LECTURE 20

In this lecture, for a (small) ∞ -category D, we explain a canonical equivalence between:

- (i) the ∞ -category of Cartesian fibrations over D;
- (ii) the $\infty\text{-category}$ of functors $\mathsf{D}^\text{op}\to\mathsf{Cat}_\infty.$

The construction (i)⇒(ii) is called **straightening**, while (ii)⇒(i) is called **un**straightening. For ordinary categories, the similar equivalence was proved by Grothendieck and known as the Grothendieck construction. For ∞ -categories, people call it the Grothendieck–Lurie construction

1. Transport functors

1.1. In this section, we explain how to construct functors between fibers of a Cartesian fibration.

Let $p: C → [1]$ be a Cartesian fibration between ∞ -categories. Consider the ∞ -category of sections^{[1](#page-0-0)} of p:

$$
{\sf Sect}_{/[1]}(C) \coloneqq \mathsf{Fun}([1], C) \underset{\mathsf{Fun}([1],[1])}{\times} \{ \mathsf{Id} \}.
$$

Let

$$
\mathsf{Sect}_{/[1]}^{\mathsf{Cart}}(\mathsf{C}) \subseteq \mathsf{Sect}_{/[1]}(\mathsf{C})
$$

be the full sub-∞-category whose objects are given by p-Cartesian arrows in C.

Proposition 1.2. Let $p : C \rightarrow [1]$ be a Cartesian fibration between ∞ -categories. Then the functor

$$
\mathrm{ev}_1 : \mathsf{Sect}_{/[1]}^{\mathsf{Cart}}(\mathsf{C}) \to \mathsf{C}_1
$$

is an equivalence between ∞ -categories.

Sketch. The functor is essentially surjective because there are enough p -Cartesian arrows. It remains to show it is fully faithful. For objects $x \xrightarrow{f} y$ and $x' \xrightarrow{f'} y'$ in $Sect_{/[1]}^{Cart}(C)$, we have

$$
\mathsf{Maps}(f, f') \simeq \mathsf{Maps}_{\mathsf{C}_0}(x, x') \underset{\mathsf{Maps}_{\mathsf{C}}(x, y')}{\times} \mathsf{Maps}_{\mathsf{C}_1}(y, y').
$$

Since f' is locally p-Cartesian, the functor $\text{Maps}_C(x, x') \to \text{Maps}_C(x, y')$ is an equivalence. It follows that the functor $\mathsf{Maps}(f, f') \to \mathsf{Maps}_{C_1}(y, y')$ is an equivalence as desired.

Construction 1.3. Let $p : \mathsf{C} \to \mathsf{D}$ be a Cartesian fibration between ∞ -categories. By the above proposition, for any morphism $f: x \rightarrow y$ in D, we have an equivalence

$$
\mathsf{Sect}^{\mathsf{Cart}}_{[1]}(\mathsf{C} \underset{\mathsf{D}}{\times} [1]) \stackrel{\simeq}{\to} \mathsf{C}_y,
$$

Date: Nov. 29, 2024.

¹There is no ambiguity for the fiber product below because $\text{Fun}([1], \mathsf{C}) \to \text{Fun}([1], [1])$ is a categorical fibration.

where $[1] \rightarrow D$ is the functor given by f. By choosing an inverse of the above equivalence, we obtain a functor

$$
\mathsf{C}_y\xrightarrow{\simeq}\mathsf{Sect}^{\mathsf{Cart}}_{[1]}(\mathsf{C}\underset{\mathsf{D}}{\times}[1])\xrightarrow{\mathsf{ev}_0}\mathsf{C}_x.
$$

We denote this functor by $f^{\dagger}: \mathsf{C}_y \to \mathsf{C}_x$, and call it the **contravariant transport** functor along f.

Dually, for a coCartesian fibration $p: C \to D$, we define the **covariant transport** functor $f_i : C_x \to C_y$.

1.4. By construction, f^{\dagger} is well-defined up to a constractible space of choices.

Exercise 1.5. Let $p: \mathsf{C} \to \mathsf{D}$ be a Cartesian fibration between ∞ -categories, and $f, f' : x \to y$ be morphisms in D that are homotopic to each other. Show that $f^{\dagger} \simeq (f')^{\dagger}$.

