Last time, for a diagram $u: \mathsf{K}_1 \times \mathsf{K}_2 \to \mathsf{C}$, we constructed a canonical morphism

$$\underset{y \in \mathsf{K}_2}{\operatorname{colim}} \lim_{\mathsf{K}_1} u(-, y) \to \underset{x \in \mathsf{K}_1}{\operatorname{lim}} \underset{\mathsf{K}_2}{\operatorname{colim}} u(x, -)$$

when assuming both sides exist. In this lecture, we discuss several cases when the above morphism is invertible.

1. FINITE DIAGRAMS

Definition 1.1. We say a simplicial set K is **finite** if it has finitely many nondegenerate simplexes.

We say an ∞ -category K is essentially finite if it can be represented by a quasi-category which is a finite simplicial set.

1.2. Recall we asy an *ordinary* category K is essentially finite iff the set of equivalence classes of objects and the set of morphisms in K are finite.

Exercise 1.3. Let K be an essentially finite ∞ -category. Show that hK is an essentially finite ordinary category.

Exercise 1.4. Let K be an ordinary category. If K is essentially finite as an ∞ -category, then it is essentially finite as an ordinary category.

Warning 1.5. The converse is not true: even a finite ordinary category may fail to be essentially finite as an ∞ -category.

Exercise 1.6. Let Idem be the ordinary category defined by

- There is an unique object *;
- Hom $(*, *) \coloneqq {id, e}, with e \circ e = e.$

Show that $N_{\bullet}(Idem)$ is not equivalent to a finite quasi-category.

Exercise 1.7. Let $\mathbb{B}(\mathbb{Z}/2\mathbb{Z})$ be the ordinary category defined by

- There is an unique object *;
- Hom $(*, *) \coloneqq \{id, f\}, with f \circ f = id.$

Show that $N_{\bullet}(\mathbb{B}(\mathbb{Z}/2\mathbb{Z}))$ is not equivalent to a finite quasi-category.

1.8. Nevertheless, for finite *partially ordered set*, the above abnormality does not appear.

Exercise 1.9. Let J be a finite partially ordered set, viewed as an ordinary category. Show that $N_{\bullet}(J)$ is a finite simplicial set.

Proposition 1.10 (Ker.02NB). For any simplicial set K, there exists a partially ordered set J and an initial morphism $N_{\bullet}(J) \rightarrow K$. If K is finite, we can take J to be finite.

Corollary-Definition 1.11. Let C be an ∞ -category. The following are equivalent:

Date: Oct. 22, 2024.

- C admits limits indexed by finite simplicial sets.
- C admits limits indexed by essentially finite ∞ -categories.
- C admits limits indexed by finite partially ordered sets.

We say C admits finite limits if it satisfies the above conditions.

Let $F : C \to D$ be a functor between ∞ -categories such that C admits finite limits. The following are equivalent:

- F preserves limits indexed by finite simplicial sets.
- F perserves limits indexed by essentially finite ∞ -categories.
- F preserves limits indexed by finite parially ordered sets.

We say F is left exact if it satisfies the above conditions.

Dually, for a functor $F : C \to D$ such that C admits finite colimits, we say F is **right exact** if it preserves finite colimits.

Warning 1.12. Let C be an ∞ -category that admits finite limits. It may not admit limits indexed by finite ordinary categories. For example, C may fail to be idempotent complete.

Remark 1.13. In future lectures, we will define left/right exact functors between general ∞ -categories.

Proposition 1.14. Let C be an ∞ -category. The following are equivalent:

- (i) C admits finite limits.
- (ii) C admits fiber products and a final object.
- (iii) C admits finite products and equalizers.

We also have similar results for left exact functors.

