
LECTURE 18

In this lecture, we discuss the Dold–Kan correspondence and its generalizations.
We use homological convention because such is standard in the literature about the
DK correspondences.

1. classical Dold–Kan correspondence

1.1. Let A be an abelian category. The classical Dold–Kan correspondence is an
equivalence between:

● The ordinary category Ch(A)≥0 of nonnegatively graded chain complexes
in A;
● The ordinary category A∆ of simplicial objects in A.

This equivalence can be constructed explicitly in both directions.

Construction 1.2. Let A● ∈ A∆ ∶= Fun(∆op,A) be a simplicial object in an additive
category A. For any i ∈ [n], consider the face morphism di ∶ An → An−1 correspond-
ing to the unique injection δin ∶ [n−1] → [n] whose image does not contain i. Define

C∗(A) ∶= [⋯ → A2 → A1 → A0 → 0→ ⋯]

where

● the object An is put in the homological degree n (= cohomological degree
−n);
● the differential An → An−1 is the alternating sum ∑n

i=0(−1)idi.
We call it the unnormalized chain complex associated to A●.

Exercise 1.3. Show that C∗(A) is indeed a complex.

1.4. By the above exercise, we have C∗(A) ∈ Ch(A)≥0. However, the obtained
functor A∆ → Ch(A)≥0 is not an equivalence.

Exercise 1.5. For A ∶= Ab, consider the constant simplicial abelian group Z. Show
that

C∗(Z) ≃ [⋯
0Ð→ Z

1Ð→ Z
0Ð→ Z→ 0→ ⋯].

Deduce that the functor C∗ is not even fully faithful.

1.6. In the above example, note however that

● the complex [⋯ → 0→ Z→ 0→ ⋯] has the correct set of endomorphisms;
● the above complex is quasi-isomorphic to C∗(Z);
● n-simplices in Z are degenerate for n > 1;

This suggests C∗ fails to be an equivalence because of the degenerate simplices.
There are two ways to get rid of the degenerate simplices.
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Construction 1.7. Let A● ∈ A∆ be a simplicial object in an abelian category A.
Define

Dn(A) ∶= im(
n−1

⊕
i=0

An−1 → An),

where for 0 ≤ i ≤ n − 1, the morphism An−1 → An is the i-th degeneracy morphism.

Exercise 1.8. Show that D∗(A) is a subcomplex of C∗(A). In particular, we can
form the quotient complex C∗(A)/D∗(A).

Construction 1.9. Let A● ∈ A∆ be a simplicial object in an abelian category A.
Define

N∗(A) ∶= [⋯ → N2(A) → N1(A) → N0(A) → 0→ ⋯]
where

● the object Nn(A) is the joint kernel of di for 1 ≤ i ≤ n;
● the differential is given by d0.

We call it the normalized chain complex, or the Moore complex, associated
to A●.

Exercise 1.10. Show that d0 indeed sends Nn(A) into Nn−1(A), and N∗(A) is
subcomplex of C∗(A).

Exercise 1.11. Show that C∗(A) ≃ N∗(A)⊕D∗(A).

1.12. In particular, the composition

N∗(A) → C∗(A) → C∗(A)/D∗(A)

is an isomorphism in Ch(A)≤0. The following result was proved by Eilenberg–
MacLane.

Proposition 1.13 (HA.1.2.3.17). The chain morphism N∗(A) → C∗(A) is a quasi-
isomoprhism.

Exercise 1.14. In fact, N∗(A) → C∗(A) is even a chain homotopy equivalence.
See [GJ09, Theorem III.2.4].

1.15. Now let us construct the desired inverse of the functor N∗ ∶ A∆ → Ch(A)≥0.

Construction 1.16. Let A be an additive cateogry and A∗ ∈ Ch(A)≥0. Define
DK●(A) ∈ A∆ as follows.

● For each n ≥ 0, the object of n-simplices is

DKn(A) ∶= ⊕
α∶[n]↠[k]

Ak,

where the direct sum is indexed by surjections α ∶ [n] → [k].
● For [n′] → [n] in ∆, the connecting morphism DKn(A) → DKn′(A) is given
by the map

⊕
α∶[n]↠[k]

Ak → ⊕
α∶[n′]↠[k′]

Ak′

where
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– each commutative square

[n′]

��

// [n]

��
[k] [k]

contributes to Ak
idÐ→ Ak;

– each commutative square

[n′]

��

// [n]

��
[k − 1]

δ0k // [k]

contributes to Ak
dÐ→ Ak−1.

One can check DK●(A) is indeed a simplicial object in A.

Exercise 1.17. For A ∶= Ab, show that DK●(Z[n]) ≃ Z∆n/Z∂∆n, where for a
simplicial set S, ZS is the free simplicial abelian group.

