LECTURE 21

In this lecture, we introduce oo-operads and monoidal co-categories.

1. SYMMETRIC MONOIDAL c0-CATEGORY

1.1. Recall a monoidal category is an (ordinary) category C equipped with the
following structure:
e A binary functor - ® —: C x C > C, called the monoidal product;
e An object 1 € C, called the monoidal unit;
e An invertible natural transformation of the form X®(Y®Z) ~ (X®Y)®Z,
called the asssociator;
e Invertible natural transformations of the form 1@ X ~ X, X ®1 ~ X, called
the left and right unitors
such that certain diagrams, including the pentagon diagram, commute.
Informally, we can say a monoidal category is a category equpped with a multipli-
cation which is unital and associative up to coherent homotopy. Here the coherence
data are finite because ordinary categories form a 2-category. In fact, the definition
of monoidal categories only invokes n-ary operators C*" — C for 0 <n < 4.

1.2.  Also recall a symmetric monoidal category is a monoidal category C
equipped with:
e An invertible natural transformation of the form X ® Y ~Y ® X, called the
swap natural transformation
such that certain diagrams, including the inverse law, commute.

1.3.  'We would like to generalize the above to a notion of (symmetric) monoidal

oo-categories. Now the coherence data should invoke n-ary operators for all n > 0.
Instead of writing down such coherence data, we would like to encode them as a

functor F': J - Cate, a.k.a. a homotopy coherent diagram of co-categories, where

J is a clever-designed simplicial set such that

For n >0, there is a vertex (n) which is sent by F to the n-th power C*";

There is an edge (2) — (1) encoding the monoidal product;

There is an edge (0) — (1) encoding the monoidal unit;

e The coherence data are encoded by cells in J.

Note that the first point is actually a structure rather than property: we need to
provide projections py : F'({n)) - F((1)) for each 1 < k < n that exhibit F'((n)) as
the n-th power of F'({1)). Hence we should have:

e There is an edge (n) - (1) encoding the projection functor pr, : C*" - C
for each i€ {1,---,n}.
Also, in the symmetric monoidal setting, to encode the swap natural transforma-
tions, we need to be able to swap the factors in C*™. Hence we should have:
e For n > 0, the symmetric group X,, should act on (n).
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In fact, the above two requirements can be combined together as:

e For each injective map ¢ : {1,--,m} - {1,--,n}, there is an edge from
(n) = (m) encoding the projection functor pr, : C"* — C*™.

These edges in J will be called the inert morphisms. In contrast, edges encoding
data such as the product and the unit are called the active morphisms.
Our intuition says:

e In the symmetric monoidal setting, there is a unique active morphism

{n) > (1).
e In the monoidal setting, active morphisms (n) — (1) should be acted freely
and transitively by X,,.

Exercise 1.4. Show that injective maps ¢ : {1,--,m} - {1,---,;n} are in natural
bijection with maps between marked sets

Q: {*a 17 27 ) TL} - {*7 17 2a 7m}
such that o~ ({j}) is a singleton for any 1<j <m.
1.5.  The above discussion motivates the following definition by Segal.

Definition 1.6. Let Fin, be the minimal model for the ordinary category of marked
finite sets. For each n >0, let (n) € Fin, be the object

(n) = () 0 ()7 = {5,1,2,m}.
Let a: {n) — (m) be a morphism in Fin,, we say

(1) The morphism « is inert if o *({j}) is a singleton for any non-marked
element j € (m)°.
(2) The morphism « is active if o™ ({*}) = {*}.

We also write

Comm® := Fin,.

Exercise 1.7. A morphism in Comm® is an isomorphism iff it is both inert and
active.

Exercise 1.8. Any morphism (n) — (m) can be written as (n) LA (1) 5 (m) with B
inert and v active. Moreover, such expression is unique up to unique isomorphism.

Definition 1.9. A symmetric monoidal oo-category is a functor
F: Comm® - Cato,
that sends the inert morphisms p': (n) - (1), i € (n)° to functors
F(p'): F({n) — F((1))
that exhibit F({n)) as F({1))*". We call F({1)}) its underlying oo-category.

