In this lecture, we define and study *stable* ∞ -*categories*, which are exactly ∞ -categories of the form Sptr(C).

1. Stability

Definition 1.1. Let C be a pointed ∞ -category. A triangle in C is a diagram $\Delta^1 \times \Delta^1 \rightarrow C$ depicted as

where $0 \in C$ is the zero object. We say such a triangle is a fiber sequence if it is a pullback square, and a cofiber sequence if it is a pushout square.

For a morphism $f: X \to Y$, a cofiber of f is a fiber sequence (1.1). Dually, for a morphism $g: Y \to Z$, a fiber of g is a cofiber sequence (1.1).

1.2. We often abuse notation and write a triangle as $X \xrightarrow{f} Y \xrightarrow{g} Z$.

Warning 1.3. The datum of a triangle (1.1) is not determined by the chain $X \xrightarrow{J} Y \xrightarrow{g} Z$, even up to homotopy. Indeed, knowing such a triangle is equivalent to knowing a null-homotopy of $g \circ f$, which is not unique even up to homotopy.

1.4. Note however that a fiber sequence (1.1) is essentially uniquely determined by the morphism g. Dually, a cofiber sequence (1.1) is essentially uniquely determined by the morphism f. Hence we can use the notations

$$Fib(g), Cofib(f) \in C$$

as long as we incorporate (1.1) as data in their definitions.

Definition 1.5. An ∞ -category C is **stable** if it satisfies the following conditions:

- *it is pointed*
- \bullet any morphism in $\mathsf C$ admits a fiber and a cofiber
- a triangle in C is a fiber sequence iff it is a cofiber sequence.

1.6. For stable ∞ -categories, we can use the words fiber-cofiber sequences.

Exercise 1.7. Find all ordinary categories that are stable when viewed as ∞ -categories.

Proposition 1.8. Let C be a pointed ∞ -category admitting both finite limits and colimits. Then the following conditions are equivalent.

(i) The functor $\Sigma : \mathsf{C} \to \mathsf{C}$ is fully faithful.

(ii) Any cofiber sequence in C of the form $X \to 0 \to Z$ is also a fiber sequence.

Date: Nov. 12, 2024.

- (iii) Any cofiber sequence in C is a fiber sequence.
- (iv) Any pushout square in C is a pullback square.

Corollary 1.9. Let C be a pointed ∞ -category admitting both finite limits and colimits. Then the following conditions are equivalent.

- (i) The functors $\Sigma : \mathsf{C} \longleftrightarrow \mathsf{C} : \Omega$ are equivalences.
- (ii) A triangle in C of the form $X \to 0 \to Z$ is a cofiber sequence iff it is a fiber sequence.
- (iii) A triangle in C is a cofiber sequence iff it is a fiber sequence.
- (iv) A square in C is a pushout iff it is a pullback.

Proof of Proposition 1.8. The implications (ii) \leftarrow (iii) \leftarrow (iv) are obvious. It remains to show (i) \Rightarrow (iv). Suppose Σ is fully faithful. Since Ω is a right adjoint of Σ , we have $\mathsf{Id}_{\mathsf{C}} \simeq \Omega \circ \Sigma$. For a pushout square

we need to show $W \to X \times_Z Y$ is invertible. Consider the following commutative diagram

Here both the inner and outer squares are pushout squares, hence there exists an essentially unique dotted arrow $Z \to \Sigma W$ making the above diagram commute. By functoriality of pullbacks, we obtain a morphism $X \times_Z Y \to 0 \times_{\Sigma W} 0 \simeq \Omega \Sigma W$ fitting into the following commutative diagram

where the vertical morphisms are isomorphisms because of $\mathsf{Id}_{\mathsf{C}} \simeq \Omega \circ \Sigma$. By the 2-out-of-6 property of isomorphisms, we obtain $X \xrightarrow{\simeq} X \times_Z Y$ as desired. \Box

Proposition 1.10. Let C be a pointed ∞ -category. The following conditions are equivalent.

- (a) The ∞ -category C is stable.
- (b) The ∞ -category C^{op} is stable.
- (c) The ∞ -category C admits finite colimits and $\Sigma : C \to C$ is an equivalence.
- (d) The ∞ -category C admits finite limits and $\Omega: C \to C$ is an equivalence.
- (e) The ∞-category C admits finite colimits and limits, and a square in C is a pushout square iff it is a pullback square.