1.18. The following result is known as the classical Dold–Kan correspondence.

Theorem 1.19 (HA.1.2.3.7, 1.2.3.12). Let A be an additive cateogry.

(1) The functor DK ∶ Ch(A)≥0 → A∆ is fully faihtful.
(2) If A is idempotent complete, then DK is an equivalence. In particular, DK

is an equivalence when A is abelian.
(3) If A is abelian, then N ∶ A∆ → Ch(A)≥0 is an inverse of DK.

Exercise 1.20. When A = Ab, show that the functor

Ch(Ab)≥0 → Ab∆, A↦ Hom(N(Z∆●),A)
is right adjoint to N. Deduce that this functor is equivalent to DK. Can you prove
this equivalence directly?

2. model-categorical Dold–Kan correspondence

2.1. Recall that both Ch(Ab)≥0 and Ab∆ have classical model structures, and the
Dold–Kan equivalence is compatible with these model structures in the strongest
sense. Results in this section can be found in [Qui67, §II.4].

Proposition 2.2. There is a model structure on Ch(Ab)≥0, known as the projec-
tive model structure, such that:

(W) weak equivalences are quasi-isomorphisms;
(C) cofibrations are degreewise injections with projective kernels;
(F) fibrations are degreewise surjections.

Proposition 2.3. There is a model structure on Ab∆, known as the classical
model structure, such that:

(W) weak equivalences are weak homotopy equivalences between the underlying
simplicial sets;

(F) fibrations are Kan fibrations between the underlying simplicial sets.
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Theorem 2.4 (Quillen). For A ∶= Ab, both of the equivalences DK and N preserve
and detect the collections (W), (C) and (F).

Exercise 2.5. Show that any object in Ab∆ is fibrant, i.e., its underlying simplicial
set is a Kan complex. Can you prove this directly?

Exercise 2.6. Show that homology groups H∗(−) on the Ch(Ab)≥0 side corresponds
to simplicial homotopy groups π∗(−) on the Ab∆ side.

3. connective chain complices and spaces

3.1. By Quillen’s theorem, the functor Ch(Ab)≥0 → Ab∆ → (Set∆)∗ preseves weak
equivalences. Hence we obtain a functor between their ∞-categorical localizaitons

Ch(Ab)≥0[W −1] → (Set∆)∗[W −1].

Exercise 3.2. We have Ch(Ab)≥0[W −1] ≃ D(Ab)≥0.

Exercise 3.3. We have (Set∆)∗[W −1] ≃ Spc∗.

3.4. We abuse notation and denote the obtained functor by

DK ∶ D(Ab)≥0 → Spc∗.

Warning 3.5. The functor DK is not an equivalence because the above construction
uses the forgetful functor Ab∆ → (Set∆)∗.

Exercise 3.6. The functor DK admits a left adjoint. Hint: construct a Quillen
adjunction (Set∆)∗ ÐÐ→←ÐÐ Ab∆.

3.7. In particular, we can take spectrum objects and obtain a functor
Sptr(D(Ab)≥0) → Sptr(Spc∗).

Exercise 3.8. We have Sptr(D(Ab)≥0) ≃ D(Ab).

3.9. We abuse notation and denote the obtained functor by

DK ∶ D(Ab) → Sptr.

Exercise 3.10. Identify the above functor with the functor in [Lecture 17, Exercise
3.14].

4. Dold–Kan correspondence for stable ∞-categories

4.1. Lurie’s Dold–Kan correspondence for a stable ∞-category C establishes a
canonical equivalence between

● The stable ∞-category Fun(Z≥0,C) of Z≥0-filtered objects in C;
● The stable ∞-category C∆ ∶= Fun(∆op,C) of simplicial objects in C.

Theorem 4.2 (HA.1.2.4.1). Let C be a stable∞-category. Then there is a canonical
equivalence

Fun(Z≥0,C) ≃ C∆

Remark 4.3. In this remark, we explain the content of the above theorem as well
as its relation with the classical Dold–Kan correspondence.

First, for any filtered object D(0) →D(1) →D(2) → ⋯ in C, consider the shifted
graded objects

Ck ∶= Cofib(D(k − 1) →D(k))[−k]
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where we take D(−1) ∶= 0 for k = 0. For each k, the morphisms D(k−1) →D(k) →
D(k + 1) induce a fiber-cofiber sequence

Ck[k] → Cofib(D(k − 1) →D(k + 1)) → Ck+1[k + 1],

which corresponds to a morphism Ck+1 → Ck.
One can check (Exercise!) that in the homotopy cateogry hC, the composition

Ck+1 → Ck → Ck−1 is zero, hence we obtain a chain complex

⋯ → C2 → C1 → C0 → 0→ ⋯

in the additive category hC. Applying the classical functor DK, we obtain a simpli-
cial object in hC.

