0\)](https://kerodon.net/tag/02Q0). An ∞-category C is filtered iff any diagram $u : \partial \Delta^n \to \mathbb{C}$ with $n \geq 0^1$ $n \geq 0^1$ can be extended to a diagram $(\partial \Delta^n)^{\triangleright} \rightarrow \mathsf{C}$.

Remark 2.6. Note that $(\partial \Delta^n)^{\triangleright} \simeq \Lambda^{n+1}_{n+1}$.

2.7. Recall we say an ordinary category C is filtered if

- (0) It is nonempty.
- (1) For any objects x_1, x_2 in C, there exists an object x equipped with morphisms $x_i \rightarrow x$.
- (2) For any diagram $x \Rightarrow y$ in C, there exists $y \rightarrow z$ such that the two compositions $x \Rightarrow y \rightarrow z$ are equal.

Note that condition (i) corresponds to the extension problem for $K = \partial \Delta^i$.

Proposition 2.8 [\(Ker.02PS\)](https://kerodon.net/tag/02PS). An ∞ -category C is filtered iff it satisfies the following conditions:

- (0) It is nonempty.
- (1) For any objects x_1, x_2 in C, there exists an object x equipped with morphisms $x_i \rightarrow x$.
- (2) For any objects x, y in C and any diagram $\partial \Delta^n \to \text{Maps}(x, y)$ with $n \geq 1$, there exists a morphism $y \rightarrow z$ such that the composition

 $\partial \Delta^n \to \mathsf{Maps}(x, y) \to \mathsf{Maps}(x, z)$

is null-homotopic, i.e., equivalent to a constant diagram^{[2](#page-2-1)}.

Remark 2.9. Roughly speaking, for $n \geq 2$, the extension problem

corresponds to an extension problem

¹By definition, $\partial \Delta^0 = \emptyset$.

²Exercise: for a Kan complex K, a morphism $\partial \Delta^n \to K$ is null-homotopic iff it factors through Δ^n .

such that $x = u(0)$ and $y = u(n)$.

Exercise 2.10. Let C be a filtered ∞ -category. Show that hC is a filtered ordinary category.

Exercise 2.11. Let C be an ordinary category. Show that C is filtered as an ordinary category iff it is filtered as an ∞ -category.

Example 2.12. An ∞ -category is filtered if it admits a final object.

Example 2.13. An ∞ -category is filtered if it admits finite colimits.

Exercise 2.14. The category Idem is filtered.

3. Filtered colimits and finite limits

Theorem 3.1 [\(Ker.05XS\)](https://kerodon.net/tag/05XS). Let C be a small ∞ -category. Then C is filtered iff the functor

 $\text{colim} : \text{Fun}(\mathsf{C},\text{Grpd}_{\infty}) \to \text{Grpd}_{\infty}$

preserves finite limits.

Warning 3.2. The claim may be false if Gryd_{∞} is replaced by general ∞ -categories.

Exercise 3.3. Consider the discrete topological space \mathbb{Z} and its one-pointcompactification $\mathbb{Z} \cup {\infty}^3$ $\mathbb{Z} \cup {\infty}^3$ Consider the partially ordered set P of closed subsets of $\mathbb{Z} \cup {\infty}$. Show that filtered colimits in P may not commute with finite limits.

Corollary 3.4. Let $F: C \to D$ be a final functor between ∞ -categories. If C is filtered, so is D .

Challenge 3.5. Can you find a proof of the above corollary without using Theorem [3.1?](#page-3-1)

3.6. Recall a partially ordered set J is *directed* if any finite subset of it admits an upper bound in J.

Proposition 3.7 [\(Ker.02QA\)](https://kerodon.net/tag/02QA). Let C be an ∞ -category. The following are equivalent:

- C is filtered.
- There exists a directed partially ordered set J and a final functor $J \rightarrow C$.

Proposition 3.8. Let C be a filtered ∞ -category and $u : K \to C$ be any finite diagram. Then the forgetful functor $C_{u/} \rightarrow C$ is final.

Proof. By Quillen's Theorem A, we only need to show $C_{u}/\times_C C_{x/2}$ is weakly contractible for any $x \in \mathsf{C}$. We have

$$
\mathsf{C}_{u/\stackrel{\mathsf{x}}{\mathsf{C}}} \mathsf{C}_{x/} \simeq \mathsf{C}_{u \sqcup x/}
$$

where $u \sqcup x : K \sqcup \Delta^0 \rightarrow C$ is the disjoint union of u and x. Now the claim follows from the following two exercises. □

Exercise 3.9. A filtered ∞ -category is weakly contractible. Hint: $K \times \Delta^1 \to K^{\triangleright}$.

Proposition 3.10. Let C be an ∞ -category. The following are equivalent:

(i) C is filtered.

³An closed subset of $\mathbb{Z} \cup {\infty}$ is either finite or contains ∞.

