
LECTURE 11

In this lecture, we discuss the ∞-categorical Yoneda lemma.

1. Representable functors

Definition 1.1. Let C be an ∞-category and F ∶ Cop → Grpd∞ be a functor. We
say an object η ∈ F (x) exhibits F as represented by an object x ∈ C if, for any
object y, the composition

(1.1) MapsCop(x, y)→MapsGrpd∞(F (x), F (y))
evηÐÐ→ F (y)

is an equivalence between ∞-groupoids. We say F is representable if such x and
η exist.

Dually, for a functor G ∶ C → Grpd∞, we say an object η ∈ G(x) exhibits G as
corepresented by an object x ∈ Cop if, for any object y, the composition

MapsC(x, y)→MapsGrpd∞(G(x),G(y))
evηÐÐ→ G(y)

is an equivalence between ∞-groupoids. We say G is corepresentable if such x
and η exist.

1.2. Note that η ∈ F (x) exhibits F ∶ Cop → Grpd∞ as represented by x ∈ C iff the
same object exhibits F as corepresented by the corresponding object x ∈ Cop. Hence
we will focus on representable functors.

Remark 1.3. The composition (1.1) is defined up to homotopy. Note however that
equivalences are invariant under homotopy.

Remark 1.4. The composition (1.1) sends idx to η ∈ F (x).

1.5. It is easy to see Definition 1.1 is invariant under equivalences. In particular:

(1) Suppose η1, η2 ∈ F (x) are isomorphic, then η1 exhibits F as represented by
x iff η2 does so.

(2) Let f ∶ x → x′ be an isomorphism, then η ∈ F (x) exhibits F as represented
by x iff F (f)(η) ∈ F (x′) exhibits F as represented by x′.

Warning 1.6. It may happen that both η1 and η2 exhibit F as represented by x,
but they are not isomorphic. Namely, if η1 exhibits F as represented by x, then any
automorphism f ∶ x → x produces an object F (f)(η1) satisfying the same property.
One can show η1 and F (f)(η1) are isomorphic iff f is homotopic to idx.

Exercise 1.7. Let F ∶ Cop → Grpd∞ be any functor. Show that there is a functor
π0F ∶ hCop → Set, unique up to unique equivalence, that fits into the following
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commutative diagram

Cop F //

��

Grpd∞

π0

��
hCop

π0F
// Set.

Show that if F is representable, then π0F is representable as a functor between
ordinary categories.

Warning 1.8. The converse of Exercise 1.7 is false. In other words, in Definition
1.1, we cannot replace (1.1) by the map

π0MapsCop(x, y)→ π0MapsGrpd∞(F (x), F (y))
evηÐÐ→ π0F (y).

Exercise 1.9. Consider the constant functor F ∶ Cop → Grpd∞ with value {∗}.
The unique object in F (x) exhibits F as represented by x iff x is final in C. Note
however that π0F is representable iff hC has a final object.

1.10. However, we also have the following result:

Proposition 1.11. Let F ∶ Cop → Grpd∞ be a representable functor. Then η ∈ F (x)
exhibits F as represented by x ∈ C iff for any object y, η induces a bijection

π0MapsCop(x, y)→ π0F (y)
between sets.

Proof. By assumption, there exists η′ ∈ F (x′) that exhibits F as represented by x′.

Hence by definition, the object η ∈ F (x) corresponds to a morphism x′
α←Ð x in C

such that F (x′) → F (x) sends η′ to an object isomorphic to η. It follows that we
have a commutative diagram

π0MapsCop(x, y)

−○α

��

// π0F (y)

π0MapsCop(x′, y)
≃
// π0F (y).

Unwinding the definitions, we have:

η exhibits F as represented by x
⇔ α is an isomorphism in Cop

⇔ α is an isomorphism in hCop

⇔ For any y, the left vertical map is bijective
⇔ For any y, the top horizontal map is bijective.

□

Remark 1.12. The ordinary category hC has a natural (strict) enrichment over the
ordinary symmetric monoidal category hGrpd∞ (see [Lecture 4, §10]), at least when
C is locally small. Denote this hGrpd∞-enriched category1 by hC. One can similarly
define the notion of representable hGrpd∞-enriched functors hCop → hGrpd∞. Then
tautologically, a functor F ∶ Cop → Grpd∞ is representable iff the enriched functor
hF is so.

1Warning: in HTT, Lurie denoted it just by hC, the same symbol as the ordinary homotopy
category.
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2. Representable functors as left Kan extensions

2.1. Note that a pair (F, η) can be viewed as a diagram

(2.1) Cop

F

##
∆0

x

==

{∗}

//

η

KS

Grpd∞

Proposition 2.2. Let C be an ∞-category and (F, η) as above. Then η exhibits F
as represented by x iff

(i) For each y ∈ Cop, the ∞-groupoid MapsCop(x, y) is essentially small;
(ii) In (2.1), η exhibits F as a left Kan extension of the constant functor {∗} ∶

∆0 → Grpd∞ along x ∶∆0 → Cop.

