In this lecture, we introduce ∞ -operads and monoidal ∞ -categories.

1. Symmetric monoidal ∞-category

1.1. Recall a **monoidal category** is an (ordinary) category C equipped with the following structure:

- A binary functor $\otimes -: C \times C \rightarrow C$, called the **monoidal product**;
- An object $1 \in C$, called the **monoidal unit**;
- An invertible natural transformation of the form $X \otimes (Y \otimes Z) \simeq (X \otimes Y) \otimes Z$, called the **associator**;
- Invertible natural transformations of the form $\mathbb{1} \otimes X \simeq X$, $X \otimes \mathbb{1} \simeq X$, called the **left and right unitors**

such that certain diagrams, including the pentagon diagram, commute.

Informally, we can say a monoidal category is a category equpped with a multiplication which is unital and associative *up to coherent homotopy*. Here the coherence data are finite because ordinary categories form a 2-category. In fact, the definition of monoidal categories only invokes *n*-ary operators $C^{\times n} \rightarrow C$ for $0 \le n \le 4$.

1.2. Also recall a **symmetric monoidal category** is a monoidal category C equipped with:

• An invertible natural transformation of the form $X \otimes Y \simeq Y \otimes X$, called the swap natural transformation

such that certain diagrams, including the inverse law, commute.

1.3. We would like to generalize the above to a notion of *(symmetric) monoidal* ∞ -categories. Now the coherence data should invoke *n*-ary operators for all $n \ge 0$.

Instead of writing down such coherence data, we would like to encode them as a functor $F: J \to \mathsf{Cat}_{\infty}$, a.k.a. a homotopy coherent diagram of ∞ -categories, where J is a clever-designed simplicial set such that

- For $n \ge 0$, there is a vertex $\langle n \rangle$ which is sent by F to the n-th power $C^{\times n}$;
- There is an edge $(2) \rightarrow (1)$ encoding the monoidal product;
- There is an edge $\langle 0 \rangle \rightarrow \langle 1 \rangle$ encoding the monoidal unit;
- The coherence data are encoded by cells in J.

Note that the first point is actually a structure rather than property: we need to provide projections $p_k : F(\langle n \rangle) \to F(\langle 1 \rangle)$ for each $1 \le k \le n$ that exhibit $F(\langle n \rangle)$ as the *n*-th power of $F(\langle 1 \rangle)$. Hence we should have:

• There is an edge $\langle n \rangle \rightarrow \langle 1 \rangle$ encoding the projection functor $pr_i : C^{\times n} \rightarrow C$ for each $i \in \{1, \dots, n\}$.

Also, in the *symmetric* monoidal setting, to encode the swap natural transformations, we need to be able to swap the factors in $C^{\times n}$. Hence we should have:

• For $n \ge 0$, the symmetric group Σ_n should act on $\langle n \rangle$.

Date: Dec. 6, 2024.

In fact, the above two requirements can be combined together as:

• For each *injective* map $\phi : \{1, \dots, m\} \to \{1, \dots, n\}$, there is an edge from $\langle n \rangle \to \langle m \rangle$ encoding the projection functor $\operatorname{pr}_{\phi} : \mathsf{C}^{\times n} \to \mathsf{C}^{\times m}$.

These edges in J will be called the **inert morphisms**. In contrast, edges encoding data such as the product and the unit are called the **active morphisms**.

Our intuition says:

- In the symmetric monoidal setting, there is a unique **active** morphism $\langle n \rangle \rightarrow \langle 1 \rangle$.
- In the monoidal setting, active morphisms $\langle n \rangle \rightarrow \langle 1 \rangle$ should be acted freely and transitively by Σ_n .

Exercise 1.4. Show that injective maps $\phi : \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ are in natural bijection with maps between marked sets

$$\alpha: \{*, 1, 2, \cdots, n\} \to \{*, 1, 2, \cdots, m\}$$

such that $\alpha^{-1}(\{j\})$ is a singleton for any $1 \leq j \leq m$.

