
LECTURE 14

In this lecture, we give a brief introduction to stable homotopy theory and spec-
tra.

From this lecture on, we use the notation

Spc ∶= Grpd
∞
.

1. Stable homotopy groups

1.1. Let Top
∗

be the ordinary category of pointed spaces. There is an adjunction

Σ ∶ Top
∗
ÐÐ→←ÐÐ Top

∗
∶ Ω,

where

● The left adjoint Σ is the (based) suspension functor given by

ΣX ∶= S1 ∧X ∶= (S1 ×X)/(({∗} ×X) ∪ (S1 × {∗})).
● The right adjoint Ω is the loop functor given by

ΩY ∶= HomTop
∗

(S1, Y ),

where the RHS is equipped with the compact-open topology.

1.2. In fact, this adjunction is compatible with Quillen’s classical model structure1.
Taking derived functors, we obtain an adjunction

(1.1) LΣ ∶ hTop
∗
ÐÐ→←ÐÐ hTop

∗
∶ RΩ.

Since pointed CW complexes are bifibrant, we have

[ΣX,Y ] ≃ [X,ΩY ]
where [−,−] is the set of homotopy classes of continuous maps.

Exercise 1.3. Show that ΣSn ≃ Sn+1.

Exercise 1.4. For Y ∈ Top
∗
, there is a canonical isomorphism πn+1(Y ) ≃ πn(ΩY )

where the group structure on the RHS is induced by the concaternation map ΩY ×
ΩY → ΩY .

Date: Nov. 8, 2024.
1For this to be true, we have to replace Top by the category of compactly generated topological

spaces (to make sure it is Cartesian closed). Any CW complex is compactly generated.
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1.5. For pointed CW complexes X and Y , define

[X,Y ]s ∶= colim
k

[ΣkX,ΣkY ].

Exercise 1.6. Show that [X,Y ]s is naturally an abelian group. Hint:

[Σk+2X,Σk+2Y ] ≃ [ΣkX,Ω2Σk+2Y ].
Definition 1.7. Let Y be a pointed CW complex, the n-th stable homotopy
group of Y is defined to be

πs
n(Y ) ∶= colim

k
πn+k(ΣkY ).

Example 1.8. The group πn(S) ∶= πs
n(S0) is called the n-th stable homotopy group

of the sphere (spectum). Up to today, people have calculated them for n ≤ 90.

1.9. Stable homotopy theory studies the stable homotopy groups of spaces,
and more generally, the limit behavior of various homotopy invaraints under the
suspension functor Σk, k →∞. In constrast, the usual homotopy theory is referred
as the unstable homotopy theory. Our guiding philosephy is

Slogan 1.10. Stable homotopy theory is the linearization of unstable homotopy
theory:

stable homotopy theory = linear algebra in homotopy theory .

2. Spectra

2.1. In previous lectures, we have explained the following philosephy. In order to
capture all the homotopy invariant information in Top, we need to word with the ∞-
category Spc of spaces rather than its homotopy 1-category hSpc ≃ hTop. Similarly,
the homotopy invariant information of pointed spaces should be captured by the
coslice ∞-category

Spc
∗
∶= Spc

{∗}/
.

It follows that the “correct” playground for stable homotopy theory should be an
∞-categorical stablization or linearization Spc

∗
. For instance, we hope for (good)

objects X,Y ∈ Spc
∗
, the corresponding mapping space in this stablized ∞-category

is given by
colim

k
MapsSpc

∗

(ΣkX,ΣkY ).
Let us first define the ∞-categorical version of Σ and Ω.

Definition 2.2. We say an ∞-category C is pointed if it admits an object 0 ∈ C
which is both initial and final. We call it the zero object of C.

Exercise 2.3. Let C be an ∞-category that admits a final object ∗, show that C∗/
is pointed. In particular, Spc

∗
is pointed.

Definition 2.4. Let C be a pointed ∞-category that admits finite colimits. The
suspension functor on C is defined as

Σ ∶ C→ C, X ↦ 0 ⊔
X

0.

Definition 2.5. Let C be a pointed ∞-category that admits finite limits. The loop
functor on C is defined as

Ω ∶ C→ C, Y ↦ 0 ×
Y

0.
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Exercise 2.6. Let C be a pointed ∞-category that admits both finite limits and
colimits. Construct an adjunction:

Σ ∶ CÐÐ→←ÐÐ C ∶ Ω.
Exercise 2.7. For C ∶= Spc

∗
, the above adjunction induces an adjunction for ho-

motopy categories:
hΣ ∶ hSpc

∗
ÐÐ→←ÐÐ hSpc

∗
∶ hΩ.

Show that this adjunction can be identified with (1.1) via the equivalence hSpc
∗
≃

hTop
∗
.

