
LECTURE 12

In this lecture, we introduce adjoint functors between ∞-categories.

1. Definition

1.1. Recall the following definition in ordinary category theory.

Definition 1.2. Let F ∶ C ÐÐ→←ÐÐ D ∶ G be functors between ordinary categories. An
adjunction between F and G is a collection of bijections

ρx,y ∶ HomD(F (x), y)
≃

Ð→ HomC(x,G(y))

which are functorial on x ∈ Cop and y ∈ D. We also say the construction (x, y)↦ ρx,y
exhibits F as a left adjoint of G.

1.3. Dually, we also say (x, y)↦ ρx,y exhibits G as a right adjoint of F .

1.4. In above, the bijections ρx,y can be encoded as an invertible natural transfor-
mation from the clockwise arc to the counterclockwise arc in the following diagram:

Cop
×D

(F op,Id)//

(Id,G)

��

Dop
×D

HomD(−,−)

��
Cop

× C
HomC(−,−)

// Set.

Note however that in the ∞-categorical setting, the construction of the functor
MapsC(−,−) ∶ C

op
×C→ Grpd

∞
is more complicated. Hence we prefer to encode ρ●,●

in an alternative way.

Definition 1.5. Let F ∶ CÐÐ→←ÐÐ D ∶ G be functors between ∞-categories.

(1) We say a natural transformation µ ∶ IdC → G ○ F exhibits F as a left
adjoint of G if for any objects x ∈ C and y ∈ D, the composition

(1.1) MapsD(F (x), y)
G(−)
ÐÐÐ→MapsC(G ○ F (x),G(y))

−○µ(x)
ÐÐÐÐ→MapsC(x,G(y))

is invertible.
(2) We say a natural transformation κ ∶ F ○ G → IdD exhibits F as a left

adjoint of G if for any objects x ∈ C and y ∈ D, the composition

(1.2) MapsC(x,G(y))
F (−)
ÐÐÐ→MapsD(F (x), F ○G(y))

κ(y)○−
ÐÐÐÐ→MapsD(F (x), y)

is invertible.

Definition 1.6. Let F ∶ C ÐÐ→←ÐÐ D ∶ G be functors between ∞-categories. We say a
pair of natural transformations µ ∶ IdC → G ○F and κ ∶ F ○G→ IdD are compatible
up to homotopy if they satisfy the following two conditions:
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2 LECTURE 12

(i) The composition

F
idF ○µ
ÐÐÐ→ F ○G ○ F

κ○idF
ÐÐÐ→ F

is homotopic to idF in Fun(C,D).
(ii) The composition

G
µ○idG
ÐÐÐ→ G ○ F ○G

idG○κ
ÐÐÐ→ G

is homotopic to idF in Fun(C,D).

Warning 1.7. In the above definition, we do not supply 2-simplex

F ○G ○ F

κ○id

$$

G ○ F ○G

id○κ

$$
F

id○µ

::

F G

µ○id

::

G

to witness the homotopies.

Definition 1.8. We say:

(1) A natural tranformation µ as above is the unit of an adjunction between
F and G if there exists κ compatible with it up to homotopy.

(2) A natural tranformation κ as above is the counit of an adjunction be-
tween F and G if there exists µ compatible with it up to homotopy.

Proposition 1.9 (Ker.02FX). Let F ∶ C ÐÐ→←ÐÐ D ∶ G be functors between ∞-
categories and µ ∶ IdC → G ○ F be a natural transformation. The following are
equivalent:

● µ is the unit of an adjunction between F and G.
● µ exhibits F as a left adjoint of G.

Dually, for κ ∶ F ○G→ IdD, the following are equivalent:

● κ is the counit of an adjunction between F and G.
● κ exhibits F as a left adjoint of G.

Remark 1.10. The ⇒ direction is easy. Suppose (µ,κ) is compatible up to homo-
topy, then we have the following commutative diagram

[Fx, y]
G // [GFx,Gy]

−○µ(x) //

F

��

[x,Gy]

F

��
[Fx, y]

FG //

IdD

��

[FGFx,FGy]
−○µ(Fx)//

κ(y)○−

��

[Fx,FGy]

κ(y)○−

��
[Fx, y]

−○κ(Fx)
// [FGFx, y]

−○µ(Fx)
// [Fx, y].

