LECTURE 20

In this lecture, for a (small) ∞ -category D, we explain a canonical equivalence between:

(i) the ∞ -category of Cartesian fibrations over D;

(ii) the ∞ -category of functors $\mathsf{D}^{\mathsf{op}} \to \mathsf{Cat}_{\infty}$.

The construction $(i) \Rightarrow (ii)$ is called **straightening**, while $(ii) \Rightarrow (i)$ is called **unstraightening**. For ordinary categories, the similar equivalence was proved by Grothendieck and known as the **Grothendieck construction**. For ∞ -categories, people call it the **Grothendieck–Lurie construction**

1. TRANSPORT FUNCTORS

1.1. In this section, we explain how to construct functors between fibers of a Cartesian fibration.

Let $p : \mathsf{C} \to [1]$ be a Cartesian fibration between ∞ -categories. Consider the ∞ -category of sections¹ of p:

$$Sect_{[1]}(C) \coloneqq Fun([1], C) \underset{Fun([1], [1])}{\times} \{Id\}$$

Let

$$\operatorname{Sect}_{[1]}^{\operatorname{Cart}}(\mathsf{C}) \subseteq \operatorname{Sect}_{[1]}(\mathsf{C})$$

be the full sub- ∞ -category whose objects are given by *p*-Cartesian arrows in C.

Proposition 1.2. Let $p : C \rightarrow [1]$ be a Cartesian fibration between ∞ -categories. Then the functor

$$\mathsf{ev}_1:\mathsf{Sect}^{\mathsf{Cart}}_{/[1]}(\mathsf{C}) o \mathsf{C}_1$$

is an equivalence between ∞ -categories.

Sketch. The functor is essentially surjective because there are enough *p*-Cartesian arrows. It remains to show it is fully faithful. For objects $x \xrightarrow{f} y$ and $x' \xrightarrow{f'} y'$ in $\mathsf{Sect}_{f(1)}^{\mathsf{Cart}}(\mathsf{C})$, we have

$$\mathsf{Maps}(f,f') \simeq \mathsf{Maps}_{\mathsf{C}_0}(x,x') \underset{\mathsf{Maps}_{\mathsf{C}}(x,y')}{\times} \mathsf{Maps}_{\mathsf{C}_1}(y,y').$$

Since f' is locally *p*-Cartesian, the functor $\mathsf{Maps}_{\mathsf{C}_0}(x, x') \to \mathsf{Maps}_{\mathsf{C}}(x, y')$ is an equivalence. It follows that the functor $\mathsf{Maps}(f, f') \to \mathsf{Maps}_{\mathsf{C}_1}(y, y')$ is an equivalence as desired.

Construction 1.3. Let $p : C \to D$ be a Cartesian fibration between ∞ -categories. By the above proposition, for any morphism $f : x \to y$ in D, we have an equivalence

$$\operatorname{Sect}_{[1]}^{\operatorname{Cart}}(\operatorname{C}_{\operatorname{D}} [1]) \xrightarrow{\simeq} \operatorname{C}_{y}$$

Date: Nov. 29, 2024.

¹There is no ambiguity for the fiber product below because $Fun([1], C) \rightarrow Fun([1], [1])$ is a categorical fibration.

where $[1] \rightarrow D$ is the functor given by f. By choosing an inverse of the above equivalence, we obtain a functor

$$C_y \xrightarrow{\simeq} \text{Sect}_{[1]}^{\text{Cart}} (C \times [1]) \xrightarrow{\text{ev}_0} C_x$$

We denote this functor by $f^{\dagger}: C_y \to C_x$, and call it the contravariant transport functor along f.

Dually, for a coCartesian fibration $p: C \to D$, we define the **covariant transport** functor $f_f: C_x \to C_y$.

1.4. By construction, f^{\dagger} is well-defined up to a constractible space of choices.

Exercise 1.5. Let $p : \mathsf{C} \to \mathsf{D}$ be a Cartesian fibration between ∞ -categories, and $f, f' : x \to y$ be morphisms in D that are homotopic to each other. Show that $f^{\dagger} \simeq (f')^{\dagger}$.

