In this lecture, we introduce two examples of stable ∞ -categories:

- the naive ∞ -category K(A) of cochain complexes in an *additive category* A
- the derived ∞ -category D(A) of an *abelian* category A

1. K(A) and D(A) via localization

Definition 1.1. Let A be an additive category and Ch(A) be the ordinary category of cochain complexes in A. Let $f, g: M^{\bullet} \to N^{\bullet}$ be morphisms in Ch(A). A cochain homotopy from f to g is a collection of maps $h^n: M^n \to N^{n-1}$ such that

$$f^n - q^n = d \circ h^n + h^{n+1} \circ d$$

for any n. We say f and g are homotopic, or $f \sim g$, if there exists a cochain homotopy between them.

Remark 1.2. Being homotopic is an equivalence relation on $Hom_{Ch(A)}(M^{\bullet}, N^{\bullet})$.

Example 1.3. Let $F, G : X \to Y$ be continuous maps between topological spaces. Then any homotopy from F to G induces a cochain homotopy from F^* to G^* , where $F^* : C^{\bullet}(Y) \to C^{\bullet}(X)$ is the cochain homomorphism between the singular cochain complexes.

Exercise 1.4. Let A be an abelian category (so that we can define cohomologies). If $f \sim g$, then $\mathsf{H}^n(f) = \mathsf{H}^n(g)$ as morphisms $\mathsf{H}^n(M^{\bullet}) \to \mathsf{H}^n(N^{\bullet})$.

Definition 1.5. Let A be an additive category and $f: M^{\bullet} \to N^{\bullet}$ be a morphism in Ch(A). We say f is a cochain homotopy equivalence if there exists $g: N^{\bullet} \to M^{\bullet}$ such that $f \circ g \sim id_{N^{\bullet}}$ and $g \circ f \simeq id_{M^{\bullet}}$. Let S be the collection of cochain homotopy equivalences in Ch(A).

Definition 1.6. Let A be an abelian category and $f: M^{\bullet} \to N^{\bullet}$ be a morphism in Ch(A). We say f is a **quasi-isomorphism** if it induces isomorphisms between the cohomologies. Let W be the collection of quasi-isomorphisms in Ch(A).

Exercise 1.7. Let A be an abelian category. Show that a cochain homotopy equivalence in Ch(A) is a quasi-isomorphism.

Exercise 1.8. Let A be an abelian category and $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence. Show that

is always a quasi-isomorphism, but is a cochain homotopy equivalence iff the given short exact sequence has a splitting.

Date: Nov. 19, 2024.

Definition 1.9. Let A be an additive category. The naive ∞ -category of cochain complexes in A is defined to be the ∞ -categorical localization¹

$$\mathsf{K}(\mathsf{A}) \coloneqq \mathsf{Ch}(\mathsf{A})[S^{-1}].$$

Definition 1.10. Let A be an abelian category. The unbounded derived ∞ -category of A is defined to be the ∞ -categorical localization

$$\mathsf{D}(\mathsf{A}) \coloneqq \mathsf{Ch}(\mathsf{A})[W^{-1}].$$

Exercise 1.11. Write D(A) as a localization of K(A).

Warning 1.12. In the non- ∞ -categorical literatures, K(A) and D(A) often means the 1-categorical localizations, which are the homotopy categories of our ∞ -categories.

1.13. It is well-known (see [Sta24, Tag 05QI]) that hK(A) has a structure of triangulated categories such that for any $f: M^{\bullet} \to N^{\bullet}$ in Ch(A), there is a distinguished triangle

$$M^{\bullet} \xrightarrow{f} N^{\bullet} \to \operatorname{cone}(f) \to M^{\bullet}[1]$$

for the corresponding objects in hK(A). Moreover, when A is abelian, this triangulated is compatible with the collection of quasi-isomorphisms and thereby induces a triangulated structure on the 1-categorical localization hD(A).

Warning 1.14. The category Ch(A) is almost never triangulated because any abelian triangulated category is semisimple.

1.15. The following result says the above triangulated categories come from stable ∞ -categories.

Theorem 1.16 (HA.1.3.2.10). Let A be an additive category. The ∞ -category K(A) is stable and the triangulated structure on hK(A) coincides with the well-known one².

