LECTURE 15

In this lecture, we define and study stable co-categories, which are exactly oo-
categories of the form Sptr(C).

1. STABILITY

Definition 1.1. Let C be a pointed oo-category. A triangle in C is a diagram
Al x Al - C depicted as

!

— Y

|

0——=7

(1.1)

where 0 € C is the zero object. We say such a triangle is a fiber sequence if it is
a pullback square, and a cofiber sequence if it is a pushout square.

For a morphism f: X - Y, a cofiber of f is a fiber sequence . Dually, for
a morphism g:Y — Z, a fiber of g is a cofiber sequence .

1.2. We often abuse notation and write a triangle as X ER y %2z

Warning 1.3. The datum of a triangle (1.1 is not determined by the chain X EN
y & Z, even up to homotopy. Indeed, knowing such a triangle is equivalent to
knowing a null-homotopy of g o f, which is not unique even up to homotopy.

1.4. Note however that a fiber sequence ([1.1)) is essentially uniquely determined by
the morphism g. Dually, a cofiber sequence (|1.1)) is essentially uniquely determined
by the morphism f. Hence we can use the notations

Fib(g), Cofib(f) € C
as long as we incorporate ([1.1]) as data in their definitions.

Definition 1.5. An oo-category C is stable if it satisfies the following conditions:
e it is pointed
e any morphism in C admits a fiber and a cofiber
e q triangle in C is a fiber sequence iff it is a cofiber sequence.

1.6. For stable co-categories, we can use the words fiber-cofiber sequences.

Exercise 1.7. Find all ordinary categories that are stable when viewed as oo-
categories.

Proposition 1.8. Let C be a pointed oo-category admitting both finite limits and
colimits. Then the following conditions are equivalent.

(i) The functor ¥ : C — C is fully faithful.
(ii) Any cofiber sequence in C of the form X — 0 — Z is also a fiber sequence.
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2 LECTURE 15

(iii) Any cofiber sequence in C is a fiber sequence.
(iv) Any pushout square in C is a pullback square.

Corollary 1.9. Let C be a pointed oo-category admitting both finite limits and
colimits. Then the following conditions are equivalent.

(i) The functors ¥ : C == C:Q are equivalences.
(ii) A triangle in C of the form X — 0 — Z is a cofiber sequence iff it is a fiber
sequence.
(iii) A triangle in C is a cofiber sequence iff it is a fiber sequence.
(iv) A square in C is a pushout iff it is a pullback.

Proof of Proposition[1.§ The implications (ii)<«=(iii)«<=(iv) are obvious. It remains
to show (i)=>(iv). Suppose X is fully faithful. Since € is a right adjoint of X, we
have Idc ~ Qo 3. For a pushout square

W——X

,

Y —= Z,

we need to show W — X xz Y is invertible. Consider the following commutative
diagram

W—sX——0

|

-
—

.
YW.

Here both the inner and outer squares are pushout squares, hence there exists an
essentially unique dotted arrow Z — W making the above diagram commute. By
functoriality of pullbacks, we obtain a morphism X xz Y — 0 xgy 0 ~ QXW fitting
into the following commutative diagram

W——XxzY

QW —— Q¥ X XOxz QEK

where the vertical morphisms are isomorphisms because of Idc ~ 2 o X. By the
2-out-of-6 property of isomorphisms, we obtain X — X xz Y as desired. ([

Proposition 1.10. Let C be a pointed oco-category. The following conditions are
equivalent.

(a) The oco-category C is stable.

(b) The oo-category C° is stable.

(¢) The oo-category C admits finite colimits and ¥ : C - C is an equivalence.
(d) The oo-category C admits finite limits and Q : C — C is an equivalence.

(e) The oo-category C admits finite colimits and limits, and a square in C is a
pushout square iff it is a pullback square.
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(f) The oo-category C admits finite limits and Q% : Sptr(C) — C is an equiva-
lence.

Proof. The equivalence (a)<>(b) is obvious. The equivalence (d)<(f) was proved
last time. It remains to show (c)<>(a)<>(e) because (d)<>(b) would follow by
passing to the opposite co-category.