Now Axiom (i) in Definition 1.6 implies the bottom horizontal composition is ho-
motopic to the identity functor. It follows that the composition of the top horizontal
and the right vertical functors, i.e., (1.2)○(1.1) is homotopic to the identity func-
tor. Dually, Axiom (ii) implies (1.1)○(1.2) is homotopic to the identity functor.
Therefore both (1.1) and (1.2) are invertible.

The ⇐ direction can be proven if one can assign an inverse of (1.6) functorial
enough to induce a natural transformation κ.

https://kerodon.net/tag/02FX
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Corollary-Definition 1.11. Let F ∶ C → D be a functor between ∞-categories.
The following are equivalent:

● There exists G ∶ D→ C and µ ∶ IdC → G○F such that µ exhibits G as a right
adjoint of F .

● There exists G ∶ D→ C and κ ∶ F ○G→ IdD such that κ exhibits G as a right
adjoint of F .

● There exists G ∶ D→ C and a pair (µ,κ) as above which is compatible up to
homotopy.

We say F admits a right adjoint, or is right adjointable, if it satisfies the
above conditions. Dually, we define the notion of left adjointable functors.

1.12. In practice, the adjunction datum is more adapted for formal proofs. The
following exercise provides an example.

Exercise 1.13. Let F ∶ C ÐÐ→←ÐÐ D ∶ G be an adjunction exhibited either by its unit
or counit. Let E be any ∞-category, show that

(1) We have an adjunction

F ○ − ∶ Fun(E,C)ÐÐ→←ÐÐ Fun(E,D) ∶ G ○ −

exhibited by the same type of datum.
(2) We have an adjunction

− ○G ∶ Fun(D,E)ÐÐ→←ÐÐ Fun(C,E) ∶ − ○ F

exhibited by the same type of datum.

2. Criteria for adjointability

Proposition 2.1. We have:

(1) If G ∶ D → C admits a left adjoint, then G preserves all small limits that
exist in D.

(2) If F ∶ C→ D admits a right adjoint, then F preserves all small colimits that
exist in D.

Sketch. We may assume both C and D are essentially small. Then

MapsC(x,G(lim yi)) ≃MapsD(F (x), lim yi) ≃ limMapsD(F (x), yi) ≃

≃ limMapsD(x,G(yi)) ≃MapsD(x, limG(yi)).

This implies G(lim yi) ≃ limG(yi). �

Exercise 2.2. Rewrite the above sketch as a rigorous proof.

Remark 2.3. In future lectures, we will see the converse of the proposition is true
if C and D are presentable.

Proposition 2.4. Let G ∶ D→ C be a functor between ∞-categories. The following
are equivalent:

(i) The functor G admits a left adjoint.
(ii) For any x ∈ C, the functor MapsC(x,G(−)) ∶ D→ Grpd

∞
is corepresentable1.

(iii) For any x ∈ C, the fiber product D ×C Cx/ admits an initial object.

1We choose the size bound of objects in Grpd
∞

such that C and D are locally small with respect

to it.
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Moreover, under these conditions, the pointwise RKEGIdD exists, and

C
F

��
κ

��D

G

??

IdD

// D

exhibits F as the RKE iff it exhibits F as a left adjoint of G.

Sketch. (i)⇒(ii): let F be a left adjoint of G exhibited by µ ∶ IdC → G ○ F . Then
µ(x) ∈MapsC(x,G ○ F (x)) exhibits MapsC(x,G(−)) as corepresented by F (x).

(ii)⇒(iii): let e ∈MapsC(x,G(y)) exhibit MapsC(x,G(−)) as corepresented by y.
Then (y, e) is an initial object in D ×C Cx/.

(Then one can check RKEGIdD is indeed a left adjoint of G.
�

Exercise 2.5. Fill in the details of the above sketch.

Exercise 2.6. State the dual version of the above proposition.

Warning 2.7. The existence of the pointwise RKEGIdD does not imply the existence
of a left adjoint of G.