Theorem 1.17 (HA.1.3.5.9, 1.3.5.21). Let A be a Grothendieck³ abelian category. The ∞ -category D(A) is presentable and stable and the triangulated structure on hD(A) coincides with the well-known one.

Warning 1.18. Let A be a Grothendieck abelian category. The ∞ -category K(A) is almost never presentable. See this MathOverflow question.

Remark 1.19. Note that the ∞ -category D(A) defined above makes sense for any abelian category A. One can prove D(A) is always stable (for example using [NS18, Theorem I.3.3]). However, D(A) may be ill-behaved in general. For example, when A is small, it is better to consider D^b(A).

2. K(A) and D(A) via differential graded nerve

2.1. Definition 1.9 and Definition 1.10 are concise but inconvenient for calculations. In this section, we provide a more explicit construction of these ∞ -categories.

¹According to our convention, we use the same symbol to denote an ordinary category C and the corresponding ∞ -category, realized as the quasi-category N_•(C). Hence K(A) can be represented as the quasi-categorical localization N_•(Ch(A))[S⁻¹], which is the notation used in Lurie's books.

²This claim follows from the proof of HA.1.3.2.10. \sim

 $^{^3\}mathrm{This}$ means A is presentable and taking filtered colimits is exact.

- 2.2. The alternative construction for K(A) will be a quasi-category such that
 - an object is a cochain complex M_0
 - a morphism is a cochain homomorphism $M_0 \rightarrow M_1$
 - a 2-simplex is given by

where h_{012} stands for a homotopy from $f_{12} \circ f_{01}$ to f_{02} ,

To give a description for higher simplices, it is convenient to introduce some terminologies.

Construction 2.3. Let Ch(Ab) be the ordinary category of cochain complexes. For $M, N \in Ch(Ab)$, the graded tensor product $M \otimes N$ is defined as follows.

• For each integer k,

$$(M \otimes N)^k \coloneqq \bigoplus_{i+j=k} M^i \otimes N^j.$$

• For each integer k, the differential $(M \otimes N)^k \to (M \otimes N)^{k+1}$ is given by the graded Lubniz rule, which sends a pure tensor $m \otimes n \in M^i \otimes N^j$ to

 $d(m \otimes n) \coloneqq d(m) \otimes n + (-1)^j m \otimes d(n).$

There is a natural monoidal structure on Ch(Ab) with multiplication given by the graded tensor products.

Example 2.4. Let X and Y be topological spaces. Then we have $C^{\bullet}(X \times Y) \simeq C^{\bullet}(X) \otimes C^{\bullet}(Y)$.

Exercise 2.5. Let $M \in Ch(Ab)$. Show that a 0-cocycle in M is the same as a morphism $1 \to M$, where 1 is the monoidal unit.

Definition 2.6. A differential graded category, or a dg-category, is a Ch(Ab)enriched category.

- 2.7. By definition, a dg-category \mathbb{C} consists of the following datum:
 - A cochain complex Hom_ℂ(x, y) ∈ Ch(Ab) for objects x, y ∈ ℂ called the mapping complex
 - A composition law given by cochain homomorphisms

 $-\circ -: \operatorname{Hom}_{\mathbb{C}}(x, y) \otimes \operatorname{Hom}_{\mathbb{C}}(y, z) \to \operatorname{Hom}_{\mathbb{C}}(x, z)$

which is associative in the obvious sense

• A *0-cocycle* $\operatorname{id}_x \in \operatorname{Hom}_{\mathbb{C}}(x, x)^0$ such that $f \circ \operatorname{id}_x = f$ and $\operatorname{id}_x \circ g = g$ for any $f \in \operatorname{Hom}_{\mathbb{C}}(x, y)^m$ and $g \in \operatorname{Hom}_{\mathbb{C}}(y, x)^n$.

Exercise 2.8. Show that any $id_x \in Hom_{\mathbb{C}}(x, x)^0$ satisfying the above condition is automatically a cocycle.