Suppose C admits finite colimits and limits, then (c)<(a)<>(e) follow from
(i)<>(iii)«<>(iv) in Proposition (and its dual version). Hence it remains to show
(a) or (c¢) implies C admits finite colimits and limits.

For (a), we only need to show a stable co-category admits coequalizers. This
follows from Exercise 213 below.

For (c), we can use ¢ : C —» Ind(C) to embed C into a presentable co-category.
Note that Ind(C) is pointed because ¢ perserves and detects both finite colimits
and limits. Moreover, ¥j,q(c) can be identified with Ind(X¢) : Ind(C) - Ind(C) and
thereby is also an equivalence. It follows from the previous discussion that Ind(C)
satisfies all the properties in the proposition. In particular, any pushout square in
Ind(C) is a pullback square. Since ¢ perserves and detects both finite colimits and
limits, we see the same holds for C. In particular, it admits pullbacks and therefore
all finite limits as desired. (]

Corollary 1.11. Let C be a pointed oo-category that admits finite limits. The
oo-category Sptr(C) is stable.

Exercise 1.12. Let C be a stable oco-category. Then f: X — Y is an isomoprhism
iff Fib(f) is a zero object iff Cofib(f) is a zero object.

Exercise 1.13. Let f: X = Y be a morphism in a stable co-category C. Show that
YFib(f) ~ Cofib(f).

2. HOMOTOPY CATEGORY OF STABLE 00-CATEGORY
2.1. In this section, let C be a stable co-category.

Exercise 2.2. Show that the canonical morphism X uY — X xY is invertible.
Hint:
XuYy —Xuo

L

OuY ——0u0
is a pushout square.
2.3. Since there is a canonical equivalence between X UY and X xY, we use X @Y
to denote both of them.
Exercise 2.4. Let f,g: X 2Y be two morphisms. Show that the composition

X%X@XMYEBY»Y

gives a well-defined binary operator on moMapsc(X,Y). We denote the above com-
position by f+g.
Exercise 2.5. Let f,g: X 2 Y be two morphisms. Show that the above binary

operator coincides with the addition operator on the abelian group
moMapsc (X, Y) = mgMapsc (X, Q282Y) ~ 1o0Q*Mapsc (X, £2Y) ~ mpMapsc (X, B2Y).
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Exercise 2.6. Let 0: A' x A' — C be a diagram of the form

X——0

L

0——2YY

and o' be its transpose. By the universal property of pushouts, o induces a morphism
Mo : X = QXY ~ Y, which is an well-defined element in moHomc(X,Y). Show that

No + Mo = 0.
Corollary 2.7. The homotopy category hC is an additive category.

2.8. From now on, we write X[n] := ¥"X, where for n < 0 we take X" := Q2.
Note that these objects are well-defined up to homotopy.

Definition 2.9. Let X LY % z & X[1] be a chain in hC. We say it is a
distinguished triangle in hC if there exists a diagram A" x A% - C depicted as

i

X—Y ——0
o
0 ——Z7——W

such that

the objects 0 and 0" are zero objects

the morphisms | and § lift f and g respectively

the outer square is a fiber-cofiber sequence

the composition Z - W > X|[1] (which is well-defined up to homotopy)
lifts h.

Theorem 2.10 (HA.1.1.2.14). The above choice of the translation functor and the
distinguished triangles makes hC a triangulated category.

Exercise 2.11. What would happen if we use diagrams of the form

X ——

0
Y——7
0——Ww
to define distinguished triangles in hC?

Exercise 2.12. For X € C, construct a fiber-cofiber sequence

id,~id id,id
x WD, g x L9,
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Exercise 2.13. Show that the coequalizer of f,g: X =Y is canonically equivalent
to Cofib(f —g). Hint:

id,—id :

X ( ) XoX (f:9) v
l l(id,id) L
0 X °

3. MAPPING SPECTRA
Construction 3.1. Let C be a stable co-category. For X,Y € C, define
Hom(X,Y),, := Maps(X,Y[n]).
Note that for any n >0, we have an isomorphism
ay, : Maps(X,Y[n]) ~ Maps(X, QY [n +1]) ~ QMaps(X, Y [n + 1]).

Let Hom(X,Y) € Sptr be the spectrum given by the spaces {Hom(X,Y),} and the
isomorphisms c,,. We call it the mapping spectrum between X and Y .