Sketch. The implications (i) \Rightarrow (ii) \Leftrightarrow (iii) are standard. To show (ii) \Rightarrow (i), let $u: K \rightarrow C$ be a finite diagram. We need to show $\lim u$ exsits. When $K = \emptyset$, this is the final object of C. If K is nonempty, we can find a pushout square in Set_{Δ}

$$\begin{array}{ccc} \partial \Delta^n \longrightarrow K' \\ \downarrow^c & \downarrow^c \\ \Delta^n \xrightarrow{c} K. \end{array}$$

Note that this is also a homotopy pushout square in $\mathsf{Set}_{\Delta}^{\mathsf{Joyal}}$. By the theorem on decomposition of diagrams (Ker.03DB), we have

$$\lim u \xrightarrow{\simeq} \lim u|_{K'} \underset{\lim u|_{\partial \Delta^n}}{\times} \lim u|_{\Delta'}$$

where the source exists if the target does. By induction, we reduce to prove the claim when $\mathsf{K} = \Delta^n$, which follows from the fact that $\Delta^0 \xrightarrow{0} \Delta^n$ is initial. \Box

1.15. In fact, an elaboration of the above argument shows:

Proposition 1.16 (HTT.4.4.2.6, 4.4.3.2). Let C be an ∞ -category. The following are equivalent:

- (i) C admits small limits.
- (ii) C admits fiber products and small products
- (iii) C admits small products and equalizers.

We also have similar results for functors preserving small limits.

 $\mathbf{2}$

2. Filtered ∞-categories

Definition 2.1. We say an ∞ -category C is filtered if any finite diagram $u: K \to C$ can be extended to a diagram $K^{\triangleright} \to C$.

Dually, we say C is cofiltered if for any finite diagram $u: K \to C$ can be extended to a diagram $K^{\triangleleft} \to C$.

2.2. Note that C is filtered iff C^{op} is cofiltered. Hence we will focus on filtered $\infty\text{-categories}.$

Exercise 2.3. Being filtered is invariant under equivalences.

2.4. An induction argument, which is similar to but more elaborate than that in the proof of Proposition 1.14, gives the following result:

Lemma 2.5 (Ker.02Q0). An ∞ -category C is filtered iff any diagram $u : \partial \Delta^n \to C$ with $n \ge 0^1$ can be extended to a diagram $(\partial \Delta^n)^{\triangleright} \to C$.

Remark 2.6. Note that $(\partial \Delta^n)^{\triangleright} \simeq \Lambda_{n+1}^{n+1}$.

2.7. Recall we say an ordinary category C is filtered if

- (0) It is nonempty.
- (1) For any objects x_1 , x_2 in C, there exists an object x equipped with morphisms $x_i \rightarrow x$.
- (2) For any diagram $x \Rightarrow y$ in C, there exists $y \rightarrow z$ such that the two compositions $x \Rightarrow y \rightarrow z$ are equal.

Note that condition (i) corresponds to the extension problem for $K = \partial \Delta^i$.

Proposition 2.8 (Ker.02PS). An ∞ -category C is filtered iff it satisfies the following conditions:

- (0) It is nonempty.
- (1) For any objects x_1, x_2 in C, there exists an object x equipped with morphisms $x_i \rightarrow x$.
- (2) For any objects x, y in C and any diagram $\partial \Delta^n \to \mathsf{Maps}(x, y)$ with $n \ge 1$, there exists a morphism $y \to z$ such that the composition

$$\partial \Delta^n \to \mathsf{Maps}(x, y) \to \mathsf{Maps}(x, z)$$

is null-homotopic, i.e., equivalent to a constant $diagram^2$.

Remark 2.9. Roughly speaking, for $n \ge 2$, the extension problem

corresponds to an extension problem

¹By definition, $\partial \Delta^0 = \emptyset$.

²Exercise: for a Kan complex K, a morphism $\partial \Delta^n \to K$ is null-homotopic iff it factors through Δ^n .

such that x = u(0) and y = u(n).

Exercise 2.10. Let C be a filtered ∞ -category. Show that hC is a filtered ordinary category.

Exercise 2.11. Let C be an ordinary category. Show that C is filtered as an ordinary category iff it is filtered as an ∞ -category.