Definition 2.9. Let \mathbb{C} be a dg-category. The underlying category C of \mathbb{C} is defined such that the Hom-sets are given by

 $\operatorname{Hom}_{\mathsf{C}}(x,y) \coloneqq \operatorname{Hom}_{\mathsf{Ch}(\mathsf{A})}(\mathbb{1},\operatorname{Hom}_{\mathbb{C}}(x,y)).$

2.10. We will identify $Hom_{C}(x,y)$ with the abelian group of 0-cocycles in $Hom_{\mathbb{C}}(x,y)$.

Definition 2.11. Let \mathbb{C} be a dg-category. The homotopy category $h\mathbb{C}$ of \mathbb{C} is defined such that the Hom-sets are given by

$$\operatorname{Hom}_{h\mathbb{C}}(x,y) \coloneqq \operatorname{H}^{0}(\operatorname{Hom}_{\mathbb{C}}(x,y)).$$

Example 2.12. For any additive category A, the ordinary category Ch(A) has a natural enrichment Ch(A) over Ch(Ab) such that

$$\operatorname{Hom}_{\mathbb{Ch}(\mathsf{A})}(M,N)^k \coloneqq \prod_i \operatorname{Hom}_{\mathsf{A}}(M^i,N^{i+k})$$

with the differential given by the graded Lubniz rule

$$(df)(x) = d(f(x)) - (-1)^k f(dx)$$

for $f \in \operatorname{Hom}_{\mathbb{Ch}(A)}(M, N)^k$ and $x \in M^i$.

Exercise 2.13. Show that the underlying category of $\mathbb{Ch}(A)$ is indeed Ch(A). What is its homotopy category?

Exercise 2.14. Let $f, g \in \text{Hom}_{\mathbb{Ch}(A)}(M, N)^0$ be 0-cocycles, viewed as morphisms in the ordinary category Ch(A). Show that a homotopy from f to g is the same as an element $h \in \text{Hom}_{\mathbb{Ch}(A)}(M, N)^{-1}$ such that dh = f - g.

Proposition-Construction 2.15 (HA.1.3.1.10). Let \mathbb{C} be a dg-category. We have a quasi-category $N_{dg}(\mathbb{C})$, called the **dg-nerve** of \mathbb{C} , defined as follows.

- A 0-simplex is an object in \mathbb{C}
- A 1-simplex consists of its boundary {X₀, X₁} together with a 0-cocycle in f₀₁ ∈ Hom_C(X₀, X₁)⁰
- A 2-simplex consists of its boundary {f₀₁, f₀₂, f₁₂} together with an element g₀₁₂ ∈ Hom_C(X₀, X₂)⁻¹ such that

$$df_{012} = -(f_{02} - f_{12} \circ f_{01}).$$

A 3-simplex consists of its boundary {f₀₁₂, f₀₁₃, f₀₂₃, f₁₂₃} together with an element f₀₁₂₃ ∈ Hom_C(X₀, X₃)⁻² such that

 $df_{0123} = -(f_{013} - f_{23} \circ f_{012}) + (f_{023} - f_{123} \circ f_{01}).$

• Higher simplices are given similarly (see HA.1.3.1.6).

Proposition 2.16. Let \mathbb{C} be a dg-category and X, Y be objects in \mathbb{C} . Then there are canonical isomorphisms

$$\pi_i(\mathsf{Maps}_{\mathsf{Ndr}}(\mathbb{C})(X,Y)) \simeq \mathsf{H}^{-i}(\mathsf{Hom}_{\mathbb{C}}(X,Y))$$

Remark 2.17. We will prove the above proposition next time. In fact, the space $\mathsf{Maps}_{\mathsf{Ndg}}(\mathbb{C})(X,Y)$ can be obtained from the truncation $\tau^{\leq 0}\mathsf{Hom}_{\mathbb{C}}(X,Y)$ in a canonical way, known as the Dold-Kan correspondence.

Exercise 2.18. Construct a monomorphism $N(C) \rightarrow N_{dg}(\mathbb{C})$ that is bijective on *n*-simplices with $n \leq 1$, where N(C) is the usual nerve of the underlying ordinary category C of \mathbb{C} .