2.8. The construction

Maps(−,−) ↦ colim
k

Maps(Σk(−),Σk(−)).
can be viewed as formally inverting the functor Σ.

Exercise 2.9. Let A be a commutative ring and f ∈ A be an element. Show that

Af ≃ colim [A fÐ→ A
fÐ→ ⋯]

2.10. Let C be a pointed ∞-category that admits both finite limits and colimits.
Motivated by the above construction, we would like to define the stablization of C
to be

colim [C ΣÐ→ C
ΣÐ→ ⋯].

However, we need to be careful about where this colimit is taken inside. For in-
stance, when C is presentable, such as Spc

∗
, we would like to obtain a presentable

∞-category.

Exercise 2.11. Let C be a pointed presentable ∞-category. Show that the colimit

colim [C ΣÐ→ C
ΣÐ→ ⋯] ∈ PrL

corresponds to the limit

lim [C Ω←Ð C
Ω←Ð ⋯] ∈ PrR

via PrL ≃ (PrR)op.

2.12. Recall limits in PrR can be calculated as limits in Ĉat∞. This motivates the
following definition.

Definition 2.13. Let C be a pointed ∞-category that admits finite limits. Define

Sptr(C) ∶= lim [C Ω←Ð C
Ω←Ð ⋯]

and call it the ∞-category of spectum objects of C. We denote the evaluating
morphism for the (k + 1)-term by

Ω∞−k ∶ Sptr(C) → C.

Example 2.14. For C ∶= Spc
∗
, write

Sptr ∶= Sptr(Spc
∗
)

and call it the ∞-category of spectra.

Exercise 2.15. Show that Ω ∶ C → C preserves finite limits. Deduce that Sptr(C)
admits finite limits and the functors Ω∞−k preserve and detect them.

Exercise 2.16. Show that Sptr(C) is pointed.



4 LECTURE 14

Exercise 2.17. Let ΩSptr(C) be the loop functor on Sptr(C). Show that

Ω∞−k ○ΩSptr(C)(E) ≃ Ω∞−k+1(E).
Deduce that ΩSptr(C) is an equivalence. Hint:

C

Ω

��

C

Ω

��

Ωoo ⋯Ωoo

C C
Ω
oo ⋯

Ω
oo

Exercise 2.18. Show that

Ω∞−k ∶ Sptr(Sptr(C)) → Sptr(C).
is an equivalence.

Remark 2.19. In the next lecture, we will define and study stable ∞-categories,
which are exactly those pointed ∞-category admitting finite limits such that Ω is an
equivalence.

Exercise 2.20. Show that hSptr(C) is an additive category. Hint:

MapsSptr(C)(E,E′) ≃ Ω2MapsSptr(C)(E,Σ2E′).

3. Spectra and infinite loop spaces

3.1. Informally speaking, knowing an object X ∈ Sptr(C) is equivalent to knowing
the following datum

● For any n ≥ 0, an object Xn ∈ C;
● For any n ≥ 0, an equivalence Xn ≃ ΩXn+1.

Here we take Xn to be Ω∞−kX.
Note that Xn+1, equipped with the equivalence Xn ≃ ΩXn+1, gives a delooping

of Xn. As a consequence, we obtain the following slogan.

Slogan 3.2. A spectrum is a space equipped with infinite deloopings.

Warning 3.3. For a space Y ∈ Spc
∗
, its delooping is not unique even up to homo-

topy. Hence in above, it is crucial to remember all the deloopings.

3.4. Note that a loop space ΩZ is equipped with a homotopy coherent multiplica-
tive structure, which makes π0(ΩZ) an abstract group. In future lectures, we will
rigorously define such a structure, and call it a grouplike E1-structure. Moreover,
given a grouplike E1-space Y , there is an essentially unique connected delooping
of Y , denoted by BY , such that Y ≃ ΩBY is compatible with the grouplike E1-
structures.

Moreover, we will generalize the above to iterated loop spaces ΩnZ and grouplike
En-spaces. In fact, this even works for n = ∞, and we will explain the following
slogan.

Slogan 3.5. A connective spectrum2 is a grouplike E∞-space.

2We say a spectrum E ∈ Sptr is connective if πnE ≃ 0 for n < 0. See Definition 4.7 below.
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4. Spaces vs. spectra

4.1. In this section, we focus on the case when C is pointed and presentable, such
as C ∶= Spc

∗
. By definition, we have a colimit diagram

[C ΣÐ→ C
ΣÐ→ ⋯] → Sptr(C) ∈ PrL

and a limit diagram

[C Ω←Ð C
Ω←Ð ⋯] ← Sptr(C) ∈ PrR.

It follows that we have an adjunction

Σ∞−k ∶ CÐÐ→←ÐÐ Sptr(C) ∶ Ω∞−k

with Σ∞−k given by the evaluating morphism for the (k + 1)-term.