 $\mathbf{2}$

(f) The ∞ -category C admits finite limits and Ω^{∞} : Sptr(C) \rightarrow C is an equivalence.

Proof. The equivalence $(a) \Leftrightarrow (b)$ is obvious. The equivalence $(d) \Leftrightarrow (f)$ was proved last time. It remains to show $(c) \Leftrightarrow (a) \Leftrightarrow (e)$ because $(d) \Leftrightarrow (b)$ would follow by passing to the opposite ∞ -category.

Suppose C admits finite colimits and limits, then $(c) \Leftrightarrow (a) \Leftrightarrow (e)$ follow from $(i) \Leftrightarrow (iii) \Leftrightarrow (iv)$ in Proposition 1.8 (and its dual version). Hence it remains to show (a) or (c) implies C admits finite colimits and limits.

For (a), we only need to show a stable ∞ -category admits coequalizers. This follows from Exercise 2.13 below.

For (c), we can use $\iota : \mathsf{C} \to \mathsf{Ind}(\mathsf{C})$ to embed C into a presentable ∞ -category. Note that $\mathsf{Ind}(\mathsf{C})$ is pointed because ι perserves and detects both finite colimits and limits. Moreover, $\Sigma_{\mathsf{Ind}(\mathsf{C})}$ can be identified with $\mathsf{Ind}(\Sigma_{\mathsf{C}}) : \mathsf{Ind}(\mathsf{C}) \to \mathsf{Ind}(\mathsf{C})$ and thereby is also an equivalence. It follows from the previous discussion that $\mathsf{Ind}(\mathsf{C})$ satisfies all the properties in the proposition. In particular, any pushout square in $\mathsf{Ind}(\mathsf{C})$ is a pullback square. Since ι perserves and detects both finite colimits and limits, we see the same holds for C . In particular, it admits pullbacks and therefore all finite limits as desired.

Corollary 1.11. Let C be a pointed ∞ -category that admits finite limits. The ∞ -category Sptr(C) is stable.

Exercise 1.12. Let C be a stable ∞ -category. Then $f : X \to Y$ is an isomorphism iff Fib(f) is a zero object iff Cofib(f) is a zero object.

Exercise 1.13. Let $f : X \to Y$ be a morphism in a stable ∞ -category C. Show that $\Sigma \operatorname{Fib}(f) \simeq \operatorname{Cofib}(f)$.

2. Homotopy category of stable ∞-category

2.1. In this section, let C be a stable ∞ -category.

Exercise 2.2. Show that the canonical morphism $X \sqcup Y \to X \times Y$ is invertible. *Hint:*

$$\begin{array}{c} X \sqcup Y \longrightarrow X \sqcup 0 \\ \downarrow \\ 0 \sqcup Y \longrightarrow 0 \sqcup 0 \end{array}$$

is a pushout square.

2.3. Since there is a canonical equivalence between $X \sqcup Y$ and $X \times Y$, we use $X \oplus Y$ to denote both of them.

Exercise 2.4. Let $f, g: X \Rightarrow Y$ be two morphisms. Show that the composition

$$X \to X \oplus X \xrightarrow{(f,g)} Y \oplus Y \to Y$$

gives a well-defined binary operator on $\pi_0 \operatorname{Maps}_{\mathsf{C}}(X,Y)$. We denote the above composition by f + g.

Exercise 2.5. Let $f, g: X \Rightarrow Y$ be two morphisms. Show that the above binary operator coincides with the addition operator on the abelian group

 $\pi_0 \mathsf{Maps}_{\mathsf{C}}(X,Y) \simeq \pi_0 \mathsf{Maps}_{\mathsf{C}}(X,\Omega^2 \Sigma^2 Y) \simeq \pi_0 \Omega^2 \mathsf{Maps}_{\mathsf{C}}(X,\Sigma^2 Y) \simeq \pi_2 \mathsf{Maps}_{\mathsf{C}}(X,\Sigma^2 Y).$

Exercise 2.6. Let $\sigma : \Delta^1 \times \Delta^1 \to \mathsf{C}$ be a diagram of the form

and σ' be its transpose. By the universal property of pushouts, σ induces a morphism $\eta_{\sigma}: X \to \Omega \Sigma Y \simeq Y$, which is an well-defined element in $\pi_0 \operatorname{Hom}_{\mathsf{C}}(X, Y)$. Show that $\eta_{\sigma} + \eta_{\sigma'} = 0$.