Exercise 1.6. Let $p: C \to D$ be a Cartesian fibration between ∞ -categories, and $x \xrightarrow{f} y \xrightarrow{g} z$ be a chain in D. Show that $f^{\dagger} \circ g^{\dagger} \simeq (g \circ f)^{\dagger}$.

Exercise 1.7. Note that the construction $f \mapsto f^{\dagger}$ makes sense for any locally Cartesian fibration $p: \mathcal{C} \to \mathcal{D}$ between quasi-categories. Show that in this setting, we have a canonical natural transformation $f^{\dagger} \circ g^{\dagger} \to (g \circ f)^{\dagger}$.

Exercise 1.8. Let $p: C \to D$ be a functor that is both a Cartesian and coCartesian fibration. For any morphism $f: x \to y$ in D, show that f_i is left adjoint to f^{\dagger} .

1.9. By the above exercises, for any Cartesian fibration $p : C \to D$ between ∞ categories, we have a canonial functor

$$
\mathsf{D}^{\mathsf{op}} \to \mathsf{hCat}_{\infty}, \ x \mapsto \mathsf{C}_x, \ (x \xrightarrow{f} y) \mapsto f^{\dagger}.
$$

Similarly, for any coCartesian fibration $p : C \rightarrow D$, we have a canonical functor $D \rightarrow hCat_{\infty}$.

2. Marked simplicial sets

2.1. Let $p: C \to D$ be a Cartesian fibration between ∞ -categories, we want to lift the above functor $D^{\text{op}} \to h\text{Cat}_{\infty}$ to a functor $D^{\text{op}} \to \text{Cat}_{\infty}$. Moreover, we want such a construction to be functorial in p . To precisely describe our goal, we introduce following ∞-categories.

Construction 2.2. For D \in Cat_∞, let

$$
\mathsf{Cart}_{/D} \subseteq (\mathsf{Cat}_{\infty})_{/D}
$$

be the sub- ∞ -category such that:

- (i) Objects are Cartesian fibrations over D;
- (ii) Morphisms are functors defined over D that preserves Cartesian arrows.

Remark 2.3. More precisely, we realize $(\text{Cat}_{\infty})_{p}$ as a quasi-category and define $Cart_{\text{ID}}$ to be the maximal simplicial subset with the prescribed 1-skeleton.

Warning 2.4. The embedding Cart_{/D} ⊆ (Cat_∞)_{/D} is not fully faithful. Instead, it is 1-fully faithful, which means it induces fully faithful functors between the mapping ∞ -groupoids.

2.5. Our goal is to construct an equivalence

$$
\mathsf{Cart}_{/D} \simeq \mathsf{Fun}(D^\mathrm{op}, \mathsf{Cat}_\infty).
$$

Recall the only two known constructions of Cat_{∞} are based on model categories. Namely, Cat_{∞} is equivalent to the ∞ -category underlying the model category $\mathsf{Set}_{\Delta}^{\mathsf{Joyal}}$, which can be constructed in the following equivalent ways:

- ● Invert categorical equivalences in Set[∆] in an ∞-categorical way.
- Enrich the full subcategory QCat ≃ (Set^{Joyal})[°] over simplicial sets, and take the simplicial nerve functor \mathfrak{N}_{\bullet} .

Hence the only reasonable strategy to construct the equivalence [\(2.1\)](#page-2-0) is to realize it as a Quillen equivalence between model categories, whose underlying ∞ -categories are $\mathsf{Cart}_{/D}$ and $\mathsf{Fun}(\mathsf{D}^\mathsf{op}, \mathsf{Cat}_\infty)$.

2.6. Let us first seek a model for $Cart_{D}$. Realizing D as a quasi-category D, one may want to find a model structure on $(\text{Set}_{\Delta})_{/D}$ that achieves the above goal. However, this hope is not reasonable because even if it has the correct bifibrant objects, i.e., Cartesian fibrations over D , morphisms between these objects will be all functors defined over $\mathcal D$ rather than those perserving Cartesian arrows. This suggests we need to modify $\left(\mathsf{Set}_{\Delta}\right)_{\mathsf{D}}$ such that morphisms automatically preserve some special arrows. This motivates the following definition.

Definition 2.7. Let Set^{\dagger}_{Δ} be the ordinary category defined as follows.

