
LECTURE 16

In this lecture, we introduce t-structures on stable ∞-categories.

1. Definitions

1.1. Let C be a stable ∞-category. A t-structure on C is just a t-structure on the
triangulated category hC.

Definition 1.2. Let C be a stable ∞-category. A t-structure on C is defined to
be a pair of full sub-∞-categories (C≤0,C≥0) of C such that when we write

C≤n ∶= C≤0[−n], C≥n ∶= C≥n[−n]
we have:

(0) Both C≤0 and C≥0 are stable under isomorphisms in C.
(1) For X ∈ C≤0 and Y ∈ C≥1, we have MapsC(X,Y ) ≃ {0}.
(2) We have inclusions C≤−1 ⊆ C≤0 and C≥1 ⊆ C≥0.
(3) For any X ∈ C, there exists a fiber-cofiber sequence X ′ →X →X ′′ such that

X ′ ∈ C≤0 and X ′′ ∈ C≥1.

Warning 1.3. We use the cohomological convention. To compare with nota-
tions in the homological convention, let

C≤n ∶= C≥−n, C≥n ∶= C≤−n

Exercise 1.4. The assignment

(C≤0,C≥0) ↦ (hC≤0,hC≥0)
gives a bijection between t-structures on C with t-structures on the triangulated
category hC.

Exercise 1.5. The assignment

(C≤0,C≥0) ↦ ((C≥0)op, (C≤0)op)
gives a bijection between t-structures on C with t-structures on Cop.

Exercise 1.6. Show that for m < n, C≤m ∩ C≥n ≃ {0}.

Lemma 1.7. Let n ≥ 0. For any X ∈ C≤0 and Y ∈ C≥−n, the mapping space
MapsC(X,Y ) is a homotopy n-type.

Sketch. First note that the connected components of MapsC(X,Y ) are weakly ho-
motopy equivalent to each other because it is the loop space of MapsC(X,ΣY ).
Hence we only need to show πmMapsC(X,Y ) ≃ 0 for m > n and the base
point 0 ∈ MapsC(X,Y ). This follows from observation that Ωn+1MapsC(X,Y ) ≃
MapsC(X,Ωn+1Y ) is weakly contractible because Ωn+1Y ∈ C≥1. □
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2 LECTURE 16

Definition 1.8. Let C be a stable ∞-category equipped with a t-structure. The
heart of this t-structure is defined to be

C♡ ∶= C≤0 ∩ C≥0.
Theorem 1.9. The ∞-category C♡ is an ordinary abelian category. Moreover,
0 → X ′′ → X → X ′ → 0 is a short exact sequence in C♡ iff X ′′ → X → X ′ is a
fiber-cofiber sequence of C contained in C♡.

Sketch. By Lemma 1.7, C♡ is an ordinary category. It follows it can be identified
with hC≤0∩hC≥0, which is the heart of the triangulated category hC. Now the claims
follow from the corresponding well-known claims for triangulated categories. □

Warning 1.10. A t-structure is not determined by its heart. Most information in
a stable ∞-category cannot be recovered from the heart. For instance, for X,Y ∈ C♡,
the groups Ext●C(X,Y ) and Ext●C♡(X,Y ) are not isomorphic in general.

Definition 1.11. Let C and D be stable ∞-categories equipped with t-structures.
For an exact functor F ∶ C→ D, we say

● the functor F is left t-exact if it sends C≥0 into D≥0

● the functor F is right t-exact if it sends C≤0 into D≤0

Exercise 1.12. Let F ∶ C→ D be a left t-exact functor. Show that the composition

H0F ∶ C♡ → C≥0
FÐ→ D≥0

τ≤0ÐÐ→ D♡

is left exact.

Warning 1.13. As in Warning 1.10, even a t-exact functor F cannot be recovered
from H0F .

Remark 1.14. Next time, we will define various versions of derived ∞-categories
of an abelian categories A, which are equipped with t-structures whose hearts can be
identified with A. By definition, all information about these derived ∞-categories
can be recovered from A.