Exercise 1.6. Let $p : \mathsf{C} \to \mathsf{D}$ be a Cartesian fibration between ∞ -categories, and $x \xrightarrow{f} y \xrightarrow{g} z$ be a chain in D . Show that $f^{\dagger} \circ g^{\dagger} \simeq (g \circ f)^{\dagger}$.

Exercise 1.7. Note that the construction $f \mapsto f^{\dagger}$ makes sense for any locally Cartesian fibration $p: \mathcal{C} \to \mathcal{D}$ between quasi-categories. Show that in this setting, we have a canonical natural transformation $f^{\dagger} \circ g^{\dagger} \to (g \circ f)^{\dagger}$.

Exercise 1.8. Let $p: \mathsf{C} \to \mathsf{D}$ be a functor that is both a Cartesian and coCartesian fibration. For any morphism $f: x \to y$ in D , show that f_{\dagger} is left adjoint to f^{\dagger} .

1.9. By the above exercises, for any Cartesian fibration $p: C \rightarrow D$ between ∞ -categories, we have a canonial functor

$$\mathsf{D}^{\mathsf{op}} \to \mathsf{hCat}_{\infty}, \ x \mapsto \mathsf{C}_x, \ (x \xrightarrow{f} y) \mapsto f^{\dagger}.$$

Similarly, for any coCartesian fibration $p : C \to D$, we have a canonical functor $D \to hCat_{\infty}$.

2. Marked simplicial sets

2.1. Let $p: \mathsf{C} \to \mathsf{D}$ be a Cartesian fibration between ∞ -categories, we want to lift the above functor $\mathsf{D}^{\mathsf{op}} \to \mathsf{hCat}_{\infty}$ to a functor $\mathsf{D}^{\mathsf{op}} \to \mathsf{Cat}_{\infty}$. Moreover, we want such a construction to be functorial in p. To precisely describe our goal, we introduce following ∞ -categories.

Construction 2.2. For $D \in Cat_{\infty}$, let

$$Cart_{D} \subseteq (Cat_{\infty})_{D}$$

be the sub- ∞ -category such that:

- (i) Objects are Cartesian fibrations over D;
- (ii) Morphisms are functors defined over D that preserves Cartesian arrows.

Remark 2.3. More precisely, we realize $(Cat_{\infty})_{/D}$ as a quasi-category and define $Cart_{/D}$ to be the maximal simplicial subset with the prescribed 1-skeleton.

Warning 2.4. The embedding $Cart_{/D} \subseteq (Cat_{\infty})_{/D}$ is not fully faithful. Instead, it is 1-fully faithful, which means it induces fully faithful functors between the mapping ∞ -groupoids.

2.5. Our goal is to construct an equivalence

(2.1)
$$\operatorname{Cart}_{/\mathsf{D}} \simeq \operatorname{Fun}(\mathsf{D}^{\mathsf{op}}, \operatorname{Cat}_{\infty})$$

Recall the only two known constructions of Cat_{∞} are based on model categories. Namely, Cat_{∞} is equivalent to the ∞ -category underlying the model category $\mathsf{Set}^{\mathsf{Joyal}}_{\wedge},$ which can be constructed in the following equivalent ways:

- Invert categorical equivalences in Set_∆ in an ∞-categorical way.
 Enrich the full subcategory QCat ≃ (Set_∆^{Joyal})° over simplicial sets, and take the simplicial nerve functor \mathfrak{N}_{\bullet}

Hence the only reasonable strategy to construct the equivalence (2.1) is to realize it as a Quillen equivalence between model categories, whose underlying ∞ -categories are $Cart_{/D}$ and $Fun(D^{op}, Cat_{\infty})$.

2.6. Let us first seek a model for $Cart_{D}$. Realizing D as a quasi-category \mathcal{D} , one may want to find a model structure on $(Set_{\Delta})_{\mathcal{D}}$ that achieves the above goal. However, this hope is *not* reasonable because even if it has the correct bifibrant objects, i.e., Cartesian fibrations over \mathcal{D} , morphisms between these objects will be all functors defined over \mathcal{D} rather than those perserving Cartesian arrows. This suggests we need to modify $(Set_{\Delta})_{/D}$ such that morphisms automatically preserve some special arrows. This motivates the following definition.