- An object is a pair (X, E) , where X is a simplicial set and $E \subseteq X_1$ is a subset of edges that contains all the degenerate edges.
- A morphism $(X, E) \to (X', E')$ is a morphism $X \to X'$ between simplicial sets that sends E into E'.

We call a pair (X, E) as above a **marked simplicial set**, and call edges in E the marked edges.

Example 2.8. For any simplicial set S,

- let S^{\sharp} \in Set $_{\Delta}^{\star}$ be the object such that all edges in S are marked;
- let S^{\flat} \in Set $_{\Delta}^{+}$ be the object such that only degenerate edges in S are marked.

Exercise 2.9. Show that $\text{Set}_{\Delta}^{\star} \to \text{Set}_{\Delta}^{\star}$, $S \to S^{\sharp}$ is right adjoint to the forgetful $functor$ oblv : $Set^{\dagger}_{\Delta} \rightarrow Set_{\Delta}$. $Dually, S \mapsto S^{\dagger}$ is left adjoint to the forgetful functor.

Definition 2.10. Let S be a simplicial set. Define

$$
(\mathsf{Set}_{\Delta}^{\mathsf{+}})_{/S} \coloneqq (\mathsf{Set}_{\Delta}^{\mathsf{+}})_{/S^{\sharp}},
$$

and call it the category of **marked simplicial sets over** S.

Example 2.11. Let $X \rightarrow S$ be a Cartesian fibration between simplicial sets and $E \subseteq X_1$ be the subset of all Cartesian edges. Then $X^{\natural} \coloneqq (X, E)$ is an object in $(\mathsf{Set}^+_\Delta)_{/S}$.

2.12. We are going to construct a model structure on $(\mathsf{Set}^{\dagger}_{\Delta})_{/S}$ such that

- cofibrations are monomorphisms;
- fibrant objects are X^{\dagger} for Cartesian fibrations $X \to S$.

As explained in [Lecture 5, §4], these requirements determine the model structure as long as we know how to calculate the mapping spaces in the desired ∞ -category $(\mathsf{Set}^+_\Delta)_{/S}[W^{-1}].$

Construction 2.13. For $Y, Z \in \mathsf{Set}^{\dagger}_{\Delta}$, consider the simplicial set Hom[#] (Y, Z) defined by the following universal property: for any $K \in \mathsf{Set}_{\Delta}$,

 $\mathsf{Hom}_{\mathsf{Set}_\Delta}(K, \mathsf{Hom}^\sharp(Y, Z)) \simeq \mathsf{Hom}_{\mathsf{Set}_\Delta^{\sharp}}(K^\sharp \times Y, Z).$

For $Y, Z \in (\mathsf{Set}^+_\Delta)_{/S}$, *let*

$$
\mathsf{Hom}^{\mathbf{1}}_{S}(Y,Z) \subseteq \mathsf{Hom}^{\mathbf{1}}(Y,Z)
$$

be the full simplicial subset containing those vertices given by morphisms $Y \rightarrow Z$ defined over S.

Exercise 2.14. Let $Y \in (\mathsf{Set}_{\Delta}^{\dagger})_{/S}$ and $Z \rightarrow S$ be a Cartesian fibration. Show that $\text{Hom}_{S}^{L}(Y, Z^{\natural})$ is a Kan complex. Convince yourself that this Kan complex models the space of functors $Y \rightarrow Z$ defined over S that send marked edges in Y into Cartesian arrows in Z.

Exercise 2.15. What would happen if we consider $\text{Hom}^{\flat}(Y, Z^{\natural})$ instead?

Definition 2.16. A morphism $Y \to Y'$ in $(\mathsf{Set}^{\dagger}_{\Delta})_{S}$ is called a **Cartesian equivalence** if for any Cartesian fibration $Z \rightarrow S$, the functor

 $\mathsf{Hom}^{\mathbb{I}}_{S}(Y', Z^{\mathbb{I}}) \to \mathsf{Hom}^{\mathbb{I}}_{S}(Y, Z^{\mathbb{I}})$

is a weak equivalence between Kan complices.

Remark 2.17. By HTT.3.1.3.3, we obtain the same notion if using $\text{Hom}^{\flat}(Y, Z^{\natural})$ instead.

