LECTURE 14

In this lecture, we give a brief introduction to stable homotopy theory and spectra.

From this lecture on, we use the notation

$$
\mathsf{Spc}\coloneqq\mathsf{Grpd}_\infty.
$$

1. Stable homotopy groups

1.1. Let Top[∗] be the ordinary category of pointed spaces. There is an adjunction

$$
\Sigma: \mathsf{Top}_\ast \xrightarrow{\hspace*{1cm}} \mathsf{Top}_\ast : \Omega,
$$

where

• The left adjoint Σ is the (based) suspension functor given by

$$
\Sigma X \coloneqq \mathbb{S}^1 \wedge X \coloneqq (\mathbb{S}^1 \times X) / ((\{ \ast \} \times X) \cup (\mathbb{S}^1 \times \{ \ast \})).
$$

• The right adjoint Ω is the **loop functor** given by

 $\Omega Y \coloneqq \underline{\mathsf{Hom}}_{\mathsf{Top}_*}(\mathbb{S}^1, Y),$

where the RHS is equipped with the *compact-open topology*.

[1](#page-0-0).2. In fact, this adjunction is compatible with Quillen's classical model structure¹. Taking derived functors, we obtain an adjunction

 $(L1)$ $L\Sigma$: hTop_∗ \Longrightarrow hTop_∗ : ℝΩ.

Since pointed CW complexes are bifibrant, we have

 $[\Sigma X, Y] \simeq [X, \Omega Y]$

where $[-,-]$ is the set of homotopy classes of continuous maps.

Exercise 1.3. Show that $\Sigma \mathbb{S}^n \simeq \mathbb{S}^{n+1}$.

Exercise 1.4. For $Y \in \text{Top}_*$, there is a canonical isomorphism $\pi_{n+1}(Y) \simeq \pi_n(\Omega Y)$ where the group structure on the RHS is induced by the concaternation map $\Omega Y \times$ $\Omega Y \rightarrow \Omega Y.$

Date: Nov. 8, 2024.

¹For this to be true, we have to replace Top by the category of *compactly generated topological* spaces (to make sure it is Cartesian closed). Any CW complex is compactly generated.

1.5. For pointed CW complexes X and Y , define

$$
[X,Y]_{\mathsf{s}} \coloneqq \operatornamewithlimits{colim}_k \big[\Sigma^k X, \Sigma^k Y \big].
$$

Exercise 1.6. Show that $[X, Y]_s$ is naturally an abelian group. Hint:

$$
\left[\Sigma^{k+2}X, \Sigma^{k+2}Y\right] \simeq \left[\Sigma^k X, \Omega^2 \Sigma^{k+2}Y\right].
$$

Definition 1.7. Let Y be a pointed CW complex, the n-th stable homotopy **group** of Y is defined to be

$$
\pi_n^{\mathsf{s}}(Y) \coloneqq \operatorname{colim}_k \pi_{n+k}(\Sigma^k Y).
$$

Example 1.8. The group $\pi_n(\mathbb{S}) \coloneqq \pi_n^{\mathsf{s}}(\mathbb{S}^0)$ is called the n-th stable homotopy group of the sphere (spectum). Up to today, people have calculated them for $n \leq 90$.

1.9. Stable homotopy theory studies the stable homotopy groups of spaces, and more generally, the limit behavior of various homotopy invaraints under the suspension functor Σ^k , $k \to \infty$. In constrast, the usual homotopy theory is referred as the unstable homotopy theory. Our guiding philosephy is

Slogan 1.10. Stable homotopy theory is the linearization of unstable homotopy theory:

stable homotopy theory = linear algebra in homotopy theory .

2. Spectra

2.1. In previous lectures, we have explained the following philosephy. In order to capture all the homotopy invariant information in Top , we need to word with the ∞ category Spc of spaces rather than its homotopy 1-category hSpc ≃ hTop. Similarly, the homotopy invariant information of pointed spaces should be captured by the coslice ∞-category

$$
Spc_* := Spc_{\{*\}/}.
$$

It follows that the "correct" playground for stable homotopy theory should be an ∞-categorical stablization or linearization Spc[∗] . For instance, we hope for (good) objects $X, Y \in \mathsf{Spc}_*$, the corresponding mapping space in this stablized ∞-category is given by

$$
\operatornamewithlimits{colim}_k \operatorname{\mathsf{Maps}}_{\mathsf{Spc}_*}(\Sigma^k X, \Sigma^k Y).
$$

Let us first define the ∞ -categorical version of Σ and Ω .

Definition 2.2. We say an ∞ -category C is **pointed** if it admits an object $0 \in \mathbb{C}$ which is both initial and final. We call it the zero object of C.