Example 2.12. An ∞ -category is filtered if it admits a final object.

Example 2.13. An ∞ -category is filtered if it admits finite colimits.

Exercise 2.14. The category Idem is filtered.

3. FILTERED COLIMITS AND FINITE LIMITS

Theorem 3.1 (Ker.05XS). Let C be a small ∞ -category. Then C is filtered iff the functor

 $colim : Fun(C, Grpd_{\infty}) \rightarrow Grpd_{\infty}$

preserves finite limits.

Warning 3.2. The claim may be false if $Grpd_{\infty}$ is replaced by general ∞ -categories.

Exercise 3.3. Consider the discrete topological space \mathbb{Z} and its one-point-compactification $\mathbb{Z} \cup \{\infty\}^3$ Consider the partially ordered set P of closed subsets of $\mathbb{Z} \cup \{\infty\}$. Show that filtered colimits in P may not commute with finite limits.

Corollary 3.4. Let $F : C \to D$ be a final functor between ∞ -categories. If C is filtered, so is D.

Challenge 3.5. Can you find a proof of the above corollary without using Theorem 3.1?

3.6. Recall a partially ordered set J is *directed* if any finite subset of it admits an upper bound in J.

Proposition 3.7 (Ker.02QA). Let C be an ∞ -category. The following are equivalent:

- C is filtered.
- There exists a directed partially ordered set J and a final functor $J \rightarrow C.$

Proposition 3.8. Let C be a filtered ∞ -category and $u : K \to C$ be any finite diagram. Then the forgetful functor $C_{u/} \to C$ is final.

Proof. By Quillen's Theorem A, we only need to show $C_{u/\times_{\mathsf{C}}} C_{x/}$ is weakly contractible for any $x \in \mathsf{C}$. We have

$$\mathsf{C}_{u/\times}\mathsf{C}_{x/\simeq}\mathsf{C}_{u\sqcup x/z}$$

where $u \sqcup x : K \sqcup \Delta^0 \to \mathsf{C}$ is the disjoint union of u and x. Now the claim follows from the following two exercises.

Exercise 3.9. A filtered ∞ -category is weakly contractible. Hint: $K \times \Delta^1 \to K^{\triangleright}$.

Proposition 3.10. Let C be an ∞ -category. The following are equivalent:

(i) C is filtered.

4

³An closed subset of $\mathbb{Z} \cup \{\infty\}$ is either finite or contains ∞ .

- (ii) For any finite diagram $u: K \to \mathsf{C}$, the ∞ -category C_{ul} is filtered.
- (iii) For any finite diagram $u: K \to C$, the ∞ -category C_{ul} is weakly contractible.
- (iv) For any finite $K \in \text{Set}_{\Delta}$, the diagonal functor $\mathsf{C} \to \mathsf{Fun}(K,\mathsf{C})$, $x \mapsto \underline{x}$ is final.

Sketch. The implications $(i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i)$ are left as exercises. We will prove $(ii) \Leftrightarrow (iii)$. By Quillen's Theorem A, (ii) is equivalent to:

$$C \underset{\operatorname{Fun}(K,C)}{\times} \operatorname{Fun}(K,C)^{u/}$$

is weakly contractible for any $u: K \to C$. It is easy to see the above fiber product is equivalent to $C^{u/}$, which implies the claim.

4. SIFTED DIAGRAM

Definition 4.1. Let K be a simplicial set. We say K is sifted if for any finite set I, the diagonal morphism $K \to K^I$ is final.

Dually, we say K is **cosifted** if for any finite set I, the diagonal morphism $K \rightarrow K^{I}$ is initial.

4.2. Note that C is sifted iff C^{op} is cosifted. Hence we will focus on sifted $\infty\text{-}$ categories.

Exercise 4.3. Being filtered is invariant under equivalences.

Example 4.4. Any filtered ∞ -category is sifted.