Sketch. First note that if F is represented by x, then eachMapsCop(x, y) is equivalent
to F (y) ∈ Grpd∞ and therefore essentially small. Hence we restrict to the case when
(i) is true. By definition,

(Cop)/y ×
Cop

∆0 ≃MapsCop(x, y).

It follows that

(2.2) (LKEx{∗})(y) ≃ colim
MapsCop(x,y)

{∗} ≃MapsCop(x, y).

Now (ii) is equivalent to:

● The natural transformation LKEx{∗}→ F induced by η is invertible.

This is equivalent to

● For any y ∈ Cop, the morphism (LKEx{∗})(y) → F (y) induced by η is
invertible.

Unwinding the definitions, the above morphism is homotopic to the composition of
(1.1) and (2.2), which implies the desired claim. □

Corollary 2.3. Let C be an ∞-category and x ∈ C be a fixed object satisfying the
size condition (i). Then the pairs (F, η ∈ F (x)) such that η exhibits F as represented
by x are essentially unique.

Remark 2.4. The precise meaning of the above corollary is as follows. The pairs
(F, η ∈ F (x)) are classified by the fiber product of the following ∞-categories:

(Grpd∞){∗}/

��
Fun(Cop,Grpd∞)

evx // Grpd∞.

Now the proposition claims the full sub-∞-category of this fiber product consisting
of those pairs satisfying the representability condition, is equivalent to [0].
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2.5. By the above corollary, after enlarging the size bound of objects in Grpd∞,
we can talk about the functor Cop → Grpd∞ represented by an object x ∈ C, as
long as we incorporate the object η as part of the data in its definition. We denote
this functor by hx. When using these notation, we always view it as an object in
Fun(Cop,Grpd∞) equipped with a canonical object in hx(x). We often denote this
object by idx because of Remark 1.4. Now Proposition 2.2 can be informally write
as

hx
≃←Ð LKEx{∗}

Dually, the functor corepresented by x is denoted by hx.

Exercise 2.6. Describe the corepresentable functor hx as a left Kan extension.

3. Yoneda lemma

Theorem 3.1. Let C be an ∞-category and hx ∶ Cop → Grpd∞ be the functor
represented by x. Then for any functor G ∶ Cop → Grpd∞, the composition

MapsFun(Cop,Grpd∞)
(hx,G)→MapsGrpd∞(hx(x),G(x))

evidxÐÐ→ G(x)
is an equivalence between ∞-categories.

Proof. Via the equivalence hx
≃←Ð LKEx{∗}, this composition is

MapsFun(Cop,Grpd∞)
(LKEx{∗},G)→MapsFun(∆0,Grpd∞)

((LKEx{∗})∣x,G∣x)→
→MapsFun(∆0,Grpd∞)

({∗},G∣x) ≃ G(x),
which is an equivalence by the definition of LKE. □

Exercise 3.2. Prove the last claim in Warning 1.6.

3.3. By Proposition 2.2, the functor hx is characterized by the conclusion of The-
orem 2.2. In fact, the following stronger result is true.

Proposition 3.4. Let C be an ∞-category and x ∈ C be an object satisfying the
size condition (i). For a functor F ∶ Cop → Grpd∞ and η ∈ F (x), the following are
equivalent:

(1) η exhibits F as a functor represented by x;
(2) For any functor G ∶ Cop → Grpd∞, η induces an equivalence

MapsFun(Cop,Grpd∞)
(F,G)→ G(x)

between ∞-categories.
(3) For any functor G ∶ Cop → Grpd∞, η induces an equivalence

π0MapsFun(Cop,Grpd∞)
(F,G)→ π0G(x)

between sets.

Proof. Only (3)⇒(1) requires proof. The size assumption implies hx exists. By
Theorem 3.1, there is a natural transformation α ∶ hx → F sending idx ∈ hx(x) to
an object isomorphic to η ∈ F (x). It follows that we have a commutative diagram

π0MapsFun(Cop,Grpd∞)
(F,G)

−○α

��

≃ // π0G(x)

π0MapsFun(Cop,Grpd∞)
(hx,G) ≃

// π0G(x).
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This implies α is an isomorphism in hFun(Cop,Grpd∞) and therefore an isomorphism
in Fun(Cop,Grpd∞), which implies (1). □

Remark 3.5. In this remark, we compare Proposition 1.11 and Proposition 3.4.

Once we have developed the theory of partially defined adjoint functors. We can
rephrase the conditions in Definition 1.1 and Proposition 1.11 respectively as

(a) η exhibits x as the potential value of {∗} ∈ Grpd∞ under the left adjoint
functor of

F ∶ Cop → Grpd∞.