Exercise 2.19. Construct an equivalence $hN_{dg}(\mathbb{C}) \simeq h\mathbb{C}$.

Proposition 2.20 (HA.1.3.4.5). Let A be an additive category. Then the functor N(Ch(A)) → N_{dg}(Ch(A)) exhibits N_{dg}(Ch(A)) as the localization of N(Ch(A)) for the collection of cochain homotopy equivalences. In other words, N_{dg}(Ch(A)) represents the ∞-category K(A).

Exercise 2.21. Let A be an abelian category and $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence. Show that it represents a zero object in K(A) iff it admits a splitting.

2.22. Our next goal is to realize D(A) as the dg-nerve of a dg-category when A is a Grothendieck abelian category. Recall such A has enough injective objects.

Theorem 2.23. Let A be a Grothendieck abelian category. Then Ch(A) admits a left proper combinatorial model structure determined by the following.

- (W) weak equivalences are quasi-isomorphisms
- (C) cofibrations are degreewise monomophisms

Exercise 2.24. If $M \in Ch(A)$ is fibrant in the above model structure, then each $M^n \in A$ is injective. Conversely, if M is bounded below and each M^n is injective, then M is fibrant.

Proposition 2.25 (HA.1.3.5.13). Let $Ch(A)^{\circ} \subseteq Ch(A)$ be the full subcategory of bifibrant objects. Let $Ch(A)^{\circ} \subseteq Ch(A)$ be the corresponding dg-category. Then the embedding

$$N_{dg}(\mathbb{Ch}(A)^{\circ}) \rightarrow N_{dg}(\mathbb{Ch}(A))$$

admits a left adjoint

$$N_{dg}(\mathbb{Ch}(A)) \rightarrow N_{dg}(\mathbb{Ch}(A)^{\circ})$$

such that the composition

$$N(Ch(A)) \rightarrow N_{dg}(Ch(A)) \rightarrow N_{dg}(Ch(A)^{\circ})$$

exhibits $N_{dg}(\mathbb{Ch}(A)^{\circ})$ as the localization of N(Ch(A)) for the collection of quasiisomorphisms. In other words, $N_{dg}(\mathbb{Ch}(A)^{\circ})$ represents the ∞ -category D(A).

2.26. The above proposition implies for any Grothendieck abelian category A, we have an adjunction of exact functors

(2.1)
$$K(A) \rightleftharpoons D(A)$$

such that the right adjoint functor is fully faithful, and the left adjoint is given by taking fibrant replacements.

Exercise 2.27. Find the kernel of the left adjoint functor $K(A) \rightarrow D(A)$.

3. t-structures

Proposition 3.1 (HA.1.3.5.19, 1.3.5.21). Let A be a Grothendieck abelian category.

- Let D(A)^{≤0} be the full sub-∞-category consisting of objects represented by cochain complexes M with Hⁿ(M) ≈ 0 for n > 0.
- Let D(A)^{≥0} be the full sub-∞-category consisting of objects represented by cochain complexes M with Hⁿ(M) ≃ 0 for n < 0.

Then $(D(A)^{\leq 0}, D(A)^{\geq 0})$ determines a t-structure on D(A). Moreover,

- The functor H^0 : Ch(A) \rightarrow A induces an equivalence $D(A)^{\heartsuit} \rightarrow A$.
- This t-structure is accessible, left separated, right complete and compatible with filtered colimits.

Warning 3.2. The t-structure on D(A) is generally not left complete. See [Nee11] for a counterexample. The left completion is often denoted by $\widehat{D}(A)$.

Example 3.3. Let $A = Mod_R^{\circ}$ be the abelian category of *R*-modules for an associative ring *R*. In future lectures, we will construct

- a symmetric monoidal structure on Sptr given by smash products;
- an \mathbb{E}_1 -algebra structure on the Eilenburg-Maclane spectrum $\mathbb{H}R \in \mathsf{Sptr}$;
- a stable ∞-category Mod_{HR} of HR-modules in Sptr, equipped with a tstructure induced from that of Sptr;
- a t-exact equivalence

$$\mathsf{Mod}_{\mathbb{H}R} \simeq \mathsf{D}(\mathsf{Mod}_R^{\heartsuit}) \eqqcolon \mathsf{D}(R)$$

Moreover, when R is commutative, we will equip D(R) with a symmetric monoidal structure given by relative tensor product over $\mathbb{H}R$.