Exercise 2.3. Let C be an ∞ -category that admits a final object \star , show that $C_{\star/}$ is pointed. In particular, \textsf{Spc}_* is pointed.

Definition 2.4. Let C be a pointed ∞-category that admits finite colimits. The suspension functor on **C** is defined as

$$
\Sigma: \mathsf{C} \to \mathsf{C}, \ X \mapsto 0 \underset{X}{\sqcup} 0.
$$

Definition 2.5. Let C be a pointed ∞ -category that admits finite limits. The **loop** functor on C is defined as

$$
\Omega: \mathsf{C}\to \mathsf{C},\; Y\mapsto 0\underset{Y}{\times} 0.
$$

Exercise 2.6. Let C be a pointed ∞ -category that admits both finite limits and colimits. Construct an adjunction:

$$
\Sigma : \mathsf{C} \xrightarrow[]{{}_{\!\!\textnormal{onto\,\,}\!\!}} \mathsf{C} : \Omega.
$$

Exercise 2.7. For $C = Spc_{*}$, the above adjunction induces an adjunction for homotopy categories:

$$
\mathsf{h}\Sigma:\mathsf{h}\mathsf{Spc}_\ast\xrightarrow{\hspace*{1cm}}\mathsf{h}\mathsf{Spc}_\ast:\mathsf{h}\Omega.
$$

Show that this adjunction can be identified with [\(1.1\)](#page-0-1) via the equivalence hSpc_{*} ≃ $h\mathsf{Top}_*.$

2.8. The construction

$$
\mathsf{Maps}(\text{--},\text{--}) \mapsto \mathsf{colim}_{k} \, \mathsf{Maps}(\Sigma^{k}(\text{--}),\Sigma^{k}(\text{--})).
$$

can be viewed as formally inverting the functor Σ .

Exercise 2.9. Let A be a commutative ring and $f \in A$ be an element. Show that

$$
A_f \simeq \text{colim} \left[A \xrightarrow{f} A \xrightarrow{f} \cdots \right]
$$

2.10. Let C be a pointed ∞ -category that admits both finite limits and colimits. Motivated by the above construction, we would like to define the stablization of C to be

$$
\text{colim} \left[C \xrightarrow{\Sigma} C \xrightarrow{\Sigma} \cdots \right].
$$

However, we need to be careful about where this colimit is taken inside. For instance, when **C** is presentable, such as $Spc_∗$, we would like to obtain a presentable ∞-category.

Exercise 2.11. Let C be a pointed presentable ∞ -category. Show that the colimit

$$
\text{colim} \left[C \xrightarrow{\Sigma} C \xrightarrow{\Sigma} \cdots \right] \in \text{Pr}^{\mathsf{L}}
$$

corresponds to the limit

$$
lim [C \xleftarrow{\Omega} C \xleftarrow{\Omega} \cdots] \in Pr^R
$$

 $via \; Pr^L \simeq (Pr^R)^{op}.$

2.12. Recall limits in Pr^R can be calculated as limits in \widehat{Cat}_{∞} . This motivates the following definition.

Definition 2.13. Let C be a pointed ∞-category that admits finite limits. Define

$$
Sptr(C) := \lim \big[C \stackrel{\Omega}{\leftarrow} C \stackrel{\Omega}{\leftarrow} \cdots \big]
$$

and call it the ∞ -category of **spectum objects** of C. We denote the evaluating morphism for the $(k+1)$ -term by

$$
\Omega^{\infty-k} : \mathsf{Sptr}(\mathsf{C}) \to \mathsf{C}.
$$

Example 2.14. For $C \coloneqq Spc_*$, write

$$
\mathsf{Sptr}\coloneqq\mathsf{Sptr}(\mathsf{Spc}_*)
$$

and call it the ∞ -category of **spectra**.

Exercise 2.15. Show that $\Omega : C \to C$ preserves finite limits. Deduce that Sptr(C) admits finite limits and the functors $\Omega^{\infty-k}$ preserve and detect them.

Exercise 2.16. Show that $Sptr(C)$ is pointed.

Exercise 2.17. Let $\Omega_{\text{Sstr}(\mathsf{C})}$ be the loop functor on $\text{Sptr}(\mathsf{C})$. Show that

$$
\Omega^{\infty-k} \circ \Omega_{\text{Sptr}(C)}(E) \simeq \Omega^{\infty-k+1}(E).
$$

Deduce that $\Omega_{\text{Sptr}}(c)$ is an equivalence. Hint:

$$
C \leftarrow \frac{\alpha}{\alpha} \quad C \leftarrow \frac{\alpha}{\alpha} \quad \cdots
$$
\n
$$
\begin{array}{ccc}\nC & & & \\
\alpha & & & & \\
\alpha & & & \\
\alpha & & & & \\
\alpha & & & & \\
\alpha & & & & \\
$$

Exercise 2.18. Show that

$$
\Omega^{\infty-k} : \mathsf{Sptr}(\mathsf{Sptr}(\mathsf{C})) \to \mathsf{Sptr}(\mathsf{C}).
$$

is an equivalence.