Exercise 4.5. Show that a simplicial set K is sifted iff it is nonempty and $K \rightarrow K \times K$ is final. Hint: If $K \rightarrow K \times K$ is a weak homotopy equivalent and $K \neq \emptyset$, then K is weakly contractible.

Corollary 4.6. An ∞ -category C is sifted iff it is nonempty and $C_{x/} \times_{C} C_{y/}$ is weakly contractible for any pair of objects $x, y \in C$.

Warning 4.7. In classical category theory, an ordinary category is called sifted if it is nonempty and $C_{x/} \times_C C_{y/}$ is connected for any pair of objects $x, y \in C$. A sifted ordinary category may fail to be sifted as an ∞ -category.

Exercise 4.8. Let $\Delta_{\leq 1} \subset \Delta$ be the full subcategory consisting of [0] and [1]. Show that $\Delta_{\leq 1}^{\mathsf{op}}$ is sifted as an ordinary category but not as an ∞ -category.

Exercise 4.9. Show that Δ^{op} is sifted as an ∞ -category.

Definition 4.10. The colimit of a Δ^{op} -indexed diagram is called the **geometric** realization of such diagram. The limit of a Δ -indexed diagram is called the **to**talization of such diagram.

4.11. It is known that geometric realizations and filtered colimits *almost* generate all sifted diagrams. See §A.10.

Proposition 4.12. Let $F : C \to D$ be a final functor between ∞ -categories. If C is sifted, so is D.

Proof. For any finite set I, consider the commutative diagram

Since F is final, so is F^{I} ([Lecture 7, Proposition 3.16]). Since C is sifted, δ_{1} is final. It follows that δ_{2} is also final as desired ([Lecture 7, Exercise 3.13]).

Exercise 4.13. Let K be a sifted simplicial set. Suppose C, D and E are ∞ -categories that admit K-indexed colimits, and $F : C \times D \rightarrow E$ is a functor that preserves K-indexed colimits in each variable⁴. Show that F preserves K-indexed colimits.

5. SIFTED COLIMITS AND FINITE PRODUCTS

Theorem 5.1 (HTT.5.5.8.11, Ker.05XM). Let C be a small ∞ -category. Then C is sifted iff the functor

$$\mathsf{colim}:\mathsf{Fun}(\mathsf{C},\mathsf{Grpd}_\infty)\to\mathsf{Grpd}_\infty$$

preserves finite products.

6. Universality of colimits

Construction 6.1. Let C be an ∞ -category that admits fiber products. Let $X \to Y$ be a functor in Grpd_{∞}. As in classical category theory, we have an adjunction

$$(6.1) \qquad (\operatorname{Grpd}_{\infty})_{/\mathsf{X}} \xleftarrow{} (\operatorname{Grpd}_{\infty})_{/\mathsf{Y}}$$

where:

- The left adjoint is compatible with the forgetful functors;
- The right adjoint is given by $\times_{\mathbf{Y}} \mathbf{X}$.

Remark 6.2. Alternatively, the above right adjoint can be constructed via the simplicial model category $\mathsf{Set}^{\mathsf{KQ}}_{\Lambda}$.

Theorem 6.3 (Ker.05V5). The functor

$$-\underset{\mathsf{V}}{\times}\mathsf{X}:(\mathsf{Grpd}_{\infty})_{/\mathsf{Y}}\to(\mathsf{Grpd}_{\infty})_{/\mathsf{X}}$$

preserves small colimits.

Exercise 6.4. Let $u : \mathsf{K} \to \mathsf{Grpd}_{\infty}$, $i \mapsto \mathsf{X}_i$ be a small diagram and write $X := \mathsf{colim} u$. Show that there is a canonical isomorphism

$$\operatorname{colim}_{i \in \mathsf{K}} \left(X_i \underset{X}{\times} Y \right) \simeq Y.$$

Appendix A. Filtered colimits of ∞-categories

Proposition A.1. Let C be a small filtered ordinary category. Then any colimit diagram $\overline{u} : C^{\triangleright} \to \operatorname{Set}_{\Delta}$ is also a homotopy colimit diagram in $\operatorname{Set}_{\Delta}^{\operatorname{Joyal}}$.