Exercise 3.4. Let A be a Grothendieck abelian category. Show that the left bounded part of D(A) can be identified with

$$\mathsf{D}^+(\mathsf{A}) \simeq \mathsf{N}_{\mathsf{dg}}(\mathbb{C}\mathbb{h}^+(\mathsf{A}_{\mathsf{inj}}))$$

where $Ch^+(A_{inj})$ is the dg-category of left bounded complexes of injective objects in A. Note that the proof should not work for $D^-(A)$.

3.5. Motivated by the above exercise, we make the following definition.

Definition 3.6. Let A be an abelian category with enough injectives. The left bounded derived- ∞ -category of A is defined to be

$$\mathsf{D}^+(\mathsf{A}) \coloneqq \mathsf{N}_{\mathsf{dg}}(\mathbb{Ch}^+(\mathsf{A}_{\mathsf{inj}})).$$

Dually, let A be an abelian category with enough projectives. The **right bounded** derived- ∞ -category of A is defined to be

$$\mathsf{D}^{-}(\mathsf{A}) \coloneqq \mathsf{N}_{\mathsf{dg}}(\mathbb{C}\mathbb{h}^{-}(\mathsf{A}_{\mathsf{proj}})) \simeq \mathsf{D}^{+}(\mathsf{A}^{\mathsf{op}})^{\mathsf{op}}.$$

Exercise 3.7. Show that $D^{-}(A)$ is a stable sub- ∞ -category of $K(A_{proj})$.

Warning 3.8. The ∞ -categories $D^+(A)$ and $D^-(A)$ are not presentable because countable coproducts may not exist.

3.9. The following results characterize $D^{-}(A)$ via universal properties.

Proposition 3.10 (HA.1.3.2.19, 1.3.3.16). Let A be an abelian category with enough projectives. The obvious choice defines a left complete t-structure on $D^{-}(A)$ whose heart is canonically equivalent to A.

Theorem 3.11 (HA.1.3.3.2. 1.3.3.6). Let A be an abelian category with enough projectives. For any stable ∞ -category C equipped with a left complete t-structure, the following data are equivalent:

(i) A right t-exact functor $F: D^{-}(A) \to C$ that sends A_{proj} into C^{\heartsuit}

(ii) A right exact functor $f : \mathsf{A} \to \mathsf{C}^{\heartsuit}$

where $f := \tau^{\geq 0} \circ F|_{\mathsf{A}}$. Moreover, the following conditions are equivalent

- F is t-exact.
- F preserves the hearts.
- f is exact.

Definition 3.12. Let A be an abelian category with enough projectives and C be a stable ∞ -category equipped with a left complete t-structure. For a right exact functor $f : A \to C^{\heartsuit}$, the corresponding functor F is called the **left derived functor** of f and denote as

$$\mathbb{L}f: \mathsf{D}^{-}(\mathsf{A}) \to \mathsf{C}.$$

Exercise 3.13. Show that $\mathbb{L}f(M)$ can be calculated via a projective resolution of the complex M.

Exercise 3.14. Consider the t-exact functor $D^{-}(Ab) \rightarrow Sptr$ corresponding to the equivalence $Ab \simeq Sptr^{\heartsuit}$, $A \mapsto \mathbb{H}A$. Taking right completion, we obtain a functor

$$\pi_*: \mathsf{D}(\mathsf{Ab}) \to \mathsf{Sptr}.$$

Show that:

- The functor can also be obtained via the universal property of D⁺(Ab) described by the dual of Theorem 3.11.
- (2) Make a guess for the composition $\Omega^{\infty} \circ \pi_{*}$.

3.15. Let A be a Grothendieck abelian category with enough *projective* objects. The following result says the two definitions of $D^{-}(A)$ coincide.