${\tt LECTURE\ 10} \hspace{2cm} 5$

- (ii) For any finite diagram $u: K \to \mathsf{C}$, the ∞ -category C_{u} is filtered.
- (iii) For any finite diagram $u: K \to \mathsf{C}$, the ∞ -category C_{u} is weakly contractible.
- (iv) For any finite K \in Set_{Δ}, the diagonal functor $C \to Fun(K, C)$, $x \mapsto \underline{x}$ is final.

Sketch. The implications (i)⇒(ii)⇒(iii)⇒(i) are left as exercises. We will prove (ii)⇔(iii). By Quillen's Theorem A, (ii) is equivalent to:

$$
\mathsf{C}\underset{\mathsf{Fun}(K,\mathsf{C})}{\times}\mathsf{Fun}(K,\mathsf{C})^{u/}
$$

is weakly contractible for any $u : K \to \mathbb{C}$. It is easy to see the above fiber product is equivalent to C^{u} , which implies the claim. \Box

4. Sifted diagram

Definition 4.1. Let K be a simplicial set. We say K is **sifted** if for any finite set *I*, the diagonal morphism $K \to K^I$ is final.

Dually, we say K is **cosifted** if for any finite set I , the diagonal morphism $K \rightarrow K^I$ is initial.

4.2. Note that $\mathsf C$ is sifted iff $\mathsf C^{op}$ is cosifted. Hence we will focus on sifted ∞ categories.

Exercise 4.3. Being filtered is invariant under equivalences.

Example 4.4. Any filtered ∞ -category is sifted.

Exercise 4.5. Show that a simplicial set K is sifted iff it is nonempty and $K \rightarrow$ $K \times K$ is final. Hint: If $K \to K \times K$ is a weak homotopy equivalent and $K \neq \emptyset$, then K is weakly contractible.

Corollary 4.6. An ∞ -category C is sifted iff it is nonempty and $C_{x} \times_C C_{y}$ is weakly contractible for any pair of objects $x, y \in \mathsf{C}$.

Warning 4.7. In classical category theory, an ordinary category is called sifted if it is nonempty and $C_{x}/\times_C C_{y}/$ is connected for any pair of objects $x, y \in C$. A sifted ordinary category may fail to be sifted as an ∞ -category.

Exercise 4.8. Let $\Delta_{\leq 1} \subset \Delta$ be the full subcategory consisting of [0] and [1]. Show that $\Delta_{\leq 1}^{\mathsf{op}}$ is sifted as an ordinary category but not as an ∞ -category.

Exercise 4.9. Show that Δ^{op} is sifted as an ∞ -category.

Definition 4.10. The colimit of a Δ^{op} -indexed diagram is called the **geometric** realization of such diagram. The limit of a Δ -indexed diagram is called the totalization of such diagram.

4.11. It is known that geometric realizations and filtered colimits almost generate all sifted diagrams. See §[A.10.](#page-6-0)

Proposition 4.12. Let $F: C \to D$ be a final functor between ∞ -categories. If C is sifted, so is D .

Proof. For any finite set I, consider the commutative diagram

Since F is final, so is F^I ([Lecture 7, Proposition 3.16]). Since C is sifted, δ_1 is final. It follows that δ_2 is also final as desired ([Lecture 7, Exercise 3.13]). \Box

Exercise 4.13. Let K be a sifted simplicial set. Suppose C, D and E are ∞ categories that admit K-indexed colimits, and $F : C \times D \rightarrow E$ is a functor that preserves K-indexed colimits in each variable^{[4](#page-5-0)}. Show that F preserves K-indexed colimits.

5. Sifted colimits and finite products

Theorem 5.1 (HTT.5.5.8.11, [Ker.05XM\)](https://kerodon.net/tag/05XM). Let C be a small ∞ -category. Then C is sifted iff the functor

$$
\mathsf{colim} : \mathsf{Fun}(\mathsf{C},\mathsf{Grpd}_{\infty}) \to \mathsf{Grpd}_{\infty}
$$

preserves finite products.

6. Universality of colimits

Construction 6.1. Let C be an ∞ -category that admits fiber products. Let $X \rightarrow Y$ be a functor in Grpd_{∞} . As in classical category theory, we have an adjunction

$$
(6.1) \t(Grpd_{\infty})_{/X} \xleftarrow{\longrightarrow} (Grpd_{\infty})_{/Y}
$$

where:

- The left adjoint is compatible with the forgetful functors;
- The right adjoint is given by $-\times$ \cdot X.

Remark 6.2. Alternatively, the above right adjoint can be constructed via the simplicial model category $\mathsf{Set}^{\mathsf{KQ}}_{\Delta}$.

Theorem 6.3 [\(Ker.05V5\)](https://kerodon.net/tag/05V5). The functor

$$
-\mathop{\times}_Y X: (\mathsf{Grpd}_\infty)_{/Y} \to (\mathsf{Grpd}_\infty)_{/X}
$$

preserves small colimits.