Theorem 2.18 (HTT.3.1.3.7, 3.1.4.1, 3.1.4.4). Let S be a simplicial set. There exists a left proper combinatorial model structure, called the Cartesian model structure, on $(\textsf{Set}^+_\Delta)_{/S}$ such that

- (C) cofibrations are monomorphism;
- (W) weak equivalences are Cartesian equivalences.

Moreover,

- (1) An object is fibrant iff it is of the form X^{\natural} for some Cartesian fibration $X \rightarrow S$.
- ([2](#page-3-0)) The model structure is compatible with the $\mathsf{Set}^{\mathsf{kQ}}_{\Delta}$ -enrichment² given by $\mathsf{Hom}^{\sharp}(-,-).$

2.19. We denote the above model category by $(\mathsf{Set}_{\Delta}^{\dagger})^{\mathsf{Cart}}_{/S}$, and the $\mathsf{Set}_{\Delta}^{\mathsf{KQ}}$ -enriched model category by $(\mathcal{S}et^+_{\Delta})^{\text{Cart}}_{/S}$. Dually, we can define the coCartesian model structure on $(\mathsf{Set}^+_\Delta)_{/S}$.

2.20. When $S = \Delta^0$, the Cartesian model structure coincides with the coCartesian one, hence we denote the obtained model category just by Set^{\dagger}_{Δ} . As one would expect, the homotopy theory of $\mathsf{Set}^{\mathsf{+}}_{\Delta}$ is also equivalent to $\mathsf{Set}^{\mathsf{Joyal}}_{\Delta}$.

Theorem 2.21 (HTT.3.1.5.1). When $S = \Delta^0$, the adjunction

$$
(-)^{\flat} : \mathsf{Set}_{\Delta}^{\mathsf{Joyal}} \xrightarrow{\longrightarrow} \mathsf{Set}_{\Delta}^{+} : \mathsf{oblv}
$$

is an Quillen equivalence.

Exercise 2.22. Let $(X, E) \in \text{Set}^+_{\Delta}$ be a marked simplicial set. Show that its image *in* Set^{ι}_∆[*W*⁻¹] ≃ Cat_∞ *is equivalent to X*[*E*⁻¹].

²See [Lecture 8, $\S2$] for what this means.

Exercise 2.23. Let $X \to \Delta^1$ be a Cartesian fibration of quasi-categories. Show that

$$
(\mathbb{S}\mathrm{et}^+_\Delta)_{/\Delta^1} \to \mathbb{S}\mathrm{et}^+_\Delta \to \mathsf{Set}^+_\Delta \bigl[W^{-1}\bigr] \simeq \mathsf{Cat}_\infty
$$

sends X^{\natural} to an ∞ -category equivalent to X_0 . Moreover, the image of $X_1^{\natural} \to X^{\natural}$ models the contravariant transport functor $X_1 \rightarrow X_0$. Here X_1^{\natural} has all the isomorphisms as marked.

Exercise 2.24. Let D be an ∞ -category realized as a quasi-category D. Show that the underlying ∞-category of

> $(\mathsf{Set}^+_\Delta)^\mathsf{Cart}_\mathcal{D}$ μ

is equivalent to $Cart_{/D}$.

Exercise 2.25. Let D be an ∞ -category realized as a simplicial category D. Con-sider the projective model category^{[3](#page-4-0)} of simplicial functors $\mathbb{D} \to \mathbb{S} \mathbb{e} \mathbb{L}^+_{\Delta}$:

$$
\mathsf{Fun}(\mathbb{D}, \mathbb{S}\mathrm{el}^+_\Delta)_{\mathsf{proj}}.
$$

Show that the underlying ∞ -category of it is equivalent to Fun(D, Cat_{∞}).

3. Straightening and unstraightening

3.1. Let D be an ∞ -category realized both as a quasi-category D and a simplicial category D. By the above exercises, to construct the desired equivalence, we only need to construct a Quillen equivalence

$$
(\mathsf{Set}_{\Delta}^{\ast})^{\mathsf{Cart}}_{/\mathcal{D}} \xrightarrow{\longrightarrow} \mathsf{Fun}(\mathbb{D}^{\mathsf{op}}, \mathbb{S} \mathbb{e} \mathbb{L}_{\Delta}^{\ast})_{\mathsf{proj}}.
$$

By definition, we have a weak equivalence $\phi : \mathfrak{C}(\mathcal{D}) \to \mathbb{D}$ between simplicial categories.