Remark 2.19. In the next lecture, we will define and study stable ∞ -categories, which are exactly those pointed ∞ -category admitting finite limits such that Ω is an equivalence.

Exercise 2.20. Show that $h\text{Sptr}(C)$ is an additive category. Hint:

 $\mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(E,E') \simeq \Omega^2\mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(E,\Sigma^2 E').$

3. Spectra and infinite loop spaces

3.1. Informally speaking, knowing an object $X \in Sptr(C)$ is equivalent to knowing the following datum

- For any $n \geq 0$, an object $X_n \in \mathsf{C}$;
- For any $n \geq 0$, an equivalence $X_n \simeq \Omega X_{n+1}$.

Here we take X_n to be $\Omega^{\infty-k}X$.

Note that X_{n+1} , equipped with the equivalence $X_n \approx \Omega X_{n+1}$, gives a **delooping** of X_n . As a consequence, we obtain the following slogan.

Slogan 3.2. A spectrum is a space equipped with infinite deloopings.

Warning 3.3. For a space $Y \in \text{Spc}_*$, its delooping is not unique even up to homotopy. Hence in above, it is crucial to remember all the deloopings.

3.4. Note that a loop space ΩZ is equipped with a homotopy coherent multiplicative structure, which makes $\pi_0(\Omega Z)$ an abstract group. In future lectures, we will rigorously define such a structure, and call it a grouplike **E**1-structure. Moreover, given a grouplike \mathbb{E}_1 -space Y, there is an essentially unique connected delooping of Y, denoted by $\mathbb{B}Y$, such that $Y \simeq \Omega \mathbb{B}Y$ is compatible with the grouplike \mathbb{E}_1 structures.

Moreover, we will generalize the above to iterated loop spaces $\Omega^n Z$ and grouplike \mathbb{E}_n -spaces. In fact, this even works for $n = \infty$, and we will explain the following slogan.

Slogan 3.5. A connective spectrum^{[2](#page-3-0)} is a grouplike \mathbb{E}_{∞} -space.

²We say a spectrum E ∈ Sptr is **connective** if $\pi_n E \approx 0$ for $n < 0$. See Definition [4.7](#page-4-0) below.

4. Spaces vs. spectra

4.1. In this section, we focus on the case when C is pointed and presentable, such as $\mathsf{C} \coloneqq \mathsf{Spc}_\ast.$ By definition, we have a colimit diagram

$$
\big[\, C \xrightarrow{\Sigma} C \xrightarrow{\Sigma} \cdots \big] \rightarrow Sptr(C) \in Pr^L
$$

and a limit diagram

$$
[C \xleftarrow{\Omega} C \xleftarrow{\Omega} \cdots] \leftarrow Sptr(C) \in Pr^R.
$$

It follows that we have an adjunction

$$
\Sigma^{\infty-k} : \mathsf{C} \xrightarrow{\longrightarrow} \mathsf{Sptr}(\mathsf{C}) : \Omega^{\infty-k}
$$

with $\Sigma^{\infty-k}$ given by the evaluating morphism for the $(k+1)$ -term.

Example 4.2. The object

$$
\mathbb{S} \coloneqq \Sigma^\infty \mathbb{S}^0 \in \mathsf{Sptr}
$$

is called the **sphere spectrum**. It plays the role of \mathbb{Z} in homotopical algebra.

Example 4.3. Let A be an abstract abelian group. For each n, choose an Eilenburg–Maclane space $K(A,n)$, which is characterized up to homotopy by $\pi_n K(A, n) \simeq A$ and $\pi_m K(A, n) \simeq 0$ for $m \neq n$. We can also choose weak homotopy equivalences

$$
K(A, n) \xrightarrow{\sim} \Omega K(A, n+1).
$$

These choices give an object $\mathbb{H} A \in \mathsf{Sptr}$, which is well-defined up to homotopy. We call it an Eilenburg–Maclane spectrum for A.

Remark 4.4. In future lectures, we will characterize **H**A up to a contractible space of choices.