Exercise 2.8. Let G ∶ D → C be any functor with D ∶= [0]. Show that RKEGIdD
always exists, while G admits a left adjoint iff G is final.

Exercise 2.9. Let F ∶ C ÐÐ→←ÐÐ D ∶ G be functors between ∞-categories and consider
the induced functors hF ∶ hCÐÐ→←ÐÐ hD ∶ hG between the homotopy categories. Suppose
G is left adjointable. Show that µ (resp. κ) exhibits F as a left adjoint of G iff hµ
(resp. hκ) exhibits hF as a left adjoint of hG.

Exercise 2.10. Let G ∶ D→ C be a functor between ∞-categories. Show that x ∈ C
satisfies (ii) in Proposition 2.4 iff it satisfies (iii).

Exercise 2.11. In above, let C0 ⊂ C be the full sub-∞-category consisting of such
objects. Challenge: construct a functor F0 ∶ C0 → D such that F0(x) corepresents
MapsC(x,G(−)).

Exercise 2.12. Let G ∶ D → C be a functor between ∞-categories and ι ∶ C0 → C
be a fully faithful functor. Find the correct definition for the following notion: a
natural transformation µ0 ∶ ι → G ○ F0 exhibits F0 as a partially defined left
adjoint of G.

3. Uniqueness

3.1. Proposition 2.4 implies for a left adjointable functor G, the data (F,κ) such
that κ exhibits F as a left adjoint of G are essentially unique. In fact, we have the
following stronger result, which unfortunately is not documented yet2.

Claim 3.2. Let C and D be ∞-categories. The following data are classified by
equivalent ∞-categories:

(1) The datum of a right adjointable functor F ∶ C→ D.

2Keep an eye on the missing tag in Ker.02F4. See Ker.02D4 for the equivalences between the
homotopy categories of (1), (1′), (2) and (2′).

https://kerodon.net/tag/02F4
https://kerodon.net/tag/02D4
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(1′) The datum of a left adjointable functor G ∶ D→ C.
(2) The datum of (F,G,µ) such that µ ∶ IdC → G○F is the unit of an adjunction.

(2′) The datum of (F,G,κ) such that κ ∶ F ○G→ IdD is the counit of an adjunc-
tion.

(3) The datum of (F,G,µ, κ, σ) such that µ and κ are compatible up to homo-
topy and σ is a 2-simplex

F ○G ○ F

κ○id

$$
F

id○µ

::

F

witnessing Axiom (i) in Definition 1.6.
(3′) The datum of (F,G,µ, κ, τ) such that µ and κ are compatible up to homo-

topy and τ is a 2-simplex

G ○ F ○G

id○κ

$$
G

µ○id

::

G

witnessing Axiom (ii) in Definition 1.6.
. . .

Exercise 3.3. Compare the above claim with [Lecture 4, Appendix A].

Warning 3.4. Note that the following data are not listed in the above hierarchy:

● The datum of (F,G) such that there exists an adjunction between F and
G.

● The datum of (F,G,µ, κ) such that µ and κ are compatible up to homotopy.
● The datum of (F,G,µ, κ, σ, τ) such that . . . .
● . . .

Exercise 3.5. Compare the above warning with the facts that S1,S2,S3
⋯ are not

contractible while D0,D1,D2
⋯ are contractible.

Warning 3.6. The ∞-categories indicated in Claim 3.2 are not the naive ones.
For example, if a morphism in (1) is given by F1 → F2, then the corresponding
morphism in (1′) is given by G1 ← G2. Even worse, the corresponding morphism
in (2) is given by a commutative diagram

IdC
µ1 //

µ2

��

G1 ○ F1

��
G2 ○ F2

// G1 ○ F2.

These can be seen from the following construction.

Construction 3.7. Let F1, F2 ∶ C → D be functors between ∞-categories and α ∶

F1 → F2 be a natural transformation. Suppose

● µ1 ∶ IdC → G1 ○ F1 exhbits G1 as a right adjoint of F1.
● κ2 ∶ F2 ○G2 → IdD exhibits G2 as a right adjoint of F2.
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Then we have a natural transformation G2 → G1 constructed as the following com-
position:

G2
µ1○id
ÐÐÐ→ G1 ○ F1 ○G2

id○α○id
ÐÐÐÐ→ G1 ○ F2 ○G2

id○κ2
ÐÐÐ→ G1.