Under certain assumptions, a left/right t-exact functor F out of these derived
∞-categories can be identified with the right/left derived functor of H0F .

2. Cohomologies

Proposition-Definition 2.1. Let C be a stable ∞-category equipped with a t-
structure. For any n, the inclusion functor C≤n → C admits a right adjoint τ≤n,
and the inclusion functor C≥n → C admits a left adjoint τ≥n. These functors are
called the truncation functors for the t-structure.

Remark 2.2. One can memorize the above handedness as C≤0 ÐÐ→←ÐÐ CÐÐ→←ÐÐ C≥1.

Exercise 2.3. Prove the above proposition by verifying the following claim. Let
X ∈ C and X ′ →X →X ′′ be any fiber-cofiber sequence with X ′ ∈ C≤0 and X ′′ ∈ C≥1,
then

(1) For any Y ∈ C≤0, the morphism X ′ →X induces equivalences

MapsC(Y,X ′)
≃Ð→MapsC(Y,X).

(2) For any Z ∈ C≥1, the morphism X →X ′′ induces equivalences

MapsC(X,Z) ≃Ð→MapsC(X ′′, Z).
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Deduce that X ′ ≃ τ≤0X and X ′′ ≃ τ≥1X.

Exercise 2.4. We have Cartesian squares

C≤0 ⊆ //

��

C

τ≥1

��

C≥0 ⊆ //

��

C

τ≤−1

��
{0} ⊆ // C≥1 {0} ⊆ // C≤−1

In particular, C≤0 and C≥0 determine each other.

Exercise 2.5. The full sub-∞-category C≤0 ⊆ C is stable under colimits, while
C≤0 ⊆ C is stable under limits.

Exercise 2.6. A limit in C≤0 is isomorphic to the τ≤0-truncation of the correspond-
ing limit in C. Dually, a colimit in C≥0 is isomorphic to the τ≥0-truncation of the
corresponding colimit in C.

2.7. The following exercises say that for a fiber-cofiber sequence X ′ → X → X ′′,
amplitude estimations of two terms give an estimation for the third one.

Exercise 2.8. Let X ′ →X →X ′′ be a fiber-cofiber sequence.

(1) If X ′,X ′′ ∈ C≤0, then X ∈ C≤0.
(2) If X ∈ C≤0 and X ′′ ∈ C≤−1, then X ′ ∈ C≤0.
(3) If X ∈ C≤0 and X ′ ∈ C≤1, then X ′′ ∈ C≤0.

In particular, the full sub-∞-categories C≤0 ⊆ C ⊇ C≥0 are stable under extensions.

Exercise 2.9. Give examples to show the above estimations are optimal.

Exercise 2.10. The truncation functors τ≤● and τ≥● commute with each other.

Remark 2.11. The precise meaning of the above exercise consists of the following.
For m and n, we have

● τ≥m ○ τ≥n ≃ τ≥max{m,n}, τ≤m ○ τ≤n ≃ τ≤max{m,n}.
● The commutative square

C≤m ∩ C≥n ⊆
//

⊆
��

C≤m

⊆
��

C≥n ⊆
// C

is left adjointable along the horizontal direction, and the induced commuta-
tive square

C≤m ∩ C≥n

⊆
��

C≤m

⊆
��

τ≥noo

C≥n C
τ≥noo

is right adjointable along the vertical direction, i.e., induces a commutative
square

C≤m ∩ C≥n C≤mτ≥noo

C≥n

τ≤m

OO

C
τ≥noo

τ≤m

OO
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Definition 2.12. Let C be a stable ∞-category equipped with a t-structure. Con-
sider the functor

Hn ∶ C τ≤n○τ≥nÐÐÐÐ→ C≤n ∩ C≥n [−n]ÐÐ→ C♡.
For X ∈ C, we call Hn(X) ∈ C♡ the n-th cohomology of X.

Warning 2.13. It may happen that Hn(X) ≃ 0 while X is not isomorphic to 0.
For instance, C≤0 ∶= C and C≥0 ∶= {0} give a t-structure with C♡ ≃ {0}. There are
lots of interesting examples in

● non-regular algebraic geometry
● infinite type algebraic geometry
● infinite dimensional representation theory
● ...