(a′) η exhibits x as the potential value of {∗} ∈ hGrpd∞ under the left adjoint
functor of

hF ∶ hCop → hGrpd∞.

Proposition 1.11 says if the partially defined left adjoint of F is defined at {∗}, then
its value can be detected by the homotopy categories.

Similarly, we can rephrase (2) and (3) in Proposition 3.4 respectively as:

(b) η exhibits F as the potential value of {∗} ∈ Grpd∞ under the left adjoint
functor of

evx ∶ Fun(Cop,Grpd∞)→ Grpd∞,

(b′) η exhibits F as the potential value of {∗} ∈ hGrpd∞ under the left adjoint
functor of

h(evx) ∶ hFun(Cop,Grpd∞)→ hGrpd∞,

Proposition 3.4 says if the partially defined left adjoint of evx is defined at {∗},
then its value can be detected by the homotopy categories.

In fact, similar claim is true for the partially defined adjoint functor of any
functor.

Exercise 3.6. Apply the above paradigm to final objects in an ∞-category. Com-
pare with [Lecture 6, Exercise 2.8].

Exercise 3.7. Find what is wrong with the following argument.

● False claim: If the limit of a diagram u ∶ K → C exists, then it can be
calculated in the homotopy category hC.
● Fake proof: the limit can be written as a LKE, which is the value of a
partially defined left adjoint.

4. Yoneda embedding

4.1. In this section, we provide a construction of the functor

MapsC(−,−) ∶ Cop × C→ Grpd∞

via simplicial categories. In future lectures, we will provide a pure quasi-categorical
construction using the theory of left fibrations.

Construction 4.2. Let C be a locally small2 quasi-category and consider the sim-
plicial category C ∶= C(C). Let C → C

′ be a fibrant replacement. Consider the
composition of simplicial functors:

C(Cop × C)→ C(Cop) × C(C) ≃ Cop ×C→ (C′)op ×C′ → Kan,

2This means Maps
C
(x, y) is small for any objects x and y.
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where the last functor is given by HomC′(−,−). By adjunction, we obtain a functor

Cop × C →N●(Kan) =∶ Kan.

Exercise 4.3. The equivalence class of the obtained functor Cop × C → Kan does
not depend on the choice of C′. In other words, we obtain a well-defined element
in

π0(Fun(Cop × C,Kan)≃).

Exercise 4.4. The above equivalence class is invariant under equivalences in C. In
other words, for an equivalence C → D, the map

π0(Fun(Dop ×D,Kan)≃)→ π0(Fun(Cop × C,Kan)≃).

preserves the corresponding elements.

4.5. As a consequence, for a locally small ∞-category C, we obtain a functor

MapsC(−,−) ∶ Cop × C→ Grpd∞

whose equivalence class does not depend on any choice.

Exercise 4.6. Up to equivalence, the above functor lifts the functor Cop × C →
hGrpd∞ constructed in [Lecture 4, §10].

Exercise 4.7. For any object x ∈ C, a morphism f ∈ MapsC(y, x) exhibits the
functor

MapsC(−, x) ∶ Cop → Grpd∞

as represented by y iff f is invertible. In particular, the morphism idx provides a
canonical equivalence

MapsC(−, x) ≃ hx.

Dually, there is a canonical equivalence

MapsC(x,−) ≃ hx.

Corollary 4.8. Let C be a locally small ∞-category. The functor

C→ Fun(Cop,Grpd∞), x↦MapsC(−, x)

is fully faithful and its essential image consists of representable functors.

Definition 4.9. Let C be a locally small ∞-category.

● A (covariant) Yoneda embedding is a functor C → Fun(Cop,Grpd∞)
equivalent to x↦MapsC(−, x).
● A (cotravariant) Yoneda embedding is a functor Cop → Fun(C,Grpd∞)
equivalent to x↦MapsC(x,−).

Definition 4.10. Let C be an essentially small ∞-category. We write

PShv(C) ∶= Fun(Cop,Grpd∞)

and call it the ∞-category of presheaves on C.

Remark 4.11. In the above definition, we require C to be essentially small rather
than locally small to guarantee PShv(C) is locally small. Note however that PShv(C)
is almost never small.
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4.12. Let C be an essentially small∞-category. Recall PShv(C) ∶= Fun(Cop,Grpd∞)
admits all small limits and colimits, which can be calculated pointwisely ([Lecture
7, Theorem 2.14]).

The following result is equivalent to [Lecture 7, Theorem 2.11]. See HTT.5.1.3.2
for a proof using simplicial categories.

Theorem 4.13. Let C be an essentially small ∞-category. Then a Yoneda embed-
ding C→ PShv(C) preserves and detects all limits.

