In this lecture, we define Cartesian and coCartesian fibrations between ∞ categories.

1. LOCALLY CARTESIAN ARROWS

1.1. Informally speaking, a Cartesian fibration is a functor $p: \mathcal{C} \to \mathcal{D}$ such that the fibers $\{\mathcal{C}_d\}_{d\in\mathcal{D}}$ depend contravariantly functorially in a homotopy coherent way. For any object $c' \in \mathcal{C}_{d'}$ and a morphism $g: d \to d'$ in the base \mathcal{D} , the corresponding functor $g^{\dagger}: \mathcal{C}_{d'} \to \mathcal{C}_d$ will send c' to an object $c \in \mathcal{C}_d$ equipped with a morphism $f: c \to c'$ in \mathcal{C} lying over g. We can depict the above discussion as the following diagram.

$$\begin{array}{ccc} c & \stackrel{f}{\longrightarrow} c' & & \in \mathcal{C} \\ & & & \downarrow^{p} \\ d & \stackrel{g}{\longrightarrow} d' & & \in \mathcal{D} \end{array}$$

The morphism f can be characterized by the following universal property.

Definition 1.2. Let $p: \mathcal{C} \to \mathcal{D}$ be an inner fibration between quasi-categories. We say a morphism $f: X \to Y$ in \mathcal{C} is locally p-Cartesian, or Cartesian over \mathcal{D} , if for every object X' in the naive¹ fiber $\mathcal{C}_{p(X)} \coloneqq \mathcal{C} \times_{\mathcal{D}} \{p(X)\}$, the following commutative square in Spc is Cartesian

We say p is a locally Cartesian fibration if for any $Y \in C$ and morphism $q: x \rightarrow Q$ p(Y) in \mathcal{D} , there exists a locally p-Cartesian morphism $f: X \to Y$ lying over q.

Dually, we say f is **locally** p-coCartesian if the corresponding morphism in $\mathcal{C}^{\mathsf{op}}$ is locally p-Cartesian. We say p is a locally coCartesian fibration if p^{op} is a locally Cartesian one.

Remark 1.3. Informally speaking, $f: X \to Y$ is locally p-Cartesian iff the following data are equivalent:

- morphisms X' → X in the fiber C_{p(X)};
 morphisms X' → Y in C lying over p(f).

Date: Nov. 26, 2024.

¹This means the fiber product in the ordinary category Set_{Δ} . Note that $\mathcal{C}_{p(X)}$ is a quasicategory because p is an inner fibration.

Remark 1.4. Strictly speaking, the commutative square (1.1) in Spc is well-defined up to homotopy. Nevertheless, being Cartesian is invariant under homotopy. Alternatively, we can say the corresponding square in hSpc, which is well-defined, is a homotopy pullback. Note that the right vertical map can be realized as a Kan fibration between Kan complexes (HTT.2.4.4.1):

 $\operatorname{Hom}_{\mathcal{C}}^{\mathsf{R}}(X',Y) \to \operatorname{Hom}_{\mathcal{D}}^{\mathsf{R}}(p(X'),p(Y)).$

Exercise 1.5. If f is an isomorphism, then f is locally p-Cartesian.

Exercise 1.6. If f is homotopic to f', then f is locally p-Cartesian iff f' is.

Warning 1.7. The naive fiber product $C_{p(X)} \coloneqq C \times_{\mathcal{D}} \{p(X)\}$ may not be a homotopy or ∞ -categorical fiber product.

Exercise 1.8. Show that $p: N_{\bullet}([1]) \to N_{\bullet}(\text{Isom})$ is an inner fibration whose naive fibers are all equivalent to Δ^0 , while whose homotopy fibers are all equivalent to Δ^1 .

Exercise 1.9. Consider the inner fibrations $p : N_{\bullet}([1]) \to N_{\bullet}(\text{Isom})$ and $p' : N_{\bullet}([1]) \to N_{\bullet}([0])$. Show that every edge in the source is locally p-Cartesian, while only degenerate edges are locally p'-Cartesian.

Warning 1.10. The above exercise implies Definition 1.2 is not invariant under categorical equivalences. Note however that this would not happen if $p: \mathcal{C} \to \mathcal{D}$ is a categorical fibration, because its naive fibers coincide with the homotopy fibers.

2. CARTESIAN ARROWS

2.1. The following exercise says *locally p*-Cartesian arrows may not be closed under compositions. Hence we need a stronger condition to make the fibers functorial.