1.5. The above discussion motivates the following definition by Segal.

Definition 1.6. Let Fin_* be the minimal model for the ordinary category of marked finite sets. For each $n \ge 0$, let $\langle n \rangle \in Fin_*$ be the object

$$\langle n \rangle \coloneqq \{ \ast \} \sqcup \langle n \rangle^{\circ} \coloneqq \{ \ast, 1, 2, \cdots, n \}.$$

Let $\alpha : \langle n \rangle \to \langle m \rangle$ be a morphism in Fin_{*}, we say

- (1) The morphism α is inert if $\alpha^{-1}(\{j\})$ is a singleton for any non-marked element $j \in \langle m \rangle^{\circ}$.
- (2) The morphism α is active if $\alpha^{-1}(\{*\}) = \{*\}$.

We also write

Exercise 1.7. A morphism in $Comm^{\otimes}$ is an isomorphism iff it is both inert and active.

Exercise 1.8. Any morphism $\langle n \rangle \rightarrow \langle m \rangle$ can be written as $\langle n \rangle \xrightarrow{\beta} \langle l \rangle \xrightarrow{\gamma} \langle m \rangle$ with β inert and γ active. Moreover, such expression is unique up to unique isomorphism.

Definition 1.9. A symmetric monoidal ∞ -category is a functor

 $F: \mathsf{Comm}^{\otimes} \to \mathsf{Cat}_{\infty}$

that sends the inert morphisms $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^\circ$ to functors

$$F(\rho^i): F(\langle n \rangle) \to F(\langle 1 \rangle)$$

that exhibit $F(\langle n \rangle)$ as $F(\langle 1 \rangle)^{\times n}$. We call $F(\langle 1 \rangle)$ its underlying ∞ -category.

Exercise 1.10. If $F(\langle 1 \rangle)$ is ordinary, then F determines a symmetric monoidal category.

1.11. The non-symmetric case can be encoded by the following variant of Comm[®].

Definition 1.12. Let $Assoc^{\otimes}$ be the ordinary category defined as follows:

- An object in $Assoc^{\otimes}$ is a marked finite set $\langle n \rangle$ with $n \ge 0$.
- A morphism from $\langle n \rangle$ to $\langle m \rangle$ is a pair (α, \leq_i) where
 - $-\alpha$ is a map $\langle n \rangle \rightarrow \langle m \rangle$ between marked sets
 - For each $j \in \langle m \rangle^{\circ}$, \leq_j is a linear ordering on $\alpha^{-1}(j)$.

For a morphism (α, \leq_j) , we say it is inert (resp. active) if α is so.

Definition 1.13. A monoidal ∞ -category is a functor

 $F: \mathsf{Assoc}^{\otimes} \to \mathsf{Cat}_{\infty}$

that sends the inert morphisms $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^\circ$ to functors

 $F(\rho^i): F(\langle n \rangle) \to F(\langle 1 \rangle)$

that exhibit $F(\langle n \rangle)$ as $F(\langle 1 \rangle)^{\times n}$. We call $F(\langle 1 \rangle)$ its underlying ∞ -category.

Exercise 1.14. Show that Exercise 1.7-1.10 remain valid for $Assoc^{\otimes}$ instead of Fin_* .

Exercise 1.15. Show that for both Comm^{\otimes} and Assoc^{\otimes}, the group of automorphisms on $\langle n \rangle$ can be identified with Σ_n .

1.16. There is a functor $\mathsf{Assoc}^{\otimes} \to \mathsf{Comm}^{\otimes}$ that sends a symmetric monoidal ∞ -category to a monoidal one via restriction.

Warning 1.17. Although $Assoc^{\otimes} \to Comm^{\otimes}$ behaves like a quotient functor (it is surjective on both objects and morphisms), one should not think a symmetric monoidal ∞ -category as a monoidal one satisfying certain properties. Rather, even for a functor $Assoc^{\otimes} \to D$ into a (2,1)-category D, such as that of ordinary categories, a weak factorization through Comm^{\otimes} is a structure rather than property.

