
LECTURE 20

In this lecture, for a (small) ∞-category D, we explain a canonical equivalence
between:

(i) the ∞-category of Cartesian fibrations over D;
(ii) the ∞-category of functors Dop → Cat∞.

The construction (i)⇒(ii) is called straightening, while (ii)⇒(i) is called un-
straightening. For ordinary categories, the similar equivalence was proved by
Grothendieck and known as the Grothendieck construction. For ∞-categories,
people call it the Grothendieck–Lurie construction

1. Transport functors

1.1. In this section, we explain how to construct functors between fibers of a
Cartesian fibration.

Let p ∶ C → [1] be a Cartesian fibration between ∞-categories. Consider the
∞-category of sections1 of p:

Sect/[1](C) ∶= Fun([1],C) ×
Fun([1],[1])

{Id}.

Let
SectCart/[1](C) ⊆ Sect/[1](C)

be the full sub-∞-category whose objects are given by p-Cartesian arrows in C.

Proposition 1.2. Let p ∶ C → [1] be a Cartesian fibration between ∞-categories.
Then the functor

ev1 ∶ SectCart/[1](C)→ C1

is an equivalence between ∞-categories.

Sketch. The functor is essentially surjective because there are enough p-Cartesian

arrows. It remains to show it is fully faithful. For objects x
fÐ→ y and x′

f ′Ð→ y′ in
SectCart/[1](C), we have

Maps(f, f ′) ≃MapsC0
(x,x′) ×

MapsC(x,y′)
MapsC1

(y, y′).

Since f ′ is locally p-Cartesian, the functorMapsC0
(x,x′)→MapsC(x, y′) is an equiv-

alence. It follows that the functor Maps(f, f ′)→MapsC1
(y, y′) is an equivalence as

desired. □

Construction 1.3. Let p ∶ C → D be a Cartesian fibration between ∞-categories.
By the above proposition, for any morphism f ∶ x→ y in D, we have an equivalence

SectCart[1] (C ×
D
[1]) ≃Ð→ Cy,

Date: Nov. 29, 2024.
1There is no ambiguity for the fiber product below because Fun([1],C) → Fun([1], [1]) is a

categorical fibration.
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where [1] → D is the functor given by f . By choosing an inverse of the above
equivalence, we obtain a functor

Cy
≃Ð→ SectCart[1] (C ×

D
[1]) ev0Ð→ Cx.

We denote this functor by f� ∶ Cy → Cx, and call it the contravariant transport
functor along f .

Dually, for a coCartesian fibration p ∶ C→ D, we define the covariant transport
functor f� ∶ Cx → Cy.

1.4. By construction, f � is well-defined up to a constractible space of choices.

Exercise 1.5. Let p ∶ C → D be a Cartesian fibration between ∞-categories, and
f, f ′ ∶ x → y be morphisms in D that are homotopic to each other. Show that
f� ≃ (f ′)�.

Exercise 1.6. Let p ∶ C → D be a Cartesian fibration between ∞-categories, and

x
fÐ→ y

gÐ→ z be a chain in D. Show that f� ○ g� ≃ (g ○ f)�.

Exercise 1.7. Note that the construction f ↦ f� makes sense for any locally
Cartesian fibration p ∶ C → D between quasi-categories. Show that in this setting,
we have a canonical natural transformation f� ○ g� → (g ○ f)�.

Exercise 1.8. Let p ∶ C→ D be a functor that is both a Cartesian and coCartesian
fibration. For any morphism f ∶ x→ y in D, show that f� is left adjoint to f�.

1.9. By the above exercises, for any Cartesian fibration p ∶ C → D between ∞-
categories, we have a canonial functor

Dop → hCat∞, x↦ Cx, (x
fÐ→ y)↦ f �.

Similarly, for any coCartesian fibration p ∶ C → D, we have a canonical functor
D→ hCat∞.