Example 4.2. The object

S ∶= Σ∞S0 ∈ Sptr
is called the sphere spectrum. It plays the role of Z in homotopical algebra.

Example 4.3. Let A be an abstract abelian group. For each n, choose an
Eilenburg–Maclane space K(A,n), which is characterized up to homotopy by
πnK(A,n) ≃ A and πmK(A,n) ≃ 0 for m ≠ n. We can also choose weak homotopy
equivalences

K(A,n) ∼Ð→ ΩK(A,n + 1).
These choices give an object HA ∈ Sptr, which is well-defined up to homotopy. We
call it an Eilenburg–Maclane spectrum for A.

Remark 4.4. In future lectures, we will characterize HA up to a contractible space
of choices.

Exercise 4.5. Let E ∈ Sptr(C), show that

colim
k

Σ∞−kΩ∞−kE
≃Ð→ E.

Exercise 4.6. Suppose C is compactly generated, show that for any X ∈ C and
j ≥ 0,

colim
k≥j

Ωk−jΣkX
≃Ð→ Ω∞−jΣ∞X.

Deduce that if X ∈ C is compact, then for any Y ∈ C, we have

MapsSptr(C)(Σ∞X,Σ∞Y ) ≃ colim
k

MapsC(ΣkX,ΣkY ).

Definition 4.7. Let E ∈ Sptr be a spectrum. For any n ∈ Z, we define the n-th
homotopy group of E to be

πn(E) ∶= π0Maps(S,ΩnE),
where Ωn ∶= Σ−n for n < 0.

Remark 4.8. πn(E) is an abelian group because hSptr is additive.

Exercise 4.9. For Y ∈ Spc
∗
, show that

πn(Σ∞Y ) ≃ πs
n(Y ).

In particular, it vanishes for n < 0.
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Remark 4.10. The above exercise implies all the stable homotopy groups of the
spheres are encoded as the usual homotopy groups of the space MapsSptr(S,S). Note

that this space admits a homotopy coherent multiplication structure3.

Exercise 4.11. Let E ∈ Sptr be a spectrum. Show that Ω∞E ≃ {∗} iff πnE ≃ 0 for
n ≥ 0.

5. Finite spectra

Exercise 5.1. Let C ∶= Ind(C0) be the ind-completion of an essentially small pointed
∞-category that admits finite limits and colimits. Show that

Sptr(C) ≃ Ind(colim [C0
ΣÐ→ C0

ΣÐ→ C0⋯]),
where the colimit is taken inside Cat∞. Deduce that Sptr(C) is compactly generated.

Example 5.2. For C = Spc
∗
, we can take C0 ∶= Spcfin

∗
, where Spcfin ⊂ Spc is the

smallest full sub-∞-category that contains ∗ and admits all finite colimits4. Write

Sptrfin ∶= colim [Spcfin
∗

ΣÐ→ Spcfin
∗

ΣÐ→ Spcfin
∗
⋯]

and call it the ∞-category of finite spectra. We obtain an equivalence

Ind(Sptrfin) ≃ Sptr,

which allows us to identify Sptrfin as a full sub-∞-category of Sptr.

Theorem 5.3. We have5 Sptrfin ≃ Sptrcpt.

Appendix A. Spectra and cohomology theories

Construction A.1. Let E ∈ Sptr be a spectrum. For any CW pair (X,Y ), define

En(X,Y ) ∶= π−n(Maps(Σ∞(X/Y ),E)).
Write En(X) ∶= En(X,∅).

Exercise A.2. For any CW pair (X,Y ), construct a long exact sequence

⋯En(X,Y ) → En(X) → En(Y ) → En+1(X,Y ) → En+1(X) → En+1(Y ) → ⋯.
Exercise A.3. Assign a (generalized) cohomology theory (on CW pairs) to a
spectrum E. What do you get for E ∶= HA or S?

Exercise A.4. Show that any cohomology theory is represented (in the above sense)
by a spectrum, which is unique up to homotopy.

Warning A.5. Nonzero morphisms between spectra could induce zero transforma-
tions between cohomology theories. Such maps are called phantum maps. See this
MathOverflow question.

Remark A.6. We also have similar story for homology theories. However, such
construction uses the smash products on spectra, which we have not defined yet.

A.7. Suggested readings. HA.1.4.1.

3We have not yet defined what this means!
4An object is contained in Spcfin iff it can be represented by a finite CW complex.
5This result is well-known. For example, see this MathOverflow question.

https://mathoverflow.net/questions/117684/are-spectra-really-the-same-as-cohomology-theories
https://mathoverflow.net/questions/289520/dual-objects-in-the-infty-category-of-spectra
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