Example 2.2. Consider the following map between posets

 $[1] \times [1] \rightarrow [2], (0,0) \mapsto 0, (0,1) \mapsto 0, (1,0) \mapsto 1, (1,1) \mapsto 2.$

Show that $p: N_{\bullet}([1] \times [1]) \rightarrow N_{\bullet}([2])$ is a locally Cartesian fibration, but locally p-Cartesian arrows are not closed under compositions.

Proposition 2.3 (HTT.2.4.2.7). Let $p: \mathcal{C} \to \mathcal{D}$ be a locally Cartesian fibration between quasi-categories and $f: X \to Y$ be a morphism in \mathcal{C} . The following conditions are equivalent:

(1) For any $X' \in \mathcal{C}$, the following commutative square

$$(2.1) \qquad \begin{array}{c} \mathsf{Maps}_{\mathcal{C}}(X',X) \xrightarrow{f \circ -} \mathsf{Maps}_{\mathcal{C}}(X',Y) \\ \downarrow \\ \mathsf{Maps}_{\mathcal{D}}(p(X'),p(X)) \xrightarrow{p(f)} \mathsf{Maps}_{\mathcal{D}}(p(X'),p(Y)). \end{array}$$

is Cartesian.

- (2) For any morphism $g: X' \to X$, g is locally p-Cartesian iff $f \circ g$ is locally p-Cartesian.
- (3) For any morphism $g: X' \to X$, if g is locally p-Cartesian, then $f \circ g$ is locally p-Cartesian.

Remark 2.4. Informally speaking, (1) means the following data are equivalent:

• morphisms $X' \to X$ in C;

• morphisms $X' \to Y$ in \mathcal{C} and a factorization of $p(X') \to p(Y)$ through p(X).

Definition 2.5. Let $p: C \to D$ be an inner fibration between quasi-categories and $f: X \to Y$ be a morphism in C. We say f is p-Cartesian, or Cartesian over D if it satisfies Condition (1) in Proposition 2.3. We say p is a Cartesian fibration if for any $Y \in C$ and edge $g: x \to p(Y)$ in D, there exists a p-Cartesian morphism in C lying over q.

Dually, we say f is p-coCartesian if the corresponding arrow in C^{op} is p^{op} -Cartesian. We say p is a coCartesian fibration if p^{op} is a Cartesian one.

Exercise 2.6. Let $p : \mathcal{C} \to \mathcal{D}$ be an inner fibration between quasi-categories and $f: X \to Y$ be a p-Cartesian morphism. For a morphism $g: X' \to X$, show that g is p-Cartesian iff $f \circ g$ is so.

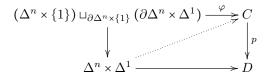
2.7. The following result characterize Cartesian arrows via lifting properties.

Proposition 2.8 (HTT.2.4.1.4, 2.4.1.8, 2.4.4.3). Let $p: \mathcal{C} \to \mathcal{D}$ be an inner fibration between quasi-categories and $f: X \to Y$ be a morphism in \mathcal{C} . Then the following conditions are equivalent:

- (1) The morphism f is p-Cartesian.
- (2) The lifting problem

has a solution whenever $n \ge 2$ and $\phi|_{\{n-1,n\}} = f$.

(3) The lifting problem



has a solution whenever $n \ge 1$ and $\varphi|_{\{n\}\times\Delta^1} = f$.

Remark 2.9. Joyal and Lurie used (2) to define Cartesian arrows in general simplicial sets.

2.10. The following exercises say Cartesian arrows are invariant under homotopies and categorical equivalences.

Exercise 2.11. Let f be a morphism in C such that p(f) is an isomorphism. Show that f is p-Cartesian iff it is an isomorphism.

Exercise 2.12. If f is homotopic to f', then f is p-Cartesian iff f' is.

Exercise 2.13. Suppose we have a commutative square of quasi-categories

such that r and s are equivalences. Then f in C is p-Cartesian iff r(f) is p'-Cartesian.

Definition 2.14. Let $p : C \to D$ be a functor between ∞ -categories. We say a morphism f in C is p-Cartesian if for any/all quasi-categorical realization $p : C \to D$, the corresponding morphism is p-Cartesian.

2.15. In fact, the notion of Cartesian fibrations is also invariant under categorical equivalences, as long as we restrict to **categorical fibrations**. To explain this, we need the following result, which follows from HTT.2.4.6.5.