2. Marked simplicial sets

2.1. Let p ∶ C → D be a Cartesian fibration between ∞-categories, we want to lift
the above functor Dop → hCat∞ to a functor Dop → Cat∞. Moreover, we want such
a construction to be functorial in p. To precisely describe our goal, we introduce
following ∞-categories.

Construction 2.2. For D ∈ Cat∞, let

Cart/D ⊆ (Cat∞)/D
be the sub-∞-category such that:

(i) Objects are Cartesian fibrations over D;
(ii) Morphisms are functors defined over D that preserves Cartesian arrows.

Remark 2.3. More precisely, we realize (Cat∞)/D as a quasi-category and define
Cart/D to be the maximal simplicial subset with the prescribed 1-skeleton.

Warning 2.4. The embedding Cart/D ⊆ (Cat∞)/D is not fully faithful. Instead, it is
1-fully faithful, which means it induces fully faithful functors between the mapping
∞-groupoids.
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2.5. Our goal is to construct an equivalence

(2.1) Cart/D ≃ Fun(Dop,Cat∞).
Recall the only two known constructions of Cat∞ are based on model categories.
Namely, Cat∞ is equivalent to the ∞-category underlying the model category

SetJoyal∆ , which can be constructed in the following equivalent ways:

● Invert categorical equivalences in Set∆ in an ∞-categorical way.

● Enrich the full subcategory QCat ≃ (SetJoyal∆ )○ over simplicial sets, and take
the simplicial nerve functor N●.

Hence the only reasonable strategy to construct the equivalence (2.1) is to realize it
as a Quillen equivalence between model categories, whose underlying ∞-categories
are Cart/D and Fun(Dop,Cat∞).

2.6. Let us first seek a model for Cart/D. Realizing D as a quasi-category D, one
may want to find a model structure on (Set∆)/D that achieves the above goal.
However, this hope is not reasonable because even if it has the correct bifibrant
objects, i.e., Cartesian fibrations over D, morphisms between these objects will be
all functors defined over D rather than those perserving Cartesian arrows. This
suggests we need to modify (Set∆)/D such that morphisms automatically preserve
some special arrows. This motivates the following definition.

Definition 2.7. Let Set+∆ be the ordinary category defined as follows.

● An object is a pair (X,E), where X is a simplicial set and E ⊆ X1 is a
subset of edges that contains all the degenerate edges.
● A morphism (X,E) → (X ′,E′) is a morphism X → X ′ between simplicial
sets that sends E into E′.

We call a pair (X,E) as above a marked simplicial set, and call edges in E the
marked edges.

Example 2.8. For any simplicial set S,

● let S♯ ∈ Set+∆ be the object such that all edges in S are marked;
● let S♭ ∈ Set+∆ be the object such that only degenerate edges in S are marked.

Exercise 2.9. Show that Set∆ → Set+∆, S ↦ S♯ is right adjoint to the forgetful
functor oblv ∶ Set+∆ → Set∆. Dually, S ↦ S♭ is left adjoint to the forgetful functor.

Definition 2.10. Let S be a simplicial set. Define

(Set+∆)/S ∶= (Set
+
∆)/S♯ ,

and call it the category of marked simplicial sets over S.

Example 2.11. Let X → S be a Cartesian fibration between simplicial sets and
E ⊆ X1 be the subset of all Cartesian edges. Then X♮ ∶= (X,E) is an object in
(Set+∆)/S.

2.12. We are going to construct a model structure on (Set+∆)/S such that

● cofibrations are monomorphisms;
● fibrant objects are X♮ for Cartesian fibrations X → S.

As explained in [Lecture 5, §4], these requirements determine the model structure
as long as we know how to calculate the mapping spaces in the desired ∞-category
(Set+∆)/S[W −1].
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Construction 2.13. For Y,Z ∈ Set+∆, consider the simplicial set Hom♯(Y,Z) de-
fined by the following universal property: for any K ∈ Set∆,

HomSet∆(K,Hom♯(Y,Z)) ≃ HomSet+
∆
(K♯ × Y,Z).