Definition 2.7. Let Set^+_Δ be the ordinary category defined as follows.

- An object is a pair (X, E), where X is a simplicial set and $E \subseteq X_1$ is a subset of edges that contains all the degenerate edges.
- A morphism $(X, E) \rightarrow (X', E')$ is a morphism $X \rightarrow X'$ between simplicial sets that sends E into E'.

We call a pair (X, E) as above a marked simplicial set, and call edges in E the marked edges.

Example 2.8. For any simplicial set S,

- let S[#] ∈ Set⁺_∆ be the object such that all edges in S are marked;
 let S^b ∈ Set⁺_∆ be the object such that only degenerate edges in S are marked.

Exercise 2.9. Show that $\mathsf{Set}_{\Delta} \to \mathsf{Set}_{\Delta}^+$, $S \mapsto S^{\sharp}$ is right adjoint to the forgetful functor $\mathsf{oblv}:\mathsf{Set}_{\Delta}^+ \to \mathsf{Set}_{\Delta}$. Dually, $S \mapsto S^{\flat}$ is left adjoint to the forgetful functor.

Definition 2.10. Let S be a simplicial set. Define

$$(\operatorname{Set}_{\Delta}^{+})_{/S} \coloneqq (\operatorname{Set}_{\Delta}^{+})_{/S^{\sharp}},$$

and call it the category of marked simplicial sets over S.

Example 2.11. Let $X \to S$ be a Cartesian fibration between simplicial sets and $E \subseteq X_1$ be the subset of all Cartesian edges. Then $X^{\natural} := (X, E)$ is an object in $(\operatorname{Set}_{\Delta}^{+})_{/S}$.

2.12. We are going to construct a model structure on $(\mathsf{Set}^+_{\Delta})_{/S}$ such that

- cofibrations are monomorphisms;
- fibrant objects are X^{\natural} for Cartesian fibrations $X \to S$.

As explained in [Lecture 5, §4], these requirements determine the model structure as long as we know how to calculate the mapping spaces in the desired ∞ -category $(\mathsf{Set}^+_\Delta)_{/S}[W^{-1}].$

Construction 2.13. For $Y, Z \in Set^+_{\Delta}$, consider the simplicial set $Hom^{\sharp}(Y, Z)$ defined by the following universal property: for any $K \in Set_{\Delta}$,

 $\operatorname{Hom}_{\operatorname{Set}_{\Delta}}(K, \operatorname{Hom}^{\sharp}(Y, Z)) \simeq \operatorname{Hom}_{\operatorname{Set}_{\Delta}^{+}}(K^{\sharp} \times Y, Z).$

For $Y, Z \in (\mathsf{Set}^+_\Delta)_{/S}$, let

$$\operatorname{Hom}_{S}^{\sharp}(Y,Z) \subseteq \operatorname{Hom}^{\sharp}(Y,Z)$$

be the full simplicial subset containing those vertices given by morphisms $Y \rightarrow Z$ defined over S.

Exercise 2.14. Let $Y \in (\mathsf{Set}^+_\Delta)_{/S}$ and $Z \to S$ be a Cartesian fibration. Show that $\mathsf{Hom}^{\sharp}_S(Y, Z^{\natural})$ is a Kan complex. Convince yourself that this Kan complex models the space of functors $Y \to Z$ defined over S that send marked edges in Y into Cartesian arrows in Z.

Exercise 2.15. What would happen if we consider Hom^{\flat}(Y, Z^{\natural}) instead?

Definition 2.16. A morphism $Y \to Y'$ in $(Set^+_{\Delta})_{/S}$ is called a **Cartesian equivalence** if for any Cartesian fibration $Z \to S$, the functor

 $\operatorname{Hom}^{\sharp}_{S}(Y', Z^{\natural}) \to \operatorname{Hom}^{\sharp}_{S}(Y, Z^{\natural})$

is a weak equivalence between Kan complices.

Remark 2.17. By HTT.3.1.3.3, we obtain the same notion if using Hom^{\flat}(Y, Z^{\natural}) instead.