Proposition 2.16. A Cartesian fibration between quasi-categories is a categorical fibration.

Exercise 2.17. Suppose we have a commutative square of quasi-categories

such that r and s are equivalences and p and p' are categorical fibrations. Show that p is a Cartesian fibration iff p' is so.

Definition 2.18. Let $p : C \to D$ be a functor between ∞ -categories. We say p is essentially a Cartesian fibration if it can be realized as a Cartesian fibration between quasi-categories.

Exercise 2.19. Let $p : C \to D$ be a functor between ∞ -categories. Show that p is essentially a Cartesian fibration iff for any quasi-categorical realization of p as a categorical fibrations $C \to D$, the corresponding functor is a Cartesian fibration between quasi-categories.

2.20. The following exercises explain the relations between Cartesian arrows and locally Cartesian arrows.

Exercise 2.21. Let $p: \mathcal{C} \to \mathcal{D}$ be an inner fibration between quasi-categories and $f: X \to Y$ be a morphism in \mathcal{C} . Show that f is locally p-Cartesian iff the corresponding morphism in $\mathcal{C} \times_{\mathcal{D}} \Delta^1$ is Cartesian over Δ^1 , where $\Delta^1 \to \mathcal{D}$ is given by p(f).

Exercise 2.22. Show that any p-Cartesian arrow is locally p-Cartesian.

Exercise 2.23. Show that p is a Cartesian fibration iff it is a locally Cartesian fibration such that locally Cartesian arrows are closed under compositions.

3. UNIQUENESS OF CARTESIAN ARROWS

Proposition 3.1. Let $p : C \to D$ be an inner fibration between quasi-categories. Then a morphism $f : X \to Y$ in C is locally p-Cartesian iff the corresponding object in

$$\mathcal{C}_{/Y} \underset{\mathcal{D}_{/p(Y)}}{\times} \{ p(f) \}$$

is final.

Sketch. First, one can show $\mathcal{C}_{/Y} \times_{\mathcal{D}_{/p(Y)}} \{p(f)\}$ is quasi-category (so that it makes sense to talk about final objects). Using Exercise 2.21, one can reduce to the case when $\mathcal{D} = \Delta^1$, p(X) = 0 and p(Y) = 1. One can identify

$$\mathcal{C}_{/f} \to \mathcal{C}_{/Y} \underset{\mathcal{D}_{/p(Y)}}{\times} \mathcal{D}_{/p(f)}$$

4

with

$$\left(\mathcal{C}_{/Y} \underset{\mathcal{D}_{/p(Y)}}{\times} \{p(f)\}\right)_{/f} \to \mathcal{C}_{/Y} \underset{\mathcal{D}_{/p(Y)}}{\times} \{p(f)\}.$$

Then the claim follows from the fact that $z \in \mathcal{E}$ is final iff $\mathcal{E}_{/z} \to \mathcal{E}$ is a trivial Kan fibration (Ker.02HF).

3.2. In particular, for fixed $Y \in C$ and $g: x \to p(Y)$, (locally) *p*-Cartesian liftings $X \to Y$ of g is essentially unique if exists.

4. RIGHT FIBRATIONS

Definition 4.1. We say a functor $p: C \to D$ is a **right fibration** between quasicategories if it is a Cartesian fibration such that any morphism in C is p-Cartesian. We say p is a **left fibration** if p^{op} is a right fibration.

Exercise 4.2. Let $p : C \to D$ be a Cartesian fibration between quasi-categories. Show that p is a right fibration iff each fiber $C_y, y \in D$ is a Kan complex.

Exercise 4.3. Let $p: C \rightarrow D$ be a morphism between simplicial sets such that D is a quasi-category. Show that p is a right fibration iff it satisfies the following right lifting properties for all $0 < i \le n$:

Dually, show that p is a left fibration iff it satisfies the above right lifting properties for all $0 \le i < n$.

Remark 4.4. Note that the above property makes sense when D is a general simplicial set. In fact, one can use it to define right fibrations between simplicial sets.

Exercise 4.5. Show that any Kan fibration is a right fibration.

5. EXAMPLES

Exercise 5.1. Let C and D be quasi-categories. Show that $C \times D \rightarrow D$ is both a Cartesian and coCartesian fibration, and an arrow is (co)Cartesian iff its image in C is an isomorphism.