Corollary 2.7. The homotopy category hC is an additive category.

2.8. From now on, we write $X[n] \coloneqq \Sigma^n X$, where for n < 0 we take $\Sigma^n \coloneqq \Omega^{-2}$. Note that these objects are well-defined up to homotopy.

Definition 2.9. Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ be a chain in hC. We say it is a distinguished triangle in hC if there exists a diagram $\Delta^1 \times \Delta^2 \to C$ depicted as

such that

- the objects 0 and 0' are zero objects
- the morphisms \tilde{f} and \tilde{g} lift f and g respectively
- the outer square is a fiber-cofiber sequence
- the composition $Z \to W \xrightarrow{\simeq} X[1]$ (which is well-defined up to homotopy) lifts h.

Theorem 2.10 (HA.1.1.2.14). The above choice of the translation functor and the distinguished triangles makes hC a triangulated category.

Exercise 2.11. What would happen if we use diagrams of the form

to define distinguished triangles in hC?

Exercise 2.12. For $X \in C$, construct a fiber-cofiber sequence

$$X \xrightarrow{(\mathsf{id},-\mathsf{id})} X \oplus X \xrightarrow{(\mathsf{id},\mathsf{id})} X.$$

Exercise 2.13. Show that the coequalizer of $f, g : X \Rightarrow Y$ is canonically equivalent to $\mathsf{Cofib}(f - g)$. Hint:

3. Mapping spectra

Construction 3.1. Let C be a stable ∞ -category. For $X, Y \in C$, define

 $\underline{\mathsf{Hom}}(X,Y)_n \coloneqq \mathsf{Maps}(X,Y[n]).$

Note that for any $n \ge 0$, we have an isomorphism

$$\alpha_n: \mathsf{Maps}(X, Y[n]) \simeq \mathsf{Maps}(X, \Omega Y[n+1]) \simeq \Omega \mathsf{Maps}(X, Y[n+1]).$$

Let $\underline{Hom}(X,Y) \in Sptr$ be the spectrum given by the spaces $\{\underline{Hom}(X,Y)_n\}$ and the isomorphisms α_n . We call it the **mapping spectrum** between X and Y.

Remark 3.2. The above spectrum $\underline{Hom}(X,Y)$ is well-defined up to homotopy. In future lectures, we will equip Sptr with a symmetric monoidal structure such that any stable ∞ -category C is canonically enriched over Sptr.

Definition 3.3. Let C be a stable ∞ -category. For $X, Y \in C$, define

 $\mathsf{Ext}^n(X,Y) \coloneqq \pi_0 \operatorname{Hom}(X,Y)_n \simeq \pi_0 \mathsf{Maps}(X,Y[n])$

and call it the n-th extension group between X and Y.

3.4. Note that the extension groups only depend on the images of X and Y in the triangulated category hC. It is well-known that for any distinguished triangle $Y_0 \rightarrow Y_1 \rightarrow Y_2 \rightarrow Y_0[1]$ in hC, we have a long exact sequence

$$\cdots \to \operatorname{Ext}^n(X, Y_0) \to \operatorname{Ext}^n(X, Y_1) \to \operatorname{Ext}^n(X, Y_2) \to \operatorname{Ext}^{n+1}(X, Y_0) \to \cdots$$

4. Exact functors

4.1. Proposition 1.10 and Exercise 2.13 imply the following result.

Proposition-Definition 4.2. Let $F : C \to C'$ be a functor between stable ∞ -category. The following conditions are equivalent.

- The functor F preserves zero objects and fiber-cofiber sequence.
- The functor F is left exact, i.e., preserves finite limits.
- The functor F is right exact, i.e., preserves finite colimits.

We say F is **exact** if it satisfies the above conditions.