For Y,Z ∈ (Set+∆)/S, let
Hom♯S(Y,Z) ⊆ Hom

♯(Y,Z)
be the full simplicial subset containing those vertices given by morphisms Y → Z
defined over S.

Exercise 2.14. Let Y ∈ (Set+∆)/S and Z → S be a Cartesian fibration. Show that

Hom♯S(Y,Z♮) is a Kan complex. Convince yourself that this Kan complex models
the space of functors Y → Z defined over S that send marked edges in Y into
Cartesian arrows in Z.

Exercise 2.15. What would happen if we consider Hom♭(Y,Z♮) instead?

Definition 2.16. A morphism Y → Y ′ in (Set+∆)/S is called a Cartesian equiv-
alence if for any Cartesian fibration Z → S, the functor

Hom♯S(Y ′, Z♮)→ Hom♯S(Y,Z♮)
is a weak equivalence between Kan complices.

Remark 2.17. By HTT.3.1.3.3, we obtain the same notion if using Hom♭(Y,Z♮)
instead.

Theorem 2.18 (HTT.3.1.3.7, 3.1.4.1, 3.1.4.4). Let S be a simplicial set. There
exists a left proper combinatorial model structure, called the Cartesian model
structure, on (Set+∆)/S such that

(C) cofibrations are monomorphism;
(W) weak equivalences are Cartesian equivalences.

Moreover,

(1) An object is fibrant iff it is of the form X♮ for some Cartesian fibration
X → S.

(2) The model structure is compatible with the SetKQ∆ -enrichment2 given by

Hom♯(−,−).

2.19. We denote the above model category by (Set+∆)Cart/S , and the SetKQ∆ -enriched

model category by (Set+∆)Cart/S . Dually, we can define the coCartesian model struc-

ture on (Set+∆)/S .

2.20. When S =∆0, the Cartesian model structure coincides with the coCartesian
one, hence we denote the obtained model category just by Set+∆. As one would

expect, the homotopy theory of Set+∆ is also equivalent to SetJoyal∆ .

Theorem 2.21 (HTT.3.1.5.1). When S =∆0, the adjunction

(−)♭ ∶ SetJoyal∆
ÐÐ→←ÐÐ Set+∆ ∶ oblv

is an Quillen equivalence.

Exercise 2.22. Let (X,E) ∈ Set+∆ be a marked simplicial set. Show that its image
in Set+∆[W −1] ≃ Cat∞ is equivalent to X[E−1].

2See [Lecture 8, §2] for what this means.
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Exercise 2.23. Let X → ∆1 be a Cartesian fibration of quasi-categories. Show
that

(Set+∆)/∆1 → Set
+
∆ → Set+∆[W −1] ≃ Cat∞

sends X♮ to an ∞-category equivalent to X0. Moreover, the image of X♮1 →X♮ mod-
els the contravariant transport functor X1 →X0. Here X♮1 has all the isomorphisms
as marked.

Exercise 2.24. Let D be an ∞-category realized as a quasi-category D. Show that
the underlying ∞-category of

(Set+∆)Cart/D

is equivalent to Cart/D.

Exercise 2.25. Let D be an ∞-category realized as a simplicial category D. Con-
sider the projective model category3 of simplicial functors D→ Set

+
∆:

Fun(D,Set+∆)proj.

Show that the underlying ∞-category of it is equivalent to Fun(D,Cat∞).

3. Straightening and unstraightening

3.1. Let D be an ∞-category realized both as a quasi-category D and a simplicial
category D. By the above exercises, to construct the desired equivalence, we only
need to construct a Quillen equivalence

(Set+∆)Cart/D ÐÐ→←ÐÐ Fun(Dop,Set+∆)proj.

By definition, we have a weak equivalence ϕ ∶ C(D) → D between simplicial cate-
gories.