Exercise 1.10. If F((1)) is ordinary, then F determines a symmetric monoidal
category.
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1.11. The non-symmetric case can be encoded by the following variant of Comm®.

Definition 1.12. Let Assoc® be the ordinary category defined as follows:

e An object in Assoc® is a marked finite set (n) with n > 0.
o A morphism from (n) to (m) is a pair (a,<;) where

— « is a map (n) - (m) between marked sets

— For each j € (m)°, <; is a linear ordering on o' (j).

For a morphism (o, <;), we say it is inert (resp. active) if a is so.
Definition 1.13. A monoidal co-category is a functor
F: Assoc® — Cat,,

that sends the inert morphisms p': (n) — (1), i € (n)° to functors

F(p'): F((n)) > F({1)
that exhibit F/((n)) as F((1))*™. We call F({(1)) its underlying oo-category.

Exercise 1.14. Show that Exercise remain valid for Assoc® instead of
Fin,.

Exercise 1.15. Show that for both Comm® and Assoc®, the group of automor-
phisms on (n) can be identified with %,,.

1.16. There is a functor Assoc® - Comm® that sends a symmetric monoidal oco-
category to a monoidal one via restriction.

Warning 1.17. Although Assoc® — Comm® behaves like a quotient functor (it
is surjective on both objects and morphisms), one should not think a symmetric
monoidal co-category as a monoidal one satisfying certain properties. Rather, even
for a functor Assoc® — D into a (2,1)-category D, such as that of ordinary cate-
gories, a weak factorization through Comm® is a structure rather than property.

Remark 1.18. In fact, we can encode non-symmetric monoidal oo-categories in a
more efficient way, where the role of Assoc® is replaced by A°. This is known as
the simplicial model for monoids. Roughly speaking, this amounts to cancel out the
Yn-action Hom({n), (1)) from the data encoded by a functor Assoc® — Cat.,.

Comparing with Assoc®, this simplicial model has several advantages. For in-
stance, one can define A, -algebras using the truncation (A,)°P. However, it is
hard to directly compare monoidal structures encoded by the simplicial model with
the symmetric monotdal ones because the ¥, -action is hidden.

See HA.4.1 and 4.2.2 for more details.

2. c0-OPERADS
Exercise 2.1. Show that for both Comm® and Assoc®, the following data are equiv-
alent:

e An active morphism «: (n) » (m);
o A decomposition (n)° = |je(m)e{n;)° and active morphisms a; : (n;) — (1)
labelled by j € (m)°.

Hint: for each a, consider the factorization of p; o a in Ezercise[1.§
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2.2. Infact, the categories Comm® and Assoc® can be recovered from the following
data:

(i) For each n >0, the set O(n) of active morphisms (n) — (1);
(ii) The action of ¥,, on O(n);
(iii) For m > 0 and n; labelled by j € (m)°, a map

O(m) x (H O(n;)) = O(ny + -+ +nm)

given by the above exercise.

In the classical literatures, a collection of such data satisfying certain compatibilities
is called a (symmetric) operad. Here O(n) is the set of n-ary operators and (iii) are
called composition maps.

2.3. Ome can also consider operads with enriched structures. For instance, we
have the notions of simplicial operads, topological operads, k-linear operads, dg-
operads, using enrichment over the ordinary symmetric monoidal categories Seta,
Top, Mody, Ch(Ab)...

We would like to have a notion of operads weakly enriched over the oo-category
Spc. In other words, each O(n) should be a space, and the composition maps are
associative up to coherent homotopies.

Following the general philosephy in this course, it is better to define an co-operad
as an oo-category satisfying certain conditions, such as Comm® and Assoc®, rather
than listing all these coherence data.

2.4. Before giving the definition of co-operads, let us conduct one more general-
ization.

Let A be a symmetric monoidal co-category and M be an oco-category. We want
to define an A-action on M via a functor F : CMod® — Cat.,. The index category
CMod® should contain Comm® as a full subcategory, and the remaining part should
encode the A-module structure on M. Hence we should at least have:

e objects (a,---,a) which comes from (n) € Assoc® and should be sent to A"
by F;

e objects (a,---,a,m) which should be sent to A*™ x M by F;

e a unique active morphism (a,---,a,m) - m encoding the action functor
A x M - M.