Proposition 3.16 (HA.1.3.5.24). Let A be a Grothendieck abelian category with enough projective objects. Then the composition

$$D^{-}(A) \xrightarrow{\subseteq} K(A) \rightarrow D(A)$$

is fully faithful with essential image given by the right bounded part of D(A). In particular, D(A) is left complete.

3.17. In fact, there is also a canonical t-structure on K(A) when A is a Grothendieck abelian category. However, one needs to be careful about the coconnective part because there are nonzero objects in K(A) with zero cohomologies.

Proposition 3.18 (HA.1.3.5.18). Let A be a Grothendieck abelian category.

- Let K(A)^{≤0} be the full sub-∞-category consisting of objects represented by cochain complexes M with Hⁿ(M) ≃ 0 for n > 0.
- Let $K(A)^{\geq 0}$ be the full sub- ∞ -category consisting of objects represented by cochain complexes M with $M^n \simeq 0$ for n < 0 such that M^n is injective for any n.

Then $(K(A)^{\leq 0}, K(A)^{\geq 0})$ determines a t-structure on K(A).

Exercise 3.19. Identify $K(A)^{\geq 0}$ with the essential image of the fully faithful functor

$$D(A)^{\geq 0} \rightarrow D(A) \rightarrow K(A)$$

where the first functor is the right adjoint in (2.1).

Exercise 3.20. Show that both functors in $K(A) \rightleftharpoons D(A)$ are t-exact, and they induce equivalences between the hearts.

Exercise 3.21. Show that the t-structure on K(A) is right complete and compatible with filtered colimits, but is not left separated.

Appendix A. D(A)

Construction A.1. Let A be a Grothendieck abelian category. Define the unseparated derived ∞ -category of A to be

$$\tilde{\mathsf{D}}(\mathsf{A}) \coloneqq \mathsf{N}^{\mathsf{dg}}(\mathbb{Ch}(\mathsf{A}_{\mathsf{inj}})) \simeq \mathsf{K}(\mathsf{A}_{\mathsf{inj}})$$

There is a t-structure on $\check{D}(A)$ defined similarly as that on K(A) such that

- The heart is canonically identified with A;
- This t-structure is accessible, right complete and compatible with filtered colimits;
- This t-structure is (left) anti-complete.

Remark A.2. Roughly speaking, being anti-complete means the t-structure is "orthogonal" to complete ones. In fact, there is an essentially unique colimit-preserving t-exact functor

$$\widetilde{D}(A) \rightarrow D(A)$$

that restricts to the identity functor on the hearts. Moreover, this functor exhibits $\tilde{D}(A)$ as the (left) anti-completion of D(A).

Example A.3. For Noetherian commutative ring R,

$$\tilde{\mathsf{D}}(\mathsf{Mod}_R^{\heartsuit}) \simeq \mathsf{Ind}(\mathsf{D}^{\mathsf{b}}(\mathsf{Mod}_{R,\mathsf{fg}}^{\heartsuit})),$$

where $\mathsf{D}^{\mathsf{b}}(\mathsf{Mod}_{R,\mathsf{fg}}^{\heartsuit})$ is the full sub- ∞ -category of $\mathsf{D}(\mathsf{Mod}_R^{\heartsuit})$ consisting of complexes with bounded finite generated cohomologies.

A.4. Suggested readings. SAG.C.

Appendix B. dg-category vs. $\mathbb{H}Z$ -linear stable ∞ -categories

B.1. The homotopy category $h\mathbb{C}$ of any dg-category \mathbb{C} has a canonical *candidate* for triangulated structures. If this candidate is indeed a triangulated structure, we say \mathbb{C} is **pretriangulated**. The following notions are essentially equivalent:

- pretriangulated dg-categories over a commutative ring R;
- $\mathbb{H}R$ -linear stable ∞ -categories.

B.2. Suggested readings. [Coh13].

References

- [Coh13] Lee Cohn. Differential graded categories are k-linear stable infinity categories. arXiv preprint arXiv:1308.2587, 2013.
- [Nee11] Amnon Neeman. Non-left-complete derived categories. Mathematical Research Letters, 18(5):827–832, 2011.
- [NS18] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Math, 221:203– 409, 2018.
- [Sta24] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2024.