Warning 4.14. The limit of a small diagram u ∶ K → C might not exist. This
happens iff the limit of K → C→ PShv(C) is not a representable presheaf.

5. Cocompletion

Definition 5.1. We say a functor C→ Ĉ exhibits Ĉ as a cocompletion of C if
the following conditions are satisified:

● The ∞-category Ĉ admits small colimits.
● For any ∞-category D that admits small colimits, the restriction functor

LFun(Ĉ,D)→ Fun(C,D)

is an equivalence, where LFun(Ĉ,D) ⊂ Fun(Ĉ,D) is the full sub-∞-category
consisting of functors that preserve small colimits.

Theorem 5.2 (Ker.04BE). Let C be an essentially small ∞-category. A Yoneda
embedding ι ∶ C→ PShv(C) exhibits PShv(C) as a cocompletion of C.

Idea of the proof. We only need to show the restriction functor

(5.1) − ○ ι ∶ LFun(PShv(C),D)→ Fun(C,D)

is an equivalence. We claim LKEι exists and induces a functor

(5.2) LKEι ∶ Fun(C,D)→ LFun(PShv(C),D)

that is inverse to the above restriction functor.

In fact, for any F ∶ C→ D, the pointwise LKEιF ∶ PShv(C)→ D exists because

(5.3) C/M ∶= PShv(C)/M ×
PShv(C)

C

is essentially small3 and therefore

(LKEιF )(M) ≃ colim
(hx→M)∈C/M

F (x).

One can show C/colimMi
≃ colimC/Mi

and use decomposition of diagrams to show
the functor LKEιF preserves small colimits.

It remains to show the obtained functor (5.2) is an inverse to (5.1). It is a right
inverse because ι is fully faithful. To show it is a left inverse, we need to show any
colimit-preserving G ∶ PShv(C)→ D satisfies

(5.4) LKEι(G ○ ι)
≃Ð→ G.

3It is in this step that we use C is essentially small rather than just locally small (Ker.03WG).
The theorem would fail under the latter weaker assumption (Ker.03WF).

https://kerodon.net/tag/04BE
https://kerodon.net/tag/03WG
https://kerodon.net/tag/03WF
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Since G is colimit-preserving and the above LKE is pointwise, we only need to treat
the universal case when G = Id. Since small colimits in PShv(C) are preserved and
detected by hop

M
∶ PShv(C)→ Grpdop∞, we only need to treat the cases when G = hop

M
.

In other words, we need to show the commutative diagram

PShv(C)op

hM

&&
Cop

ιop
::

M

// Grpd∞

induces

hM
≃Ð→ RKEιopM.

Here the equivalenceM ≃ hM ○ ιop follows from the Yoneda lemma for C. We only
need to show for any N ∈ PShv(C)op,

hM(N )
≃Ð→ (RKEιopM)(N ).

Applying the Yoneda lemma to PShv(C), we only need to show4

hM(N )
≃Ð→Maps(hN ,RKEιopM)

Unwinding the definitions, this functor can be identified with

hM(N ) ≃Maps(N ,M) ≃Maps(hN ○ ιop,M) ≃Maps(hN ,RKEιopM),
where the last equivalence uses the universal property of the RKE. □

5.3. In the above proof, we actually proved the following:

Corollary 5.4. Let C be an essentially small ∞-category. Then PShv(C) is gen-
erated by the image of ι ∶ C→ PShv(C) under small colimits.

Remark 5.5. The precise meaning of the above corollary is: any object in M ∈
PShv(C) is isomorphic to a small colimit of objects contained in the image of ι.
Indeed, we have

M ≃ colim
(hx→M)∈C/M

ι(x).

by applying (5.4) to G ∶= Id.

Appendix A. Completely compact objects

Definition A.1. Let D be a locally small ∞-category which admits small colimits.
We say an object d ∈ D is completely compact if the functor

MapsD(d,−) ∶ D→ Grpd∞

preserves small colimits.

Exercise A.2. Suppose d is completely compact in D. Show that any retract of d
is also completely compact. Here recall we say c is a retract of d if idc factors as
c→ d→ c.

4This is where the magic happens. In the general setting, to check a functor T ∶ Uop
→ V is

a RKE of Uop
0 → V, one needs to use all functors S ∶ Uop

→ V as testing functors and calculate

Maps(S,T ). However, when V = Grpd
∞
, the above argument says it is enough to use representable

functors as testing functors.
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Exercise A.3. Let C be an essentially small ∞-category. Show that representable
presheaves hx ∈ PShv(C) are completely compact.

Theorem A.4 (HTT.5.1.6.8). Let C be an essentially small ∞-category. Then a
presheafM ∈ PShv(C) is completely compact iff it is a retract of some representable
presheaf.

A.5. Suggested readings. : HTT.5.1.6.
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