Exercise 4.3. Let $F : C \to C'$ be an exact functor between stable ∞ -category. Show that $hF : hC \to hC'$ has a natural structure of an exact functor¹ between triangulated categories.

Definition 4.4. Let $Cat_{\infty}^{ex} \subseteq Cat_{\infty}$ be the sub- ∞ -category of small stable ∞ -categories and exact functors between them.

 $^{^1\}mathrm{Also}$ known as a triangulated functor. Warning: being a triangulated functor is a structure rather than property.

Exercise 4.5. Let C be a stable ∞ -category. Show that Σ and Ω are exact. What are the triangulated functors induced by them?

Exercise 4.6. Let $F : C \to C'$ be an exact functor between stable ∞ -categories. Show that F is conservative iff F detects zero objects.

5. Closure properties

Exercise 5.1. Let C be a stable ∞ -category and K be a simplicial set. Show that Fun(K, C) is stable.

Exercise 5.2. Let C and D be stable ∞ -categories. Show that $\operatorname{Fun}_{ex}(C,D)$ is stable.

Exercise 5.3. Let C and D be presentable ∞ -categories such that D is stable. Show that LFun(C,D) is stable.

Exercise 5.4. Let C be a small stable ∞ -category, then Ind(C) is stable.

Exercise 5.5. Let C be a stable ∞ -category, then C^{cpt} is stable. In particular, Sptr^{fin} is stable.

Exercise 5.6. Let C be a stable ∞ -category, show that the idempotent completion of C is also stable.

Exercise 5.7. Let C be a stable ∞ -category, is PShv(C) stable?

Theorem 5.8. The ∞ -cateogry $\operatorname{Cat}_{\infty}^{\operatorname{ex}}$ admits small limits and the inclusion $\operatorname{Cat}_{\infty}^{\operatorname{ex}} \to \operatorname{Cat}_{\infty}$ preserves and detects small limits.

Sketch. We only need to show for any small diagram $K \to \mathsf{Cat}_{\infty}$, $i \mapsto \mathsf{C}_i$ such that each C_i is stable and each connecting functor $\mathsf{C}_i \to \mathsf{C}_j$ is exact, we have

- the limit ∞ -category $C := \lim_{i \to \infty} C_i$ is stable
- the evaluating functors $C \rightarrow C_i$ are exact.

Both claims can be checked using the explicit description of objects and mapping spaces in C. $\hfill \Box$

5.9. Similarly, one can prove the following result.

Theorem 5.10. The ∞ -cateogry $\mathsf{Cat}_{\infty}^{\mathsf{ex}}$ admits small filtered colimits and the inclusion $\mathsf{Cat}_{\infty}^{\mathsf{ex}} \to \mathsf{Cat}_{\infty}$ preserves and detects small filtered colimits.

6. A UNIVERSAL PROPERTY OF Sptr

6.1. The following result implies Sptr is the stable ∞ -category freely generated by one object under small colimits.

Exercise 6.2. Let D be a presentable stable ∞ -category. Show that evaluating at $\mathbb{S} \in Sptr$ induces an equivalence

$$LFun(Sptr, D) \rightarrow D.$$

Hint: show $\mathsf{RFun}(\mathsf{D},\mathsf{Sptr}) \xrightarrow{\Omega^{\infty} \circ -} \mathsf{RFun}(\mathsf{D},\mathsf{Spc})$ is an equivalence.

Exercise 6.3. Let D be a presentable stable ∞ -category. Show that evaluating at $\mathbb{S} \in \mathsf{Sptr}^{\mathsf{fin}}$ induces an equivalence

$$\operatorname{Fun}_{\operatorname{ex}}(\operatorname{Sptr}^{\operatorname{fin}}, \operatorname{D}) \xrightarrow{\simeq} \operatorname{D}.$$

Appendix A. Triangulated categories without models

A.1. There are triangulated categories that are not the homotopy category of any stable ∞ -category.

A.2. There are exact functors between homotopy categories of stable ∞ -categories that do not come from exact functors between the stable ∞ -categories.

A.3. Suggested readings. [MSS07].

References

[MSS07] Fernando Muro, Stefan Schwede, and Neil Strickland. Triangulated categories without models. *Inventiones mathematicae*, 170(2):231–241, 2007.