Theorem 3.2 (HTT.3.2.0.1). Let D be a simplicial set and D be a simplicial cat-
egory. For any functor ϕ ∶ C(D)→ D, there is a canonical Quillen adjunction

St+ϕ ∶ (Set
+
∆)Cart/D ÐÐ→←ÐÐ Fun(Dop,Set+∆)proj ∶ Un

+
ϕ,

which is a Quillen equivalence if ϕ is a weak equivalence.

Corollary 3.3. Let D be any ∞-category. There is a canonical equivalence

Cart/D ≃ Fun(Dop,Cat∞).

3.4. Let us explain the main ideas in the construction of the functor St+ϕ. Let us
first treat the case when D = C(D).

For a marked simplicial setX ∈ (Set+∆)/D overD, we wish to construct a simplicial
functor

F ∶ C(D)op → Set
+
∆

such that F (d) is weak equivalent to Xd for any object d in D (viewed as an object
in C(D)). The naive construction d ↦ Xd would not work because it is impossible
to work out the functorialities. Instead, Exercise 2.23, suggests that

F (d) should encode the information of X over all possible arrows d→ d′.

3See [Lecture 8, §2] for what this means.
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For instance, we want any Cartesian arrow in X lying over d → d′ to be a marked
edge in F (d).

Suppose we find a way to achieve the above purpose, we would obtain a morphism
F (d′) → F (d) which models the contravariant transport functor along d → d′.
However, to get the homotopy coherent composition laws, we realize that

F (d) should encode the information of X over all possible chains d→ d′ →
d′′ → ⋯

In other words, we want vertices in F (d) to be chains x0 → x1 → ⋯xn with x0 ∈Xd,
such that refinements of chains can be encoded as edges in F (d). The following
construction provides a way to realize this idea.

Construction 3.5. Let p ∶ X → D be any simplicial set over D. Define DX to be
the following pushout in Cat∆:

C(X) //

��

C(X⊳)

��

C(D)

ϕ

��
D // DX .

Consider the functor

StϕX ∶ Dop → Set∆, d↦ HomDX
(d,∗).

We call it the straightening of X respect to ϕ.

Construction 3.6. Let p ∶X → D be a marked simplicial set over D. For a marked
edge x → x′ over d → d′, consider the 2-simplex ∆2 → X⊳, 0 ↦ x, 1 ↦ x′, 2 ↦ ∗.
The functor

C(∆2)→ C(X⊳)→ C(DX)

induces a morphism between simplicial sets

∆1 ≃ HomC(∆2)(0,2)→ HomC(DX)(d,∗) =∶ StϕX(d).

We declare any edge in StϕX(d) obtained as above as special, and define the marked
simplcial set

St+ϕX(d) ∶= (StϕX(d),Ed)

such that {Ed} is the smallest collection of sets containing all special edges and
depend functorially on d. The obtained functor

St+ϕX ∶ Dop → Set
+
∆

is compatible with simplicial enrichements and depends functorially in X. This
gives the desired functor

St+ϕ ∶ (Set
+
∆)Cart/D → Fun(Dop,Set+∆)proj
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4. Base-change of Cartesian fibrations

Proposition 4.1 (HTT.3.2.1.4). For i = 0,1, let Di be a simplicial set and Di be a
simplicial category. Suppose we have the following commutative diagram in Cat∆:

C(D1)
ϕ1 //

C(F )
��

D1

F

��
C(D2)

ϕ2 // D2.

Then we have the following commutative diagram of left Quillen functors

(Set+∆)Cart/D1

St+ϕ1 //

F○−
��

Fun(Dop
1 ,Set+∆)proj

LKEFop

��
(Set+∆)Cart/D2

St+ϕ2 // Fun(Dop
2 ,Set+∆)proj

and similarly for their right adjoints:

(Set+∆)Cart/D1
Fun(Dop

1 ,Set+∆)proj
Un+ϕ1

oo

(Set+∆)Cart/D2

−×D2
D1

OO

Fun(Dop
2 ,Set+∆)proj.