Theorem 3.2 (HTT.3.2.0.1). Let D be a simplicial set and D be a simplicial category. For any functor $\phi : \mathfrak{C}(\mathcal{D}) \to \mathbb{D}$, there is a canonical Quillen adjunction

$$
\mathsf{St}^+_{\phi} : (\mathsf{Set}^+_{\Delta})^\mathsf{Cart}_\mathcal{D} \Longleftrightarrow \mathsf{Fun}(\mathbb{D}^\mathsf{op}, \mathbb{S} \mathbb{e} \mathbb{L}^+_{\Delta})_{\mathsf{proj}} : \mathsf{Un}^+_{\phi},
$$

which is a Quillen equivalence if ϕ is a weak equivalence.

Corollary 3.3. Let D be any ∞ -category. There is a canonical equivalence

$$
\mathsf{Cart}_{/D} \simeq \mathsf{Fun}(D^\mathsf{op}, \mathsf{Cat}_\infty).
$$

3.4. Let us explain the main ideas in the construction of the functor St^+_{ϕ} . Let us first treat the case when $\mathbb{D} = \mathfrak{C}(\mathcal{D})$.

For a marked simplicial set $X \in (\mathsf{Set}^+_\Delta)_{/\mathcal{D}}$ over $\mathcal{D},$ we wish to construct a simplicial functor

$$
F: \mathfrak{C}(\mathcal{D})^{\mathrm{op}} \to \mathbb{S} \mathfrak{E}^+_\Delta
$$

such that $F(d)$ is weak equivalent to X_d for any object d in D (viewed as an object in $\mathfrak{C}(\mathcal{D})$. The naive construction $d \mapsto X_d$ would not work because it is impossible to work out the functorialities. Instead, Exercise [2.23,](#page-4-1) suggests that

 $F(d)$ should encode the information of X over all possible arrows $d \rightarrow d'$.

 3 See [Lecture 8, §2] for what this means.

$6\,$ $\,$ LECTURE 20

For instance, we want any Cartesian arrow in X lying over $d \to d'$ to be a marked edge in $F(d)$.

Suppose we find a way to achieve the above purpose, we would obtain a morphism $F(d') \rightarrow F(d)$ which models the contravariant transport functor along $d \rightarrow d'$. However, to get the homotopy coherent composition laws, we realize that

 $F(d)$ should encode the information of X over all possible chains $d \to d' \to$ $d'' \rightarrow \cdots$

In other words, we want vertices in $F(d)$ to be chains $x_0 \to x_1 \to \cdots x_n$ with $x_0 \in X_d$, such that refinements of chains can be encoded as edges in $F(d)$. The following construction provides a way to realize this idea.

Construction 3.5. Let $p: X \to \mathcal{D}$ be any simplicial set over \mathcal{D} . Define \mathbb{D}_X to be the following pushout in Cat_{\wedge} :

Consider the functor

$$
\mathsf{St}_\phi X:\mathbb{D}^\mathsf{op}\to\mathbb{S}\mathbb{e}\mathbb{t}_\Delta,\ d\mapsto\mathsf{Hom}_{\mathbb{D}_X}\big(d,\ast\big).
$$

We call it the **straightening** of X respect to ϕ .

Construction 3.6. Let $p: X \to \mathcal{D}$ be a marked simplicial set over \mathcal{D} . For a marked edge $x \to x'$ over $d \to d'$, consider the 2-simplex $\Delta^2 \to X^{\triangleright}$, $0 \mapsto x$, $1 \mapsto x'$, $2 \mapsto *$. The functor

$$
\mathfrak{C}(\Delta^2) \to \mathfrak{C}(X^\triangleright) \to \mathfrak{C}(\mathbb{D}_X)
$$

induces a morphism between simplicial sets

$$
\Delta^1 \simeq \text{Hom}_{\mathfrak{C}(\Delta^2)}(0,2) \to \text{Hom}_{\mathfrak{C}(\mathbb{D}_X)}(d,\ast) =: \text{St}_{\phi}X(d).
$$