Note that we should also have objects of the form (m,a,---,a) and more generally
(a,---,a,m,a,--,a). For technical reasons, it is more convenient to even allow se-
quences with multiple m-terms. Of course, we will not allow any active morphism
from (m,m) to m.

Definition 2.5. Let CMod® be the category defined as folllows:

o

o An object is a pair ({n),c), where {(n) € Fin, and c¢: (n)° > {a,m} is a map.
o A morphism from ({n),c) to ({m),d) is a morphism « : (n) - (m) in
Comm® such that
— If ¢(i) = m, then either a(i) = » or d(a(i)) =m.
— If d(j) =m, then there is a unique i € o 1({j}) with c(i) = m.
For such a morphism, we say it is inert (resp. active) if the underlying morphism
in Comm® is so.
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2.6. Similarly, we can define a category LMod® encoding monoids and their left
modules.

Definition 2.7. Let LMod® be the category defined as folllows:
o An object is a pair ({n),c), where {(n) € Fin, and c¢: (n)° > {a,m} is a map.
o A morphism from ({(n),c) to ({m),d) is a morphism (o, <;) : (n) - (m) in
Assoc® such that
— If c(i) =m, then either a(i) = * or d(a(i)) =m.
— If d(j) = m, then there is a unique i € o ({j}) with c(i) = m, which
is also the mazimal element for the ordering <;.
For such a morphism, we say it is inert (resp. active) if the underlying morphism
in Assoc® is so.
Dually, we define RMod® by replacing maximal by minimal.

2.8. Categories such as CMod®, LMod® or RMod® are colored operads, and the
symbols a,m are the colors.

Exercise 2.9. Construct an ordinary colored operad BMod® with three colors
(a;,m,a,) encoding two monoids and a bimodule of them.

Exercise 2.10. Let O® be either Comm®, Assoc®, CMod®, LMod®, RMod® or
BMod®. Consider the natural functor p: O® - Fin,. Show that

(1) For any inert morphism in Fin,, there are enough p-coCartesian liftings of
it. Moreover, a morphism in O% is inert iff it is a p-coCartesian over an
wnert morphism in Fin,.

(2) Let C « O‘?n) be an object lying over (n), and C — C; be p-coCartesian

morphisms lying over p': (n) — (1), i € (n)°. Then these morphisms exhibit
Casa p—limitﬂ. In other words, for any testing object D € O®, the following

square is Cartesian

Mapso® (D, O) —_—> Hi M3P50® (Da CL)

| |

IvlapsFin,k (p(D)7 (TL)) - Hz I\/IapsFin* (p(D)7 <1>)
(3) The covaraint transport functors pif exhibit O‘f’n) as (O?D)X",

Definition 2.11. An co-operad? is an oo-category O® over Fin, satisfying the
conclusions in the above exercisd’. We call

— 0O®
0:=0 (1)
the oo-category of colors in O®.
Definition 2.12. Let p: O® — Fin, be an co-operad and f: C — C’ be a morphism
in 0%, we say
o The morphism f is inert if it is p-coCartesian over an inert morphism in
Fin,.
e The morphism [ is active if p(f) is active.
lSee HTT.4.3.2 for a discussion about relative limits in general.
2A better terminology might be colored oo-operad.

3More precisely, we should say a functor p: O® — Fin, exhibits O® as an essential co-operad,
if any/all realization O® — N(Fin.) of p as an inner fibration satisfies the above conditions.
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2.13. We often denote an object C' € O%M by (C’l,m,C’n)ﬁ with C; € O and treat
the inert morphisms C — C; as implicit.

Exercise 2.14. A morphism in O® is an isomorphism iff it is both inert and active.

Exercise 2.15. Show that any morphism in O% can be essentially uniquely written
as a composition of an inert morphism followed by an active one.

2.16. Let O® be an oco-operad. We can define an O-monoidal co-category as a
functor O® — Cat,, satisfying certain conditions. In practice, it is better to describe
such conditions via the corresponding coCartesian fibration over O®.