Exercise 6.4. Let $u : K \to \text{Grpd}_{\infty}$, $i \mapsto X_i$ be a small diagram and write $X \coloneqq \text{colim } u$. Show that there is a canonical isomorphism

$$
\underset{i\in\mathsf{K}}{\text{colim}}\left(X_i\underset{X}{\times}Y\right)\simeq Y.
$$

APPENDIX A. FILTERED COLIMITS OF ∞ -CATEGORIES

Proposition A.1. Let C be a small filtered ordinary category. Then any colimit diagram $\overline{u}: \mathsf{C}^{\triangleright} \to \mathsf{Set}_{\Delta}$ is also a homotopy colimit diagram in $\mathsf{Set}_{\Delta}^{\mathsf{Joyal}}$.

⁴This means $F(c, -)$ and $F(-, d)$ preserve K-indexed colimits for any $c \in C$ and $d \in D$.

A.2. We introduce two applications of Proposition [A.1.](#page-5-1) The first application is a description of filtered colimits of ∞-categories.

Exercise A.3. The functor $QCat \rightarrow Cat_{\infty}$ preserves small filtered ∞ -colimits.

Exercise A.4. Let K be a small filtered ∞ -category and K \rightarrow Cat_{∞}, $i \mapsto C_i$ be a diagram. Show that any object in $C := \text{colim}_{K} C_i$ is equivalent to $\text{ins}_i(x)$ for some $i \in K$ and $x \in C_i$.

Exercise A.5. Let K be a small filtered ∞ -category and K \rightarrow Cat_{∞}, $i \mapsto C_i$ be a diagram. For $i, j \in K$ and $x \in C_i$, $y \in C_j$, show that

$$
\mathsf{Maps}_{\mathsf{C}}(\mathsf{ins}_i(x),\mathsf{ins}_j(y)) \xleftarrow{\simeq} \mathsf{colim}_{k \in \mathsf{K}_{(i,j)/}} \mathsf{Maps}_{\mathsf{C}_k}(x_k,y_k),
$$

where

- K (i,j) is the coslice ∞ -category for $\Delta^0 \sqcup \Delta^0 \xrightarrow{(i,j)} K;$
- For $k \in K_{(i,j)}/$, x_k is the image of x under the functor $C_i \rightarrow C_k$, and similarly for y_k .

A.6. The second application is to decompose general colimits into filtered colimits of finite colimits.

Exercise A.7. Let K be any simplicial set. Show that the partially ordered set $\textsf{Fin}(K)$ of finite simplicial subsets of K is filtered, and

$$
K \simeq \mathop{\mathsf{hocolim}}_{J \in \mathop{\mathsf{Fin}}\nolimits(K)} J.
$$

Exercise A.8. For any diagram $u : K \to \mathsf{C}$, there is a canonical equivalence

$$
\underset{J\in \mathsf{Fin}(K)}{\text{colim}}\ \underset{J}{\text{colim}}\ u|_J\xrightarrow{\simeq}\underset{K}{\text{colim}}\ u,
$$

where the RHS exists if the LHS does.

Corollary A.9. An ∞ -category C admits small colimits iff it admits small filtered colimits and finite colimits. For such C, a functor $F : \mathsf{C} \to \mathsf{D}$ perserves small colimits iff it preserves filtered colimits and finite colimits.

A.10. The above result says

small colimits $=$ small filtered colimits $+$ finite colimits.

In fact, we also have:

small colimits = small sifted colimits + finite coproducts.

small colimits = small filtered colimits + geometric realization + finite coproducts. See HA.1.3.3.10.

A.11. Suggested readings. [Ker.03DD.](https://kerodon.net/tag/03DD)

Appendix B. Strong universality of colimits

Theorem B.1. Let $K \to \text{Grpd}_{\infty}$, $i \mapsto X_i$ be a small diagram. Consider X := colim_{i∈K} X_i . Then there is a canonical equivalence

$$
\text{(B.1)} \qquad \qquad (\text{Grpd}_{\infty})_{/\mathsf{X}} \to \lim_{i \in K} (\text{Grpd}_{\infty})_{/\mathsf{X}_i},
$$

where each evaluation functor is

$$
-\underset{X}{\times} X_i : (\mathsf{Grpd}_{\infty})_{X} \to (\mathsf{Grpd}_{\infty})_{X_i}.
$$

Exercise B.2. Use Theorem [6.3](#page-5-2) to show [\(B.1\)](#page-6-1) is fully faithful.

Exercise B.3. Show that Theorem [6.3](#page-5-2) remains true if Grpd_∞ is replaced by Set, but Theorem [B.1](#page-6-2) would fail.

B.4. Suggested readings. [Ker.05SB.](https://kerodon.net/tag/05SB)