On the other hand, for any simplicial object A● in C, the functor C→ hC induces
a simplicial object in hC. Now the precise statement of Theorem 4.2 says if D(−)
corresponds to A● under the claimed equivalence, then the obtained simplicial objects
in hC are canonically identified.

Remark 4.4. In fact, the n-th term D(n) can be calculated as the colimit of the
k-skeleton of the simplicial object A●. However, since C is not an ordinary category,
one needs to be careful about the meaning of the k-skeleton of a simplicial object.
Nevertheless, this suggests that the colimit of the filtered object should be isomorphic
to the colimit of the entire simplicial object A●. In other words,

colim
n∈Z≥0

D(n) ≃ colim
∆op

A●.

This is indeed correct, see HA.1.2.4 for more details.

Remark 4.5. Suppose C is equipped with a t-structure. For any Z-filtered object
D(−), one can construct a spectral sequence in the abelian category C♡ such that
the E1-page is given by

Ep,q
1 = Hp+qCofib(D(p) →D(p + 1)).

Under certain conditions, this spectral sequence converges to

Hn(colim
m

D(m)).

Note that this provides a strategy to calculate homologies of the geometric realiza-
tions of simplicial objects in C. See HA.1.2.3 for more details.

Appendix A. Moore complexes and simplicial homotopy groups

A.1. For a pointed simplicial set X, one can construct a simplicial group G(X),
known as the Kan loop group construction, which models the loop construction for
topological spaces. We have

πn(X) ≃ Hn−1(NG(X))

which calculates the simplicial homotopy groups of X via the homology groups of
the Moore complex of the Kan loop G(X). Note that the construction N∗(−) makes
sense for nonabelian simplicial groups.

A.2. Suggested readings. [Kan58] (original), [GJ09, §V.7] (more recent).
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Appendix B. Monoidal Dold–Kan correspondence

B.1. Consider the symmetric monoidal structure on Ab given by tensor products
of abelian groups. It induces the following structures:

● A symmetric monoidal structure on Ch(Ab)≤0 given by graded tensor prod-
ucts.
● A symmetric monoidal structure on Ab∆ given by pointwise tensor prod-
ucts.

The Dold–Kan correspondence does not commute with these structures strictly.
Below is a list of what is known for the functor N ∶ Ab∆ → Ch(A)≥0.

(i) The functor N has a symmetric lax monoidal structure: for any A,B ∈ Ab∆,
there is a morphism, called the Eilenberg-Zilber map,

EZA,B ∶ N(A) ⊗N(B) → N(A⊗B)
compatible with the commutativity constraints.

(ii) The functor N has a oplax monoidal structure: for any A,B ∈ Ab∆, there
is a morphism, called the Alexander-Whitney map

AWA,B ∶ N(A⊗B) → N(A) ⊗N(B)
that is not compatible with the commutativity constraints.

(iii) The composition AWA,B ○ EZA,B is equal to the identity morphism, while
EZA,B ○AWA,B is only a chain homotopy equivalence.

B.2. Note that (ii) implies the inverse functor DK has a natural lax monoidal
structure. It follows that

Ch(Ab) τ≥0ÐÐ→ Ch(Ab)≥0 → Ab∆ → Kan

also has a natural lax monoidal structure. In particular, any dg-category C is also
enriched over Kan. Let C′ be the corresponding Kan-enriched category. We have a
canonical equivalence (HA.1.3.1.17)

N(C′) ≃ Ndg(C).

Exercise B.3. Using the above equivalence to deduce [Lecture 17, Proposition
2.16].

B.4. The failure of the Dold–Kan correspondence for being a monoidal adjunction
makes it non-trivial to compare the theories of

● connective dg-algebras
● simplicial associative algebras.

Although it is still possible to find a Quillen equivalence between the model cat-
egories of the above objects, the story becomes much subtler when we consider
connective commutative dg-algebras and simplicial commutative algebras. In fact,
in positive characteristic, these two theories are not equivalent, and there is no
reasonable model structure on the former. Moreover, the theory of simplicial com-
mutative algebras of Fp is not the same as that of E∞-HFp-spectra. This leads to
the bipartition between derived algebraic geometry and spectral algebraic geome-
try. For more information, see this mathoverflow question (in particular, see the
answers by Lurie and May).

B.5. Suggested readings. references in this nLab page.

https://mathoverflow.net/questions/118500/what-is-a-simplicial-commutative-ring-from-the-point-of-view-of-homotopy-theory?noredirect=1&lq=1
https://ncatlab.org/nlab/show/monoidal+Dold-Kan+correspondence
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