Remark 1.18. In fact, we can encode non-symmetric monoidal ∞ -categories in a more efficient way, where the role of Assoc^{\otimes} is replaced by Δ^{op} . This is known as the simplicial model for monoids. Roughly speaking, this amounts to cancel out the Σ_n -action $\mathsf{Hom}(\langle n \rangle, \langle 1 \rangle)$ from the data encoded by a functor $\mathsf{Assoc}^{\otimes} \to \mathsf{Cat}_{\infty}$.

Comparing with $\operatorname{Assoc}^{\otimes}$, this simplicial model has several advantages. For instance, one can define \mathbb{A}_n -algebras using the truncation $(\Delta_{\leq n})^{\operatorname{op}}$. However, it is hard to directly compare monoidal structures encoded by the simplicial model with the symmetric monoidal ones because the Σ_n -action is hidden.

See HA.4.1 and 4.2.2 for more details.

2. ∞ -operads

Exercise 2.1. Show that for both $Comm^{\otimes}$ and $Assoc^{\otimes}$, the following data are equivalent:

- An active morphism $\alpha : \langle n \rangle \to \langle m \rangle$;
- A decomposition (n)[°] ≃ ⊔_{j∈(m)[°]}(n_j)[°] and active morphisms α_j : (n_j) → (1) labelled by j ∈ (m)[°].

Hint: for each α , consider the factorization of $\rho_j \circ \alpha$ in Exercise 1.8.

2.2. In fact, the categories Comm^\otimes and Assoc^\otimes can be recovered from the following data:

- (i) For each $n \ge 0$, the set O(n) of active morphisms $\langle n \rangle \rightarrow \langle 1 \rangle$;
- (ii) The action of Σ_n on O(n);
- (iii) For $m \ge 0$ and n_j labelled by $j \in \langle m \rangle^{\circ}$, a map

$$O(m) \times (\prod_j O(n_j)) \to O(n_1 + \dots + n_m)$$

given by the above exercise.

In the classical literatures, a collection of such data satisfying certain compatibilities is called a *(symmetric) operad.* Here O(n) is the set of *n*-ary operators and (iii) are called *composition maps.*

2.3. One can also consider operads with enriched structures. For instance, we have the notions of simplicial operads, topological operads, k-linear operads, dg-operads, using enrichment over the ordinary symmetric monoidal categories Set_{Δ} , Top, $\mathsf{Mod}_k^{\heartsuit}$, $\mathsf{Ch}(\mathsf{Ab})$...

We would like to have a notion of operads *weakly* enriched over the ∞ -category Spc. In other words, each O(n) should be a space, and the composition maps are associative up to coherent homotopies.

Following the general philosephy in this course, it is better to *define* an ∞ -operad as an ∞ -category satisfying certain conditions, such as Comm[®] and Assoc[®], rather than listing all these coherence data.

2.4. Before giving the definition of ∞ -operads, let us conduct one more generalization.

Let A be a symmetric monoidal ∞ -category and M be an ∞ -category. We want to define an A-action on M via a functor $F : \mathsf{CMod}^{\otimes} \to \mathsf{Cat}_{\infty}$. The index category CMod^{\otimes} should contain Comm^{\otimes} as a full subcategory, and the remaining part should encode the A-module structure on M. Hence we should at least have:

- objects $(\mathfrak{a}, \dots, \mathfrak{a})$ which comes from $\langle n \rangle \in \mathsf{Assoc}^{\otimes}$ and should be sent to $\mathsf{A}^{\times n}$ by F;
- objects $(\mathfrak{a}, \dots, \mathfrak{a}, \mathfrak{m})$ which should be sent to $A^{\times n} \times M$ by F;
- a unique active morphism $(\mathfrak{a}, \cdots, \mathfrak{a}, \mathfrak{m}) \to \mathfrak{m}$ encoding the action functor $A^{\times n} \times M \to M$.