Definition 2.17. Let O® be an oco-operad. An O-momnoidal co-category is an
(essential) coCartesian fibration C® — O® such that the composition C® — O® —
Fin. ezhibits C® as an oc-operad. We call C := C?b the underlying oo-category

of C®.
Definition 2.18. Let C® and C'® be O-monoidal co-categories. An O-momnoidal
functor is a functor C® — C'® defined over O® that preserves all coCartesian
arrows. Let
Fung(C, C’) c Funo®(C®, C,®)

be the full sub-oco-category of O-monoidal functors.

Let

Mono (Cateo ) € (Cates) /00

be the 1-full sub-oco-category of small O-monoidal oo-categories and O-monoidal
functors between them.

Exercise 2.19. Show that for O® = Comm® or Assoc®, the above definition recov-
ers the notions of (symmetric) monoidal co-categories and monoidal functors via
straightening.

Exercise 2.20. What are the initial and final objects in Mong(Cato, ) ?

3. ALGEBRAS

3.1. One advantage of defining O-monoidal co-categories via coCartesian fibrations
is that the definition of algebras inside them is extremely simple.

Definition 3.2. Let O® and C® be co-operads. An co-operad map between them
is a functor p: O® — C® defined over Fin, that preserves inert morphisms. We also
call such a functor an O-algebra in C. Let

Op., € (Cateo) /Fin,

be the I-full sub-co-category consisting of small oco-operads and oo-operad maps
between them.
Let
Algo (C) < Fungin, (0%,C%)

be the full sub-oo-category of co-operad maps O® — C&.

Exercise 3.3. What are the initial and final objects in Op,, ¢

4Lurie’s books use C; @-+-®Ch,, which might cause confusion because C is neither the (absolute)
product nor coproduct of C;’s.
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3.4. To define associative algebra in a category, we only need to equip the latter
with a monoidal structure rather than a symmetric monoidal one. More generally,
we have the following relative version of Definition [3.2

Definition 3.5. Let
0'® c®
\ /
0®

be maps between oo-operads. An O'-algebra in C (relative to O) is an object in

(3.1) Algoro(C) = Algo (C) Alg;(O) {a}.

When q is the identity map on O%, we also write
Algo(C) = Algg0(C).
Warning 3.6. The oco-categories Alg;o(C) and Algo(C) are different.

Remark 3.7. If C® — O® is realized as a categorical fibration, then the fiber product
(3.1) can be calculated as the naive fiber product.

Exercise 3.8. Show that
(Cx0)®:=C® x 0"®
O o®

is an oo-operad, and

Algo//o(c) ~ Alg/o,(C é O,)
Exercise 3.9. Show that restriction along (1) € Fin, gives a conservative functor

AlgOI/O(C) g FUnO(O,, C)7
which is called the forgetful functor.

Definition 3.10. Let C® and C'® be O-monoidal oo-categories. An object in
Algc/o(C) is called a (right) lax O-monoidal functor from C® to C'®

Remark 3.11. Show that for O® = Comm® or Assoc®, the above definition general-
izes the notions of lax (symmetric) monoidal functors between ordinary categories.

4. UNITALITY

4.1. Note that for any
We say an oco-operad O® is unital if there is an essentially unique nullary operator
into any color X € O.

APPENDIX A. MONOIDAL ENVELOPE

A.1. By definition, any symmetric monoidal co-category is an oo-operad. The
converse is false because an co-operad C® — Fin, might not have enough coCartesian
arrows.

Exercise A.2. Let C® - Fin, be any symmetric monoidal oo-category and C' ¢ C
be a full sub-oco-category. Let C'® c C® be the full sub-co-category consisting of
objects (X1, Xp) with X; € C'. Show that C'® is an co-operad.

Exercise A.3. Conversely, show that any co-operad C® can be realized as a full
sub-oo-category of a symmetric monoidal oo-category.
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A.4. In fact, there is a universal symmetric monoidal co-category Env(C)® con-
taining C® such that for any test symmetric monoidal co-category D®, we have

Fun®(Env(C),D) =~ Algc(D).
This is called the symmetric monoidal envelope of C.

A.5. Suggested readings. HA.2.2.4.
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