Example 5.2 (HTT.2.1.2.2, 4.2.1.6). Let $u : K \to C$ be any diagram in a quasicategory C. Then the forgetful functors $C_{/u} \to C$ and $C^{/u}$ are right fibrations.

Example 5.3 (Ker.02VW). For any simplicial set C, let Arr(C) := Fun([1], C) be the simplicial set of arrows in C. If C is a quasi-category, so is Arr(C). The projection

$$ev_0 : Arr(C) \rightarrow C$$

is a Cartesian fibration while the projection

$$ev_1 : Arr(C) \rightarrow C$$

is a coCartesian fibration. A morphism in Arr(C) is ev_0 -Cartesian (resp. ev_1 coCartesian) iff ev_1 (resp. ev_0) sends it to an isomorphism. **Exercise 5.4.** Let C be a quasi-category and J, K be any simplicial sets. Show that the restriction functor

$$p: \operatorname{Fun}(J \star K, \mathsf{C}) \to \operatorname{Fun}(J, \mathsf{C})$$

is a Cartesian fibration while

$$q: \operatorname{Fun}(J \star K, \mathsf{C}) \to \operatorname{Fun}(K, \mathsf{C})$$

is a coCartesian fibration. Moreover, a morphism in $Fun(J \star K, C)$ is p-Cartesian (resp. q-coCartesian) iff q (resp p) sends it to an isomorphism. Hint: using the blunt join $J \diamond K$ to reduce to the previous example.

Example 5.5 (Ker.03JF). For any simplicial set C, let $\mathsf{TwArr}(C)$ be the simplicial set

$$\mathsf{TwArr}(C)_n \coloneqq \mathsf{Hom}_{\mathsf{Set}_{\Lambda}}(\mathsf{N}_{\bullet}(\lceil n \rceil^{\mathsf{op}} \star \lceil n \rceil), C).$$

If C is a quasi-category, so is TwArr(C), which is called the quasi-category of *twisted arrows* in C. The projection

$$\mathsf{TwArr}(C) \to C^{\mathsf{op}} \times C$$

induced by $[n]^{\mathsf{op}} \to [n]^{\mathsf{op}} \star [n] \leftarrow [n]$ is a left fibration. It follows that

 $\mathsf{TwArr}(C) \to C^{\mathsf{op}}, \, \mathsf{TwArr}(C) \to C$

are coCartesian fibrations.

Exercise 5.6. What are the coCartesian arrows for $\mathsf{TwArr}(C) \to C^{\mathsf{op}}$ and $\mathsf{TwArr}(C) \to C$?

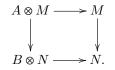
Exercise 5.7. What is $TwArr(C^{op})$?

Example 5.8 (Ker.01VG). Let $p: \mathcal{C} \to \mathcal{D}$ be a Cartesian fibration between quasicategories and K be any simplicial set. Then

$$p^{K}$$
: Fun $(K, \mathcal{C}) \rightarrow$ Fun (K, \mathcal{D})

is a Cartesian fibration and an arrow is p^{K} -Cartesian iff its value at any vertex $x \in K$ is p-Cartesian.

Exercise 5.9. Let Ring be the ordinary category of rings and LMod be the ordinary category of pairs (A, M) where A is a ring and M is a left A-module. A morphism $(A, M) \rightarrow (B, N)$ in LMod consists of a ring homomorphism $A \rightarrow B$ and a linear map $M \rightarrow N$ such that the following diagram commutes



Show that $\mathsf{LMod} \to \mathsf{Ring}$ is both a Cartesian and coCartesian fibration between ordinary categories.

APPENDIX A. LOCALLY CARTESIAN FIBRAITONS AND LAX FUNCTORS

Let ${\sf S}$ be an $\infty\text{-category.}$ There is a canonical equivalence between the following $(\infty,2)\text{-categories:}$

- The (∞, 2)-category of lax functors S^{op} → Cat_∞, where Cat_∞ is the (∞, 2)-category of (∞, 1)-categories.
- The $(\infty, 2)$ -category of locally Cartesian fibrations $C \rightarrow S$, where morphisms are functors defined over S that preserve Cartesian arrows over S.

A.1. Suggested readings. [Lur09].

References

[Lur09] Jacob Lurie. (∞ , 2)-categories and the Goodwillie calculus I. arXiv preprint arXiv:0905.0462, 2009.