Note that we should also have objects of the form $(\mathfrak{m}, \mathfrak{a}, \dots, \mathfrak{a})$ and more generally $(\mathfrak{a}, \dots, \mathfrak{a}, \mathfrak{m}, \mathfrak{a}, \dots, \mathfrak{a})$. For technical reasons, it is more convenient to even allow sequences with multiple \mathfrak{m} -terms. Of course, we will not allow any *active* morphism from $(\mathfrak{m}, \mathfrak{m})$ to \mathfrak{m} .

Definition 2.5. Let CMod^{\otimes} be the category defined as follows:

- An object is a pair $(\langle n \rangle, c)$, where $\langle n \rangle \in Fin_*$ and $c : \langle n \rangle^\circ \to \{\mathfrak{a}, \mathfrak{m}\}$ is a map.
- A morphism from (⟨n⟩, c) to (⟨m⟩, d) is a morphism α : ⟨n⟩ → ⟨m⟩ in Comm[⊗] such that
 - If $c(i) = \mathfrak{m}$, then either $\alpha(i) = *$ or $d(\alpha(i)) = \mathfrak{m}$.
 - If $d(j) = \mathfrak{m}$, then there is a **unique** $i \in \alpha^{-1}(\{j\})$ with $c(i) = \mathfrak{m}$.

For such a morphism, we say it is inert (resp. active) if the underlying morphism in $Comm^{\otimes}$ is so.

 $\mathbf{4}$

2.6. Similarly, we can define a category LMod^{\otimes} encoding monoids and their *left* modules.

Definition 2.7. Let LMod^{\otimes} be the category defined as follows:

- An object is a pair $(\langle n \rangle, c)$, where $\langle n \rangle \in Fin_*$ and $c : \langle n \rangle^\circ \to \{\mathfrak{a}, \mathfrak{m}\}$ is a map.
- A morphism from ((n), c) to ((m), d) is a morphism (α, ≤_j): (n) → (m) in Assoc[⊗] such that
 - If $c(i) = \mathfrak{m}$, then either $\alpha(i) = *$ or $d(\alpha(i)) = \mathfrak{m}$.
 - If $d(j) = \mathfrak{m}$, then there is a **unique** $i \in \alpha^{-1}(\{j\})$ with $c(i) = \mathfrak{m}$, which is also the maximal element for the ordering \leq_j .

For such a morphism, we say it is inert (resp. active) if the underlying morphism in $Assoc^{\otimes}$ is so.

Dually, we define RMod^{\otimes} by replacing maximal by minimal.

2.8. Categories such as CMod^{\otimes} , LMod^{\otimes} or RMod^{\otimes} are *colored operads*, and the symbols $\mathfrak{a}, \mathfrak{m}$ are the *colors*.

Exercise 2.9. Construct an ordinary colored operad BMod^{\otimes} with three colors $(\mathfrak{a}_l, \mathfrak{m}, \mathfrak{a}_r)$ encoding two monoids and a bimodule of them.

Exercise 2.10. Let O^{\otimes} be either Comm^{\otimes}, Assoc^{\otimes}, CMod^{\otimes}, LMod^{\otimes}, RMod^{\otimes} or BMod^{\otimes}. Consider the natural functor $p: O^{\otimes} \rightarrow Fin_*$. Show that

- For any inert morphism in Fin_{*}, there are enough p-coCartesian liftings of it. Moreover, a morphism in O[⊗] is inert iff it is a p-coCartesian over an inert morphism in Fin_{*}.
- (2) Let $C \in O_{\langle n \rangle}^{\otimes}$ be an object lying over $\langle n \rangle$, and $C \to C_i$ be p-coCartesian morphisms lying over $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^{\circ}$. Then these morphisms exhibit C as a p-limit¹. In other words, for any testing object $D \in O^{\otimes}$, the following square is Cartesian

(3) The covariant transport functors ρ_{\dagger}^{i} exhibit $\mathsf{O}_{(n)}^{\otimes}$ as $(\mathsf{O}_{(1)}^{\otimes})^{\times n}$.

Definition 2.11. An ∞ -operad² is an ∞ -category O^{\otimes} over Fin_{*} satisfying the conclusions in the above exercise³. We call

$$O := O_{(1)}^{\otimes}$$

the ∞ -category of colors in O^{\otimes} .