We declare any edge in $\mathsf{St}_\phi X(d)$ obtained as above as special, and define the marked simplcial set

$$
\mathsf{St}^+_{\phi}X(d)\coloneqq (\mathsf{St}_{\phi}X(d),E_d)
$$

such that ${E_d}$ is the smallest collection of sets containing all special edges and depend functorially on d. The obtained functor

$$
\mathsf{St}^+_\phi X:\mathbb{D}^\mathsf{op}\to\mathbb{S}\mathbb{e}\mathbb{t}^+_\Delta
$$

is compatible with simplicial enrichements and depends functorially in X. This gives the desired functor

$$
\mathsf{St}^+_\phi: (\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_\mathcal{D} \to \mathsf{Fun}(\mathbb{D}^\mathsf{op}, \mathbb{S}\mathbb{e}\mathbb{L}^+_\Delta)_{\mathsf{proj}}
$$

$\begin{tabular}{ccccc} \multicolumn{2}{c}{{\bf \textcolor{blue}{\bf \textcolor{blue}{\$

4. Base-change of Cartesian fibrations

Proposition 4.1 (HTT.3.2.1.4). For $i = 0, 1$, let \mathcal{D}_i be a simplicial set and \mathbb{D}_i be a simplicial category. Suppose we have the following commutative diagram in Cat_{Δ} :

$$
\mathfrak{C}(\mathcal{D}_1) \xrightarrow{\phi_1} \mathbb{D}_1
$$
\n
$$
\downarrow \mathfrak{C}(F)
$$
\n
$$
\mathfrak{C}(\mathcal{D}_2) \xrightarrow{\phi_2} \mathbb{D}_2.
$$

Then we have the following commutative diagram of left Quillen functors

$$
\begin{array}{ccc}(\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_\mathcal{D_1} & \xrightarrow{\mathsf{St}^+_{\phi_1}} \mathsf{Fun}(\mathbb{D}^\mathsf{op}_1,\mathbb{S}\mathbb{e}\mathbb{L}^+_ \lambda)_\mathsf{proj}\\ \downarrow^{F\circ-} & \downarrow^{\mathsf{Lt}_{\mathsf{F}^\mathsf{op}}}\\ (\mathsf{Set}^+_\Delta)^{\mathsf{Cart}}_\mathcal{D_2} & \xrightarrow{\mathsf{St}^+_{\phi_2}} \mathsf{Fun}(\mathbb{D}^\mathsf{op}_2,\mathbb{S}\mathbb{e}\mathbb{L}^+_ \lambda)_\mathsf{proj}\end{array}
$$

and similarly for their right adjoints:

$$
\begin{array}{ccc} & \displaystyle (Set_{\Delta}^{+})_{/ \mathcal{D}_1}^{Cart} \longleftarrow & \displaystyle Fun(\mathbb{D}_1^{op}, \mathbb{Se\!^+_{\Delta})_{proj} \\ \scriptstyle -\times_{\mathcal{D}_2} \mathcal{D}_1 \Bigg\vert & \displaystyle \qquad \qquad -\circ \mathbb{F}^{op} \Bigg\vert \\ & \displaystyle (Set_{\Delta}^{+})_{/ \mathcal{D}_2}^{Cart} \longleftarrow & \displaystyle Fun(\mathbb{D}_2^{op}, \mathbb{Se\!^+_{\Delta})_{proj}. \end{array}
$$

Corollary 4.2. Let $F : D_1 \rightarrow D_2$ be a functor between ∞ -categories. There is a canonical commutative diagram

$$
\operatorname{Cart}_{/D_1} \xleftarrow{\sim} \operatorname{Fun}(D_1^{\mathsf{op}}, \operatorname{Cat}_{\infty})
$$

\n
$$
\xrightarrow{-\times_{D_2} D_1} \uparrow \qquad \qquad \qquad -\circ \operatorname{F}^{\mathsf{op}} \uparrow
$$

\n
$$
\operatorname{Cart}_{/D_2} \xleftarrow{\sim} \operatorname{Fun}(D_2^{\mathsf{op}}, \operatorname{Cat}_{\infty}).
$$

5. Applications

5.1. The theory of Cartesian fibrations, equipped with the Grothendieck–Lurie construction, is extremely powerful. Below are some examples.

Example 5.2. For any ∞ -category D, the Cartesian fibration

$$
\text{ev}_0: \text{Fun}(\Delta^1, \text{D}) \to \text{D}
$$

corresponds to a functor $D^{\text{op}} \to \text{Cat}_{\infty}$, whose value at each $d \in D$ is equivalent to $D_{d}/$. This provides the functoriality for the (co)slice construction.