Theorem 2.18 (HTT.3.1.3.7, 3.1.4.1, 3.1.4.4). Let S be a simplicial set. There exists a left proper combinatorial model structure, called the **Cartesian model** structure, on $(Set^+_{\Delta})_{/S}$ such that

- (C) cofibrations are monomorphism;
- (W) weak equivalences are Cartesian equivalences.

Moreover,

- (1) An object is fibrant iff it is of the form X^{\natural} for some Cartesian fibration $X \rightarrow S$.
- (2) The model structure is compatible with the $\operatorname{Set}_{\Delta}^{\mathsf{KQ}}$ -enrichment² given by $\operatorname{Hom}^{\sharp}(-,-)$.

2.19. We denote the above model category by $(\operatorname{Set}_{\Delta}^{+})_{/S}^{\operatorname{Cart}}$, and the $\operatorname{Set}_{\Delta}^{\mathsf{KQ}}$ -enriched model category by $(\operatorname{Set}_{\Delta}^{+})_{/S}^{\operatorname{Cart}}$. Dually, we can define the coCartesian model structure on $(\operatorname{Set}_{\Delta}^{+})_{/S}$.

2.20. When $S = \Delta^0$, the Cartesian model structure coincides with the coCartesian one, hence we denote the obtained model category just by Set^+_Δ . As one would expect, the homotopy theory of Set^+_Δ is also equivalent to $\mathsf{Set}^{\mathsf{Joyal}}_\Delta$.

Theorem 2.21 (HTT.3.1.5.1). When $S = \Delta^0$, the adjunction

$$(-)^{\flat}: \mathsf{Set}^{\mathsf{Joyal}}_{\Delta} \xleftarrow{} \mathsf{Set}^{+}_{\Delta}: \mathsf{oblv}$$

is an Quillen equivalence.

Exercise 2.22. Let $(X, E) \in \mathsf{Set}_{\Delta}^+$ be a marked simplicial set. Show that its image in $\mathsf{Set}_{\Delta}^+[W^{-1}] \simeq \mathsf{Cat}_{\infty}$ is equivalent to $X[E^{-1}]$.

²See [Lecture 8, \S 2] for what this means.

Exercise 2.23. Let $X \to \Delta^1$ be a Cartesian fibration of quasi-categories. Show that

$$(\operatorname{Sel}_{\Delta}^{+})_{/\Delta^{1}} \to \operatorname{Sel}_{\Delta}^{+} \to \operatorname{Set}_{\Delta}^{+}[W^{-1}] \simeq \operatorname{Cat}_{\infty}$$

sends X^{\natural} to an ∞ -category equivalent to X_0 . Moreover, the image of $X_1^{\natural} \to X^{\natural}$ models the contravariant transport functor $X_1 \to X_0$. Here X_1^{\natural} has all the isomorphisms as marked.

Exercise 2.24. Let D be an ∞ -category realized as a quasi-category D. Show that the underlying ∞ -category of

 $(\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_{/\mathcal{D}}$

is equivalent to Cart_{/D}.

Exercise 2.25. Let D be an ∞ -category realized as a simplicial category D. Consider the projective model category³ of simplicial functors $\mathbb{D} \to \mathbb{Sel}^+_{\Delta}$:

$$\operatorname{Fun}(\mathbb{D}, \operatorname{Sel}_{\Delta}^+)_{\operatorname{proj}}$$

Show that the underlying ∞ -category of it is equivalent to $Fun(D, Cat_{\infty})$.

3. Straightening and unstraightening

3.1. Let D be an ∞ -category realized both as a quasi-category \mathcal{D} and a simplicial category \mathbb{D} . By the above exercises, to construct the desired equivalence, we only need to construct a Quillen equivalence

$$(\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_{/\mathcal{D}} \xrightarrow{} \mathsf{Fun}(\mathbb{D}^{\mathsf{op}}, \mathbb{Sel}^+_\Delta)_{\mathsf{proj}}.$$

By definition, we have a weak equivalence $\phi : \mathfrak{C}(\mathcal{D}) \to \mathbb{D}$ between simplicial categories.