Exercise 4.5. Let $E \in \mathsf{Sptr}(\mathsf{C})$, show that

$$
\operatornamewithlimits{colim}_k \Sigma^{\infty-k} \Omega^{\infty-k} E \xrightarrow{\simeq} E.
$$

Exercise 4.6. Suppose C is compactly generated, show that for any $X \in \mathbb{C}$ and $j \geq 0$,

$$
\underset{k\geq j}{\text{colim}}\,\Omega^{k-j}\Sigma^k X \xrightarrow{\simeq} \Omega^{\infty-j}\Sigma^{\infty} X.
$$

Deduce that if $X \in \mathsf{C}$ is compact, then for any $Y \in \mathsf{C}$, we have

 $\mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(\Sigma^\infty X, \Sigma^\infty Y) \simeq \mathsf{colim} \, \mathsf{Maps}_{\mathsf{C}}(\Sigma^k X, \Sigma^k Y).$

Definition 4.7. Let E ∈ Sptr be a spectrum. For any $n \in \mathbb{Z}$, we define the n-th homotopy group of E to be

 $\pi_n(E) \coloneqq \pi_0 \mathsf{Maps}(\mathbb{S}, \Omega^n E),$

where $\Omega^n \coloneqq \Sigma^{-n}$ for $n < 0$.

Remark 4.8. $\pi_n(E)$ is an abelian group because hSptr is additive.

Exercise 4.9. For $Y \in \text{Spc}_*$, show that

$$
\pi_n(\Sigma^\infty Y)\simeq \pi_n^{\mathsf{s}}(Y).
$$

In particular, it vanishes for $n < 0$.

Remark 4.10. The above exercise implies all the stable homotopy groups of the spheres are encoded as the usual homotopy groups of the space $Maps_{\text{Sott}}(S, S)$. Note that this space admits a homotopy coherent multiplication structure^{[3](#page-5-0)}.

Exercise 4.11. Let $E \in \text{Sptr}$ be a spectrum. Show that $\Omega^{\infty}E \simeq \{*\}$ iff $\pi_n E \simeq 0$ for $n \geq 0$.

5. FINITE SPECTRA

Exercise 5.1. Let $C := Ind(C_0)$ be the ind-completion of an essentially small pointed ∞-category that admits finite limits and colimits. Show that

$$
Sptr(C) \simeq Ind(colim [C_0 \xrightarrow{\Sigma} C_0 \xrightarrow{\Sigma} C_0 \cdots]),
$$

where the colimit is taken inside Cat_{∞} . Deduce that $Sptr(C)$ is compactly generated.

Example 5.2. For $C = Spc_*$, we can take $C_0 := Spc_*^{fin}$, where $Spc^{\text{fin}} \subset Spc$ is the smallest full sub- ∞ -category that contains $*$ and admits all finite colimits^{[4](#page-5-1)}. Write

> $\textsf{Sptr}^{\textsf{fin}} \coloneqq \textsf{colim}\left[\textsf{Spc}^{\textsf{fin}}_{*}\right]$ $\stackrel{\Sigma}{\rightarrow}$ Spc^{fin} $\stackrel{\Sigma}{\rightarrow}$ Spc^{fin}…]

and call it the ∞-category of **finite spectra**. We obtain an equivalence

Ind(Sptr^{fin}) ≃ Sptr,

which allows us to identify Sptr^{fin} as a full sub-∞-category of Sptr.

Theorem [5](#page-5-2).3. We have⁵ Sptr^{fin} \simeq Sptr^{cpt}.

Appendix A. Spectra and cohomology theories

Construction A.1. Let $E \in \text{Sptr}$ be a spectrum. For any CW pair (X, Y) , define $E^{n}(X,Y) \coloneqq \pi_{-n}(\mathsf{Maps}(\Sigma^{\infty}(X/Y),E)).$

Write $E^{n}(X) \coloneqq E^{n}(X, \emptyset)$.

Exercise A.2. For any CW pair (X, Y) , construct a long exact sequence

$$
\cdots E^{n}(X,Y) \to E^{n}(X) \to E^{n}(Y) \to E^{n+1}(X,Y) \to E^{n+1}(X) \to E^{n+1}(Y) \to \cdots
$$

Exercise A.3. Assign a (generalized) cohomology theory (on CW pairs) to a spectrum E. What do you get for $E \coloneqq \mathbb{H}A$ or \mathbb{S} ?

Exercise A.4. Show that any cohomology theory is represented (in the above sense) by a spectrum, which is unique up to homotopy.

Warning A.5. Nonzero morphisms between spectra could induce zero transformations between cohomology theories. Such maps are called **phantum maps**. See this [MathOverflow question.](https://mathoverflow.net/questions/117684/are-spectra-really-the-same-as-cohomology-theories)

Remark A.6. We also have similar story for homology theories. However, such construction uses the smash products on spectra, which we have not defined yet.

A.7. Suggested readings. HA.1.4.1.

 3 We have not yet defined what this means!

 4 An object is contained in Spc^{fin} iff it can be represented by a finite CW complex.

⁵This result is well-known. For example, see this [MathOverflow question.](https://mathoverflow.net/questions/289520/dual-objects-in-the-infty-category-of-spectra)