Example 5.3. For any functor $F: C \to D$ between ∞ -categories. One can show

$$
\text{ev}_0: \text{Fun}(\Delta^1, \mathsf{D}) \underset{\text{Fun}(\{1\}, \mathsf{D})}{\times} \mathsf{C} \to \mathsf{D},
$$

is a Cartesian fibration, which gives a functor $D^{op} \to Cat_{\infty}$ whose value at $d \in D$ is equivalent to $C \times_D D_{d}$. This fibration is used in the proof of Quillen's Theorem A.

Exercise 5.4. Let $F: \mathcal{C} \to \mathcal{D}$ be any categorical fibration between quasi-categories. Show that the morphism

$$
\mathcal{C}^{\flat} \to (\operatorname{\mathsf{Fun}}(\Delta^1,\mathcal{D})\underset{\mathcal{D}}{\times}\mathcal{C})^{\natural}
$$

induced by \mathcal{D} → Fun(Δ^1 , \mathcal{D}), d → id_d, is a fibrant replacement in $(\mathsf{Set}_{\Delta}^+)_{/\mathcal{D}}^{\mathsf{Cart}}$ Cart
/ \mathcal{D} \cdot

Example 5.5. Let C be an ∞ -category. The left fibration

$$
TwArr(C) \to C^\mathsf{op} \times C
$$

corresponds to a functor $C^{op} \times C \to Cat_{\infty}$ that sends (x, y) to an ∞ -groupoid equivalent to $\text{Maps}_C(x, y)$.

Exercise 5.6. Let $F: D \to Pr^{\mathsf{L}}$ be a functor. The composition

$$
D \to Pr^L \to \widehat{Cat}_\infty
$$

corresponds to a (not necessarilly small) coCartesian fibration $E \rightarrow D$. Show that this is also a Cartesian fibration, and the corresponding functor $D^{op} \to \widehat{Cat}_{\infty}$ factors through Pr^R .

5.7. By the Grothendieck–Lurie construction, for any simplicial set S , a diagram $u: S^{op} \to \text{Cat}_{\infty}$ corresponds to a Cartesian fibration $X \to S$ between simplicial sets as follows:

• Use the equivalence $\text{Cat}_{\infty} \simeq \mathfrak{N}((\mathbb{S} \text{el}_{\Delta}^{\dagger})^{\circ})$ to translate u to a functor

$$
\mathfrak{C}(S^{\mathsf{op}}) \to (\mathbb{S} \mathsf{el}^+_\Delta)^\circ
$$

- Find a fibrant replacement and apply the unstraightening functor to obtain a fibrant object in $Cart_{\sqrt{S}}$.
- Let $X \rightarrow S$ be the Cartesian fibration corresponding to this fibrant object.

Proposition 5.8 (HTT.3.3.3). Let $u : S^{op} \to \text{Cat}_{\infty}$ be a diagram of ∞ -categories corresponding to a Cartesian fibration $p : X \rightarrow S$. Then the limit of u can be identified with the quasi-category of Cartesian sections of p:

$$
\lim u \simeq \mathsf{Sect}_{/S}^{\mathsf{Cart}}(X)
$$

Proposition 5.9 (HTT.3.3.4). Let $u : S \rightarrow \text{Cat}_{\infty}$ be a diagram of ∞ -categories corresponding to a coCartesian fibration $p: X \to S$. Then the colimit of u can be modelled by the marked simplicial set X^{\natural} , where marked edges are p-coCartesian ones:

$$
\text{colim } u \simeq X^{\natural}.
$$

Appendix A. Dual and conjugate fibrations

A.1. Let $F : S \to \text{Cat}_{\infty}$ be a diagram of ∞ -categories. We can construct the following fibrations:

- (i) The Cartesian fibration over S^{op} corresponding to F;
- (ii) The coCartesian fibration over S corresponding to F ;
- (iii) The Cartesian fibration over S^{op} corresponding to $op \circ F$;
- (iv) The coCartesian fibration over S corresponding to $op \circ F$.

Exercise A.2. Describe how to construct one of the above fibrations directly from another one.

A.3. Suggested readings. [Ker.04C0.](https://kerodon.net/tag/04C0)