Theorem 3.2 (HTT.3.2.0.1). Let \mathcal{D} be a simplicial set and \mathbb{D} be a simplicial category. For any functor $\phi : \mathfrak{C}(\mathcal{D}) \to \mathbb{D}$, there is a canonical Quillen adjunction

$$\mathsf{St}_{\phi}^{+} : (\mathsf{Set}_{\Delta}^{+})_{/\mathcal{D}}^{\mathsf{Cart}} \longleftrightarrow \mathsf{Fun}(\mathbb{D}^{\mathsf{op}}, \mathbb{Sel}_{\Delta}^{+})_{\mathsf{proj}} : \mathsf{Un}_{\phi}^{+},$$

which is a Quillen equivalence if ϕ is a weak equivalence.

Corollary 3.3. Let D be any ∞ -category. There is a canonical equivalence

$$Cart_{D} \simeq Fun(D^{op}, Cat_{\infty}).$$

3.4. Let us explain the main ideas in the construction of the functor St_{ϕ}^+ . Let us first treat the case when $\mathbb{D} = \mathfrak{C}(\mathcal{D})$.

For a marked simplicial set $X \in (\mathsf{Set}^+_\Delta)_{/\mathcal{D}}$ over \mathcal{D} , we wish to construct a simplicial functor

$$F: \mathfrak{C}(\mathcal{D})^{\mathsf{op}} \to \mathbb{Sel}^+_{\Lambda}$$

such that F(d) is weak equivalent to X_d for any object d in \mathcal{D} (viewed as an object in $\mathfrak{C}(\mathcal{D})$). The naive construction $d \mapsto X_d$ would not work because it is impossible to work out the functorialities. Instead, Exercise 2.23, suggests that

F(d) should encode the information of X over all possible arrows $d \rightarrow d'$.

³See [Lecture 8, §2] for what this means.

LECTURE 20

For instance, we want any Cartesian arrow in X lying over $d \rightarrow d'$ to be a marked edge in F(d).

Suppose we find a way to achieve the above purpose, we would obtain a morphism $F(d') \to F(d)$ which models the contravariant transport functor along $d \to d'$. However, to get the homotopy coherent composition laws, we realize that

F(d) should encode the information of X over all possible chains $d \rightarrow d' \rightarrow d'' \rightarrow \cdots$

In other words, we want vertices in F(d) to be chains $x_0 \to x_1 \to \cdots x_n$ with $x_0 \in X_d$, such that refinements of chains can be encoded as edges in F(d). The following construction provides a way to realize this idea.

Construction 3.5. Let $p: X \to D$ be any simplicial set over D. Define \mathbb{D}_X to be the following pushout in Cat_{Δ} :

Consider the functor

$$\operatorname{St}_{\phi} X : \mathbb{D}^{\operatorname{op}} \to \operatorname{Sel}_{\Delta}, \ d \mapsto \operatorname{Hom}_{\mathbb{D}_X}(d, \star).$$

We call it the **straightening** of X respect to ϕ .

Construction 3.6. Let $p: X \to D$ be a marked simplicial set over D. For a marked edge $x \to x'$ over $d \to d'$, consider the 2-simplex $\Delta^2 \to X^{\triangleright}$, $0 \mapsto x$, $1 \mapsto x'$, $2 \mapsto *$. The functor

$$\mathfrak{C}(\Delta^2) \to \mathfrak{C}(X^{\triangleright}) \to \mathfrak{C}(\mathbb{D}_X)$$

induces a morphism between simplicial sets

$$\Delta^1 \simeq \operatorname{Hom}_{\mathfrak{C}(\Delta^2)}(0,2) \to \operatorname{Hom}_{\mathfrak{C}(\mathbb{D}_X)}(d,*) \eqqcolon \operatorname{St}_{\phi}X(d).$$

We declare any edge in $St_{\phi}X(d)$ obtained as above as special, and define the marked simplcial set

$$\operatorname{St}_{\phi}^{+}X(d) \coloneqq (\operatorname{St}_{\phi}X(d), E_d)$$

such that $\{E_d\}$ is the smallest collection of sets containing all special edges and depend functorially on d. The obtained functor

$$\operatorname{St}_{\phi}^{+}X: \mathbb{D}^{\operatorname{op}} \to \operatorname{Sel}_{\Delta}^{+}$$

is compatible with simplicial enrichements and depends functorially in X. This gives the desired functor

$$\operatorname{St}_{\phi}^{+} : (\operatorname{Set}_{\Delta}^{+})_{/\mathcal{D}}^{\operatorname{Cart}} \to \operatorname{Fun}(\mathbb{D}^{\operatorname{op}}, \operatorname{Sel}_{\Delta}^{+})_{\operatorname{proj}}$$