2.14. The following result follows from the corresponding well-known result for
triangulated categories.

Proposition 2.15. Let C be a stable ∞-category equipped with a t-structure. For
any fiber-cofiber sequence X ′ →X →X ′′, we have a long exact sequence in C♡

⋯ → Hn(X ′) → Hn(X) → Hn(X ′′) δÐ→ Hn+1(X ′) → ⋯,
where the connecting morphism δ is induced by the morphism X ′′ →X ′[1].

3. Bounded, separated and complete

Definition 3.1. Let C be a stable ∞-category equipped with a t-structure. For an
object X ∈ C,

● we say X is connective if X ∈ C≤0;
● we say X is coconnective if X ∈ C≥0;
● we say X is n-connective if X ∈ C≤−n;
● we say X is n-coconnective if X ∈ C≥−n;
● we say X is eventually connective, or right bounded if

X ∈ C− ∶= ⋃C≤n

● we say X is eventually coconnective, or left bounded if

X ∈ C+ ∶= ⋃C≥n

● we say X is bounded if X is both left bounded and right bounded:

X ∈ Cb ∶= C+⋂C−.

Warning 3.2. As in Warning 2.13, the above properties cannot be tested via the
cohomologies.

Exercise 3.3. Show that if X is left bounded, then X ∈ C≥0 iff Hi(X) ≃ 0 for i < 0.

Definition 3.4. Let C be a stable ∞-category equipped with a t-structure.

● We say C is right bounded if C ≃ C−.
● We say C is left bounded if C ≃ C+.
● We say C is bounded if C ≃ Cb.
● We say C is right separated if

C≥∞ ∶= ⋂
n

C≥n ≃ {0}.
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● We say C is left separated if

C≤−∞ ∶= ⋂
n

C≤n ≃ {0}.

Definition 3.5. Let C be a stable ∞-category equipped with a t-structure. The left
completion Ĉ of C is defined to be the limit of the following diagram

⋯ τÐ→ C≥−2
τÐ→ C≥−1

τÐ→ C≥0
τÐ→ ⋯.

We say C is left complete if the functor C→ Ĉ is an equivalence.

Remark 3.6. Dually, the right completion is defined to be the limit of

⋯ τÐ→ C≤2
τÐ→ C≤1

τÐ→ C≤0
τÐ→ ⋯.

Most unbounded t-structures appearing naturally are right complete, hence people do
not give a notation to the right completion. Note however that the right completion
can be identified with (Ĉop)op.

Exercise 3.7. Show that the left completion Ĉ is stable and the functor C → Ĉ is
exact.

Exercise 3.8. Show that the left completion Ĉ admits an essential unique t-

structure such that C≥0
≃Ð→ (Ĉ)≥0.

Exercise 3.9. Show that C is left separated iff the functor C → Ĉ detects zero
objects. In particular, C is left separated if it is left complete.

Warning 3.10. A left separated t-structure may not be left complete. For example,
any left bounded t-structure is left separated, but is almost never left complete.

Exercise 3.11. Suppose C admits countable products and C≤0 ⊆ C is stable under
countable products1. Then C is left separated iff it is left complete.

Exercise 3.12. Show that C is left complete iff it is Postnikov complete. The
latter means

● Every object X ∈ C is the limit of its Postnikov tower:

X ≃ lim [⋯ → τ≥n−1X → τ≥nX → τ≥n+1X → ⋯]
● Any Postnikov tower in C converges. In other words, any collection

Xn ∈ C≥n equipped with isomorphisms τ≥nXn−1
≃Ð→ Xn is the Postnikov

tower of

X ∶= lim [⋯ →Xn−1 →Xn →Xn+1 → ⋯] ∈ C

4. t-structures on presentable stable ∞-categories

Proposition-Definition 4.1 (HA.1.4.4.13). Let C be a presentable stable ∞-
category equipped with a t-structure. The following conditions are equivalent:

● The ∞-category C≤0 is presentable.
● The ∞-category C≤0 is accessible.
● The ∞-category C≥0 is presentable.
● The ∞-category C≥0 is accessible.