Definition 2.12. Let $p: O^{\otimes} \to Fin_*$ be an ∞ -operad and $f: C \to C'$ be a morphism in O^{\otimes} , we say

- The morphism f is **inert** if it is p-coCartesian over an inert morphism in Fin_{*}.
- The morphism f is active if p(f) is active.

¹See HTT.4.3.2 for a discussion about relative limits in general.

²A better terminology might be *colored* ∞ -operad.

³More precisely, we should say a functor $p: O^{\otimes} \to \mathsf{Fin}_*$ exhibits O^{\otimes} as an essential ∞ -operad, if any/all realization $\mathcal{O}^{\otimes} \to \mathsf{N}(\mathsf{Fin}_*)$ of p as an inner fibration satisfies the above conditions.

2.13. We often denote an object $C \in O_{\langle n \rangle}^{\otimes}$ by $(C_1, \dots, C_n)^4$ with $C_i \in O$ and treat the inert morphisms $C \to C_i$ as implicit.

Exercise 2.14. A morphism in O^{\otimes} is an isomorphism iff it is both inert and active.

Exercise 2.15. Show that any morphism in O^{\otimes} can be essentially uniquely written as a composition of an inert morphism followed by an active one.

2.16. Let O^{\otimes} be an ∞ -operad. We can define an O-monoidal ∞ -category as a functor $O^{\otimes} \rightarrow Cat_{\infty}$ satisfying certain conditions. In practice, it is better to describe such conditions via the corresponding coCartesian fibration over O^{\otimes} .

Definition 2.17. Let O^{\otimes} be an ∞ -operad. An O-monoidal ∞ -category is an (essential) coCartesian fibration $C^{\otimes} \to O^{\otimes}$ such that the composition $C^{\otimes} \to O^{\otimes} \to$ Fin_{*} exhibits C^{\otimes} as an ∞ -operad. We call $C := C^{\otimes}_{\langle 1 \rangle}$ the underlying ∞ -category of C^{\otimes} .

Definition 2.18. Let C^{\otimes} and C'^{\otimes} be O-monoidal ∞ -categories. An O-monoidal functor is a functor $C^{\otimes} \rightarrow C'^{\otimes}$ defined over O^{\otimes} that preserves all coCartesian arrows. Let

 $\mathsf{Fun}^\otimes_O(\mathsf{C},\mathsf{C}')\subseteq\mathsf{Fun}_{O^\otimes}(\mathsf{C}^\otimes,\mathsf{C}'^\otimes)$

be the full sub- ∞ -category of O-monoidal functors. Let

 $\mathsf{Mon}_{\mathsf{O}}(\mathsf{Cat}_{\infty}) \subseteq (\mathsf{Cat}_{\infty})_{/\mathsf{O}^{\otimes}}$

be the 1-full sub- ∞ -category of small O-monoidal ∞ -categories and O-monoidal functors between them.

Exercise 2.19. Show that for $O^{\otimes} = Comm^{\otimes}$ or $Assoc^{\otimes}$, the above definition recovers the notions of (symmetric) monoidal ∞ -categories and monoidal functors via straightening.

Exercise 2.20. What are the initial and final objects in $Mon_O(Cat_{\infty})$?

3. Algebras

3.1. One advantage of defining O-monoidal ∞ -categories via coCartesian fibrations is that the definition of algebras inside them is extremely simple.

Definition 3.2. Let O^{\otimes} and C^{\otimes} be ∞ -operads. An ∞ -operad map between them is a functor $p: O^{\otimes} \to C^{\otimes}$ defined over Fin_{*} that preserves inert morphisms. We also call such a functor an O-algebra in C. Let

$$\mathsf{Op}_{\infty} \subseteq (\mathsf{Cat}_{\infty})_{/\mathsf{Fin}_{*}}$$

be the 1-full sub- ∞ -category consisting of small ∞ -operads and ∞ -operad maps between them.