 $\mathbf{6}$

LECTURE 20

4. Base-change of Cartesian fibrations

Proposition 4.1 (HTT.3.2.1.4). For i = 0, 1, let \mathcal{D}_i be a simplicial set and \mathbb{D}_i be a simplicial category. Suppose we have the following commutative diagram in Cat_{Δ} :

$$\begin{array}{c} \mathfrak{C}(\mathcal{D}_1) \xrightarrow{\phi_1} \mathbb{D}_1 \\ & \downarrow \mathfrak{C}(F) \\ \mathfrak{C}(\mathcal{D}_2) \xrightarrow{\phi_2} \mathbb{D}_2. \end{array}$$

Then we have the following commutative diagram of left Quillen functors

$$\begin{array}{ccc} (\operatorname{Set}_{\Delta}^{+})_{/\mathcal{D}_{1}}^{\operatorname{Cart}} & \xrightarrow{\operatorname{St}_{\phi_{1}}^{+}} \operatorname{Fun}(\mathbb{D}_{1}^{\operatorname{op}}, \operatorname{Selt}_{\Delta}^{+})_{\operatorname{proj}} \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ (\operatorname{Set}_{\Delta}^{+})_{/\mathcal{D}_{2}}^{\operatorname{Cart}} & \xrightarrow{\operatorname{St}_{\phi_{2}}^{+}} \operatorname{Fun}(\mathbb{D}_{2}^{\operatorname{op}}, \operatorname{Selt}_{\Delta}^{+})_{\operatorname{proj}} \end{array}$$

and similarly for their right adjoints:

$$\begin{array}{c} (\operatorname{Set}_{\Delta}^{+})_{/\mathcal{D}_{1}}^{\operatorname{Cart}} \xleftarrow{} \operatorname{Fun}(\mathbb{D}_{1}^{\operatorname{op}}, \operatorname{Sel}_{\Delta}^{+})_{\operatorname{proj}} \\ \\ \xrightarrow{} \times_{\mathcal{D}_{2}} \mathcal{D}_{1} & & \\ (\operatorname{Set}_{\Delta}^{+})_{/\mathcal{D}_{2}}^{\operatorname{Cart}} \xleftarrow{} \operatorname{Fun}(\mathbb{D}_{2}^{\operatorname{op}}, \operatorname{Sel}_{\Delta}^{+})_{\operatorname{proj}}. \end{array}$$

Corollary 4.2. Let $F : D_1 \to D_2$ be a functor between ∞ -categories. There is a canonical commutative diagram

$$\begin{array}{c|c} \mathsf{Cart}_{/\mathsf{D}_{1}} \prec & \mathsf{Fun}(\mathsf{D}_{1}^{\mathsf{op}},\mathsf{Cat}_{\infty}) \\ \hline \\ \neg \times_{\mathsf{D}_{2}}\mathsf{D}_{1} & & \neg \circ \mathsf{F}^{\mathsf{op}} \\ & & & & \\ \mathsf{Cart}_{/\mathsf{D}_{2}} \prec & \mathsf{Fun}(\mathsf{D}_{2}^{\mathsf{op}},\mathsf{Cat}_{\infty}). \end{array}$$

5. Applications

5.1. The theory of Cartesian fibrations, equipped with the Grothendieck–Lurie construction, is extremely powerful. Below are some examples.

Example 5.2. For any ∞ -category D, the Cartesian fibration

$$ev_0: Fun(\Delta^1, D) \rightarrow D$$

corresponds to a functor $D^{op} \to Cat_{\infty}$, whose value at each $d \in D$ is equivalent to $D_{d/}$. This provides the functoriality for the (co)slice construction.