● The composition C
τ≤0ÐÐ→ C≤0 → C is accessible.

1These conditions are often referred as: taking countable products is right t-exact.
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● The composition C
τ≥0ÐÐ→ C≥0 → C is accessible.

We say a t-structure on C is accessible if it satisfies the above conditions.

Proposition 4.2 (HA.1.4.4.11). Let C be a presentable stable ∞-category. A full
sub-∞-category C′ ⊆ C determines an accessible t-structure with C≤0 ≃ C′ iff

● C′ is accessible
● C′ ⊆ C is closed under colimits and extensions.

Remark 4.3. In practice, one can apply the above proposition to the smallest full
sub-∞-category C′ generated by a small collection of objects under small colimits
and extensions. Such C′ is always accessible.

Definition 4.4. Let C be a presentable stable ∞-category. We say a t-structure on
C is compatible with filtered colimits if taking filtered colimits is t-exact.

Exercise 4.5. A t-structure on C is compatible with filtered colimits iff taking small
coproducts is t-exact.

Definition 4.6. Let C be a presentable stable ∞-category. We say a t-structure on
C is compactly generated if C≤0 is compactly generated.

Exercise 4.7. Let C be a presentable stable ∞-category equipped with a compactly
generated t-structure.

(1) Show that the t-structure is right complete and compatible with filtered col-
imits.

(2) Show that C is compactly generated, and compact objects in C are exactly
given by X[n] such that X is compact object in C≤0.

Exercise 4.8. Let C0 be a small stable ∞-category equipped with a bounded t-
structure. Show that C ∶= Ind(C0) has a compactly generated t-structure with C≤0 ∶=
Ind(C≤00 ).
Warning 4.9. Compact objects in C may not be stable under truncations. Hence
not all compactly generated t-structures come from ind-completion. There are lots
of interesting examples in the settings listed in Warning 2.13.

Remark 4.10. In practice, most t-structures on presentable stable∞-categories are
right complete and compatible with filtered colimits, or even compactly generated.

5. t-structure on Sptr

Proposition-Construction 5.1 (HA.1.4.3.4). Let C be a pointed presentable ∞-
category. We have an accessible t-structure on Sptr(C) given by the following.

● Let Sptr(C)≥1 be the full sub-∞-category of objects X such that Ω∞(X) ≃ 0.
● Let Sptr(C)≤0 be the full sub-∞-category generated by the essential image
of the functor Σ∞ under extensions and small colimits.

Exercise 5.2. Show that Sptr(Sptr(C)≤0) → Sptr(C) is a t-exact equivalence.

Proposition 5.3 (HA.1.4.3.6). Let Sptr be equipped with the above t-structure.
Then

(1) This t-structure is compactly generated2 and left complete.

2Compact generation is not proved in HA, but it follows from the fact that Spc
∗
is compactly

generated.
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(2) The Eilenberg–Maclane spectrum functor A ↦ HA gives an equivalence

Ab
≃Ð→ Sptr♡.

Exercise 5.4. Show that the cohomology functor Hi ∶ Sptr → Sptr♡ can be identified

with π−i via the equivalence Ab
≃Ð→ Sptr♡.

Warning 5.5. Let A1 and A2 be abelian groups. In general, the extension groups
ExtiSptr(HA1,HA2) and Exti(A1,A2) are not isomorphic. For instance, the graded

ring Ext●Sptr(HFq,HFq) is the mod p Steenrod algebra.

5.6. Next time, we will construct a natural homomorphism

Exti(A1,A2) → ExtiSptr(HA1,HA2)
which should be viewed as derived direct images along SpecZ→ SpecS.

Appendix A. Prestable ∞-categories

A.1. Let C be a stable ∞-category equipped with a t-structure. Sometimes it is
more convenient to study C≤0 rather then C. It is possible to find several axioms that
characterize ∞-categories of the form C≤0. Such ∞-categories are called prestable
∞-categories.

A.2. Suggested readings. SAG.C.
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