Let

 $Alg_{O}(C) \subseteq Fun_{Fin_{*}}(O^{\otimes}, C^{\otimes})$

be the full sub- ∞ -category of ∞ -operad maps $O^{\otimes} \to C^{\otimes}$.

Exercise 3.3. What are the initial and final objects in Op_{∞} ?

⁴Lurie's books use $C_1 \oplus \cdots \oplus C_n$, which might cause confusion because C is *neither* the (absolute) product nor coproduct of C_i 's.

3.4. To define associative algebra in a category, we only need to equip the latter with a monoidal structure rather than a symmetric monoidal one. More generally, we have the following relative version of Definition 3.2.

Definition 3.5. Let

be maps between ∞ -operads. An O'-algebra in C (relative to O) is an object in

(3.1)
$$\operatorname{Alg}_{\mathsf{O}'/\mathsf{O}}(\mathsf{C}) \coloneqq \operatorname{Alg}_{\mathsf{O}'}(\mathsf{C}) \underset{\operatorname{Alg}_{\mathsf{O}'}(\mathsf{O})}{\times} \{q\}$$

When q is the identity map on O^{\otimes} , we also write

$$Alg_{O}(C) \coloneqq Alg_{O}(C).$$

Warning 3.6. The ∞ -categories $Alg_{O}(C)$ and $Alg_{O}(C)$ are different.

Remark 3.7. If $C^{\otimes} \to O^{\otimes}$ is realized as a categorical fibration, then the fiber product (3.1) can be calculated as the naive fiber product.

Exercise 3.8. Show that

$$(C \underset{O}{\times} O')^{\otimes} \coloneqq C^{\otimes} \underset{O^{\otimes}}{\times} O'^{\otimes}$$

is an ∞ -operad, and

$$\operatorname{Alg}_{O'/O}(C) \simeq \operatorname{Alg}_{O'}(C \times O').$$

Exercise 3.9. Show that restriction along $(1) \in Fin_*$ gives a conservative functor

 $Alg_{O'/O}(C) \rightarrow Fun_O(O', C),$

which is called the forgetful functor.

Definition 3.10. Let C^{\otimes} and C'^{\otimes} be O-monoidal ∞ -categories. An object in $Alg_{C/O}(C')$ is called a *(right) lax O-monoidal* functor from C^{\otimes} to C'^{\otimes}

Remark 3.11. Show that for $O^{\otimes} = Comm^{\otimes}$ or $Assoc^{\otimes}$, the above definition generalizes the notions of lax (symmetric) monoidal functors between ordinary categories.

4. Unitality

4.1. Note that for any

We say an ∞ -operad O^{\otimes} is unital if there is an essentially unique nullary operator into any color $X \in O$.

APPENDIX A. MONOIDAL ENVELOPE

A.1. By definition, any symmetric monoidal ∞ -category is an ∞ -operad. The converse is false because an ∞ -operad $C^{\otimes} \to Fin_*$ might not have enough coCartesian arrows.

Exercise A.2. Let $C^{\otimes} \to \operatorname{Fin}_*$ be any symmetric monoidal ∞ -category and $C' \subseteq C$ be a full sub- ∞ -category. Let $C'^{\otimes} \subset C^{\otimes}$ be the full sub- ∞ -category consisting of objects (X_1, \dots, X_n) with $X_i \in C'$. Show that C'^{\otimes} is an ∞ -operad.

Exercise A.3. Conversely, show that any ∞ -operad C^{\otimes} can be realized as a full sub- ∞ -category of a symmetric monoidal ∞ -category.

A.4. In fact, there is a universal symmetric monoidal ∞ -category $Env(C)^{\otimes}$ containing C^{\otimes} such that for any test symmetric monoidal ∞ -category D^{\otimes} , we have

 $\mathsf{Fun}^{\otimes}(\mathsf{Env}(\mathsf{C}),\mathsf{D})\simeq\mathsf{Alg}_{\mathsf{C}}(\mathsf{D}).$

This is called the *symmetric monoidal envelope* of C.

A.5. Suggested readings. HA.2.2.4.