⁴This means F(c, -) and F(-, d) preserve K-indexed colimits for any $c \in C$ and $d \in D$.

A.2. We introduce two applications of Proposition A.1. The first application is a description of filtered colimits of ∞ -categories.

Exercise A.3. The functor $QCat \rightarrow Cat_{\infty}$ preserves small filtered ∞ -colimits.

Exercise A.4. Let K be a small filtered ∞ -category and $K \to Cat_{\infty}$, $i \mapsto C_i$ be a diagram. Show that any object in $C := \operatorname{colim}_{K} C_{i}$ is equivalent to $\operatorname{ins}_{i}(x)$ for some $i \in \mathsf{K} and x \in \mathsf{C}_i$.

Exercise A.5. Let K be a small filtered ∞ -category and $K \to Cat_{\infty}$, $i \mapsto C_i$ be a diagram. For $i, j \in K$ and $x \in C_i$, $y \in C_j$, show that

$$\mathsf{Maps}_{\mathsf{C}}(\mathsf{ins}_i(x),\mathsf{ins}_j(y)) \xleftarrow{\simeq} \underset{k \in \mathsf{K}_{(i,j)/}}{\mathsf{colim}} \mathsf{Maps}_{\mathsf{C}_k}(x_k, y_k),$$

where

- K_{(i,j)/} is the coslice ∞-category for Δ⁰ ⊔ Δ⁰ (*i,j*)/(*i,j*) K;
 For k ∈ K_{(i,j)/}, x_k is the image of x under the functor C_i → C_k, and similarly for y_k .

A.6. The second application is to decompose general colimits into filtered colimits of finite colimits.

Exercise A.7. Let K be any simplicial set. Show that the partially ordered set Fin(K) of finite simplicial subsets of K is filtered, and

$$K \simeq \underset{J \in \mathsf{Fin}(K)}{\mathsf{hocolim}} J.$$

Exercise A.8. For any diagram $u: K \to C$, there is a canonical equivalence

$$\operatorname{colim}_{J \in \operatorname{Fin}(K)} \operatorname{colim}_{J} u |_{J} \xrightarrow{\simeq} \operatorname{colim}_{K} u,$$

where the RHS exists if the LHS does.

Corollary A.9. An ∞ -category C admits small colimits iff it admits small filtered colimits and finite colimits. For such C, a functor $F : C \rightarrow D$ perserves small colimits iff it preserves filtered colimits and finite colimits.

A.10. The above result says

small colimits = small filtered colimits + finite colimits .

In fact, we also have:

small colimits = small sifted colimits + finite coproducts.

small colimits = small filtered colimits + geometric realization + finite coproducts . See HA.1.3.3.10.

A.11. Suggested readings. Ker.03DD.

APPENDIX B. STRONG UNIVERSALITY OF COLIMITS

Theorem B.1. Let $K \to \operatorname{Grpd}_{\infty}$, $i \mapsto X_i$ be a small diagram. Consider X := $\operatorname{colim}_{i \in K} X_i$. Then there is a canonical equivalence

(B.1)
$$(\operatorname{Grpd}_{\infty})_{/X} \to \lim_{i \in K} (\operatorname{Grpd}_{\infty})_{/X_i},$$

where each evaluation functor is

$$-\mathop{\times}_{X} \mathsf{X}_{i}:(\mathsf{Grpd}_{\infty})_{/\mathsf{X}}\to(\mathsf{Grpd}_{\infty})_{/\mathsf{X}_{i}}$$

Exercise B.2. Use Theorem 6.3 to show (B.1) is fully faithful.

Exercise B.3. Show that Theorem 6.3 remains true if Grpd_{∞} is replaced by Set, but Theorem B.1 would fail.

B.4. Suggested readings. Ker.05SB.