Remark 3.2. The above spectrum Hom(X,Y") is well-defined up to homotopy. In
future lectures, we will equip Sptr with a symmetric monoidal structure such that
any stable oco-category C is canonically enriched over Sptr.

Definition 3.3. Let C be a stable co-category. For X,Y € C, define
Ext"(X,Y) := mogHom(X,Y),, ~ moMaps(X, Y [n])
and call it the n-th extension group between X and Y .
3.4. Note that the extension groups only depend on the images of X and Y in

the triangulated category hC. It is well-known that for any distinguished triangle
Yy = Y] - Y5 > Yy[1] in hC, we have a long exact sequence

- = Ext"(X,Y) = Ext™(X,Y1) » Ext"(X,Ys) - Ext"" (X, Yp) —»

4. EXACT FUNCTORS
4.1. Proposition [[.10] and Exercise 2.13] imply the following result.

Proposition-Definition 4.2. Let F : C - C' be a functor between stable oo-
category. The following conditions are equivalent.

e The functor F' preserves zero objects and fiber-cofiber sequence.
e The functor F' is left exact, i.e., preserves finite limits.
e The functor F is right exact, i.e., preserves finite colimits.

We say F is exact if it satisfies the above conditions.
Exercise 4.3. Let F': C— C' be an ezact functor between stable oo-category. Show

that hF : hC — hC’ has a natural structure of an exact functovﬂ between triangulated
categories.

Definition 4.4. Let Cat® c Cat,, be the sub-co-category of small stable oo-
categories and exact functors between them.

LAlso known as a triangulated functor. Warning: being a triangulated functor is a structure
rather than property.
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Exercise 4.5. Let C be a stable oco-category. Show that ¥ and §2 are exact. What
are the triangulated functors induced by them?

Exercise 4.6. Let F': C - C' be an exact functor between stable oo-categories.
Show that F' is conservative iff F' detects zero objects.

5. CLOSURE PROPERTIES

Exercise 5.1. Let C be a stable co-category and K be a simplicial set. Show that
Fun(K,C) is stable.

Exercise 5.2. Let C and D be stable oo-categories. Show that Fune (C,D) is stable.

Exercise 5.3. Let C and D be presentable co-categories such that D is stable. Show
that LFun(C,D) is stable.

Exercise 5.4. Let C be a small stable oo-category, then Ind(C) is stable.

Exercise 5.5. Let C be a stable oo-category, then CePt is stable. In particular,
Sptr™ is stable.

Exercise 5.6. Let C be a stable co-category, show that the idempotent completion
of C is also stable.

Exercise 5.7. Let C be a stable co-category, is PShv(C) stable?

Theorem 5.8. The co-cateogry Cat® admits small limits and the inclusion Catls —
Cato, preserves and detects small limits.

Sketch. We only need to show for any small diagram K — Cate, i = C; such that
each C; is stable and each connecting functor C; - C; is exact, we have

e the limit co-category C :=lim; C; is stable

e the evaluating functors C - C; are exact.

Both claims can be checked using the explicit description of objects and mapping
spaces in C. O

5.9. Similarly, one can prove the following result.

Theorem 5.10. The oo-cateogry Catss admits small filtered colimits and the inclu-
sion Cat®s — Cato, preserves and detects small filtered colimits.

6. A UNIVERSAL PROPERTY OF Sptr

6.1. The following result implies Sptr is the stable co-category freely generated by
one object under small colimits.

Exercise 6.2. Let D be a presentable stable co-category. Show that evaluating at
S € Sptr induces an equivalence

LFun(Sptr,D) = D.
Hint: show RFun(D, Sptr) LLakat RFun(D, Spc) is an equivalence.

Exercise 6.3. Let D be a presentable stable oo-category. Show that evaluating at
SeSptr™ induces an equivalence

Fune, (Sptr™™, D) 5 D.
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APPENDIX A. TRIANGULATED CATEGORIES WITHOUT MODELS

A.1. There are triangulated categories that are not the homotopy category of any
stable co-category.

A.2. There are exact functors between homotopy categories of stable co-categories
that do not come from exact functors between the stable co-categories.

A.3. Suggested readings. [MSS07].
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