Example 5.3. For any functor $F : C \to D$ between ∞ -categories. One can show

$$\mathsf{ev}_0:\mathsf{Fun}(\Delta^1,\mathsf{D})\underset{\mathsf{Fun}(\{1\},\mathsf{D})}{\times}\mathsf{C} o\mathsf{D},$$

is a Cartesian fibration, which gives a functor $\mathsf{D}^{\mathsf{op}} \to \mathsf{Cat}_{\infty}$ whose value at $d \in \mathsf{D}$ is equivalent to $\mathsf{C} \times_{\mathsf{D}} \mathsf{D}_{d/}$. This fibration is used in the proof of Quillen's Theorem A.

Exercise 5.4. Let $F : \mathcal{C} \to \mathcal{D}$ be any categorical fibration between quasi-categories. Show that the morphism

$$\mathcal{C}^{\flat} \to (\operatorname{Fun}(\Delta^1, \mathcal{D}) \underset{\mathcal{D}}{\times} \mathcal{C})^{\flat}$$

induced by $\mathcal{D} \to \mathsf{Fun}(\Delta^1, \mathcal{D}), d \mapsto \mathsf{id}_d$, is a fibrant replacement in $(\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_{/\mathcal{D}}$.

Example 5.5. Let C be an ∞ -category. The left fibration

$$\mathsf{TwArr}(\mathsf{C}) \to \mathsf{C}^{\mathsf{op}} \times \mathsf{C}$$

corresponds to a functor $C^{op} \times C \to Cat_{\infty}$ that sends (x, y) to an ∞ -groupoid equivalent to $Maps_{C}(x, y)$.

Exercise 5.6. Let $F : D \to Pr^{\mathsf{L}}$ be a functor. The composition

$$D \rightarrow Pr^{L} \rightarrow \widehat{Cat}_{\infty}$$

corresponds to a (not necessarilly small) coCartesian fibration $E \rightarrow D$. Show that this is also a Cartesian fibration, and the corresponding functor $D^{op} \rightarrow \widehat{Cat}_{\infty}$ factors through Pr^{R} .

5.7. By the Grothendieck–Lurie construction, for any simplicial set S, a diagram $u: S^{op} \rightarrow Cat_{\infty}$ corresponds to a Cartesian fibration $X \rightarrow S$ between simplicial sets as follows:

• Use the equivalence $\mathsf{Cat}_{\infty} \simeq \mathfrak{N}((\mathsf{Set}_{\Delta}^+)^\circ)$ to translate u to a functor

$$\mathfrak{C}(S^{\mathsf{op}}) \to (\mathbb{Sel}^+_{\Lambda})^\circ$$

- Find a fibrant replacement and apply the unstraightening functor to obtain a fibrant object in Cart_{/S}.
- Let $X \to S$ be the Cartesian fibration corresponding to this fibrant object.

Proposition 5.8 (HTT.3.3.3). Let $u: S^{op} \to Cat_{\infty}$ be a diagram of ∞ -categories corresponding to a Cartesian fibration $p: X \to S$. Then the limit of u can be identified with the quasi-category of Cartesian sections of p:

$$\lim u \simeq \operatorname{Sect}_{S}^{\operatorname{Cart}}(X)$$

Proposition 5.9 (HTT.3.3.4). Let $u: S \to \mathsf{Cat}_{\infty}$ be a diagram of ∞ -categories corresponding to a coCartesian fibration $p: X \to S$. Then the colimit of u can be modelled by the marked simplicial set X^{\natural} , where marked edges are p-coCartesian ones:

$$\operatorname{colim} u \simeq X^{\natural}$$
.

APPENDIX A. DUAL AND CONJUGATE FIBRATIONS

A.1. Let $F : S \to \mathsf{Cat}_{\infty}$ be a diagram of ∞ -categories. We can construct the following fibrations:

- (i) The Cartesian fibration over S^{op} corresponding to F;
- (ii) The coCartesian fibration over S corresponding to F;
- (iii) The Cartesian fibration over S^{op} corresponding to $op \circ F$;
- (iv) The coCartesian fibration over S corresponding to $\mathsf{op} \circ F$.

Exercise A.2. Describe how to construct one of the above fibrations directly from another one.

A.3. Suggested readings. Ker.04C0.

8