Un+ϕ2

oo

−○Fop

OO

Corollary 4.2. Let F ∶ D1 → D2 be a functor between ∞-categories. There is a
canonical commutative diagram

Cart/D1
Fun(Dop

1 ,Cat∞)≃
oo

Cart/D2

−×D2
D1

OO

Fun(Dop
2 ,Cat∞).≃

oo

−○Fop

OO

5. Applications

5.1. The theory of Cartesian fibrations, equipped with the Grothendieck–Lurie
construction, is extremely powerful. Below are some examples.

Example 5.2. For any ∞-category D, the Cartesian fibration

ev0 ∶ Fun(∆1,D)→ D

corresponds to a functor Dop → Cat∞, whose value at each d ∈ D is equivalent to
Dd/. This provides the functoriality for the (co)slice construction.

Example 5.3. For any functor F ∶ C→ D between ∞-categories. One can show

ev0 ∶ Fun(∆1,D) ×
Fun({1},D)

C→ D,

is a Cartesian fibration, which gives a functor Dop → Cat∞ whose value at d ∈ D is
equivalent to C ×D Dd/. This fibration is used in the proof of Quillen’s Theorem A.
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Exercise 5.4. Let F ∶ C → D be any categorical fibration between quasi-categories.
Show that the morphism

C♭ → (Fun(∆1,D) ×
D
C)♮

induced by D → Fun(∆1,D), d↦ idd, is a fibrant replacement in (Set+∆)Cart/D .

Example 5.5. Let C be an ∞-category. The left fibration

TwArr(C)→ Cop × C
corresponds to a functor Cop × C→ Cat∞ that sends (x, y) to an ∞-groupoid equiv-
alent to MapsC(x, y).

Exercise 5.6. Let F ∶ D→ PrL be a functor. The composition

D→ PrL → Ĉat∞

corresponds to a (not necessarilly small) coCartesian fibration E → D. Show that

this is also a Cartesian fibration, and the corresponding functor Dop → Ĉat∞ factors
through PrR.

5.7. By the Grothendieck–Lurie construction, for any simplicial set S, a diagram
u ∶ Sop → Cat∞ corresponds to a Cartesian fibration X → S between simplicial sets
as follows:

● Use the equivalence Cat∞ ≃N((Set+∆)○) to translate u to a functor

C(Sop)→ (Set+∆)○

● Find a fibrant replacement and apply the unstraightening functor to obtain
a fibrant object in Cart/S .
● Let X → S be the Cartesian fibration corresponding to this fibrant object.

Proposition 5.8 (HTT.3.3.3). Let u ∶ Sop → Cat∞ be a diagram of ∞-categories
corresponding to a Cartesian fibration p ∶ X → S. Then the limit of u can be
identified with the quasi-category of Cartesian sections of p:

limu ≃ SectCart/S (X)

Proposition 5.9 (HTT.3.3.4). Let u ∶ S → Cat∞ be a diagram of ∞-categories
corresponding to a coCartesian fibration p ∶ X → S. Then the colimit of u can be
modelled by the marked simplicial set X♮, where marked edges are p-coCartesian
ones:

colimu ≃X♮.

Appendix A. Dual and conjugate fibrations

A.1. Let F ∶ S → Cat∞ be a diagram of ∞-categories. We can construct the
following fibrations:

(i) The Cartesian fibration over Sop corresponding to F ;
(ii) The coCartesian fibration over S corresponding to F ;
(iii) The Cartesian fibration over Sop corresponding to op ○ F ;
(iv) The coCartesian fibration over S corresponding to op ○ F .

Exercise A.2. Describe how to construct one of the above fibrations directly from
another one.

A.3. Suggested readings. Ker.04C0.

https://kerodon.net/tag/04C0
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