3.8. Let C and D be ∞-categories. We denote the full sub-∞-category of Fun(C,D)

consisting of functors that admit right adjoints by3

LFun(C,D) ⊂ Fun(C,D).

Dually, we denote the full sub-∞-category of Fun(D,C) consisting of functors that
admit left adjoints by

RFun(D,C) ⊂ Fun(D,C).

Then the equivalence between (1) and (1′) in Claim 3.2 can be written as:

Proposition 3.9 (HTT.5.2.6.5). There is a canonical equivalence

LFun(C,D) ≃ RFun(D,C)op

3.10. Let F be a right adjointable functor. By Claim 3.2, we can talk about the
right adjoint of F as long as we incorporate µ or κ as part of the datum in its
definition. We denote this right adjoint functor by FR.

Dually, we denote the left adjoint of a left adjointable functor G by GL.

4. Fully faithful functors and adjunctions

Exercise 4.1. Let F ∶ CÐÐ→←ÐÐ D ∶ G be an adjunction4. Show that

(1) F is fully fatihful iff the unit natural transformation µ ∶ IdC → G ○ F is
invertible.

(2) G is fully fatihful iff the counit natural transformation κ ∶ F ○G → IdD is
invertible.

Deduce that F and G are inverse to each other iff F and G are both fully faithful.

Exercise 4.2. Show that in above, we actually only need one functor to be fully
faithful and the other to be conservative.

Exercise 4.3. Let F ∶ C→ D be a functor that admits a fully faithful right adjoint.
Show that for any E, the functor

− ○ F ∶ Fun(D,E)→ Fun(C,E)

is fully faithful. Deduce that F exhibits D as C[W −1
] where W is the collection of

morphisms µ(x) ∶ x→ FR
○ F (x).

Warning 4.4. Some authors, including Lurie, say a functor F ∶ C → D is a lo-
calization functor if it admits a fully faithful right adjoint. Note however that for
general W , the functor C→ C[W −1

] may not admit any adjoint.

3This notation is compatible with [Lecture 11, Definition 5.1] when C in loc.cit. is essentially

small. This follows from Remark 2.3.
4When saying this, we treat µ or κ as part of the datum.
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5. Beck–Chevalley natural transformations

Construction 5.1. Let

(5.1) C1
f //

p

��

C2

q

��
D1

g // D2,

be a commutative diagram of ∞-categories such that fR and gR exist. We can
construct a natural transformation

(5.2) C1

p

�� �%

C2

q

��

fR

oo

D1 D2,
gR
oo

as the following composition

p ○ fR
µ○id
ÐÐ→ gR ○ g ○ p ○ fR ≃ gR ○ q ○ f ○ fR

id○κ
ÐÐ→ gR ○ q.

We call it the (right) Beck–Chevalley natural transformation, or (right)
base-change natural transformation obtained from (5.1).

Exercise 5.2. In above, suppose pL and qL also exist. Construct the left Beck–
Chevalley natural transformation

(5.3) C1
f // C2

D1
g //

pL

OO

D2.

qL

OO]e

Show that (5.3) and (5.2) correspond to each other as morphisms in

LFun(D1,C2) ≃ RFun(C2,D1)
op.

Remark 5.3. The higher functorialities of the Beck–Chevalley natural transfor-
mations can be described by the theory of (∞,2)-categories. Unfortunately, I fail to
find a satisfying reference.

Appendix A. Dualities and adjunctions

Exercise A.1. Define the notion of adjunctions in any (∞,2)-category such that
for the (∞,2)-category of small ∞-categories, one recovers the notion of adjunctions
in this lecture.

Exercise A.2. Let B be an (∞,2)-category with a single object. Describe the
meaning of an adjunction between a morphism f and g in terms of the ∞-category
A ∶=MapsB(∗,∗) and the multiplicative structure on A.

A.3. Suggested readings. Ker.02CA.

https://kerodon.net/tag/02CA
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