
LECTURE 21

In this lecture, we introduce ∞-operads and monoidal ∞-categories.

1. Symmetric monoidal ∞-category

1.1. Recall a monoidal category is an (ordinary) category C equipped with the
following structure:

● A binary functor − ⊗ − ∶ C × C→ C, called the monoidal product;
● An object 1 ∈ C, called the monoidal unit;
● An invertible natural transformation of the form X⊗(Y ⊗Z) ≃ (X⊗Y )⊗Z,

called the asssociator;
● Invertible natural transformations of the form 1⊗X ≃X, X⊗1 ≃X, called

the left and right unitors

such that certain diagrams, including the pentagon diagram, commute.
Informally, we can say a monoidal category is a category equpped with a multipli-

cation which is unital and associative up to coherent homotopy. Here the coherence
data are finite because ordinary categories form a 2-category. In fact, the definition
of monoidal categories only invokes n-ary operators C×n → C for 0 ≤ n ≤ 4.

1.2. Also recall a symmetric monoidal category is a monoidal category C
equipped with:

● An invertible natural transformation of the form X ⊗Y ≃ Y ⊗X, called the
swap natural transformation

such that certain diagrams, including the inverse law, commute.

1.3. We would like to generalize the above to a notion of (symmetric) monoidal
∞-categories. Now the coherence data should invoke n-ary operators for all n ≥ 0.

Instead of writing down such coherence data, we would like to encode them as a
functor F ∶ J → Cat∞, a.k.a. a homotopy coherent diagram of ∞-categories, where
J is a clever-designed simplicial set such that

● For n ≥ 0, there is a vertex ⟨n⟩ which is sent by F to the n-th power C×n;
● There is an edge ⟨2⟩→ ⟨1⟩ encoding the monoidal product;
● There is an edge ⟨0⟩→ ⟨1⟩ encoding the monoidal unit;
● The coherence data are encoded by cells in J .

Note that the first point is actually a structure rather than property : we need to
provide projections pk ∶ F (⟨n⟩) → F (⟨1⟩) for each 1 ≤ k ≤ n that exhibit F (⟨n⟩) as
the n-th power of F (⟨1⟩). Hence we should have:

● There is an edge ⟨n⟩ → ⟨1⟩ encoding the projection functor pri ∶ C×n → C
for each i ∈ {1,⋯, n}.

Also, in the symmetric monoidal setting, to encode the swap natural transforma-
tions, we need to be able to swap the factors in C×n. Hence we should have:

● For n ≥ 0, the symmetric group Σn should act on ⟨n⟩.

Date: Dec. 6, 2024.

1



2 LECTURE 21

In fact, the above two requirements can be combined together as:

● For each injective map φ ∶ {1,⋯,m} → {1,⋯, n}, there is an edge from
⟨n⟩→ ⟨m⟩ encoding the projection functor prφ ∶ C×n → C×m.

These edges in J will be called the inert morphisms. In contrast, edges encoding
data such as the product and the unit are called the active morphisms.

Our intuition says:

● In the symmetric monoidal setting, there is a unique active morphism
⟨n⟩→ ⟨1⟩.

● In the monoidal setting, active morphisms ⟨n⟩→ ⟨1⟩ should be acted freely
and transitively by Σn.

Exercise 1.4. Show that injective maps φ ∶ {1,⋯,m} → {1,⋯, n} are in natural
bijection with maps between marked sets

α ∶ {∗,1,2,⋯, n}→ {∗,1,2,⋯,m}

such that α−1({j}) is a singleton for any 1 ≤ j ≤m.

1.5. The above discussion motivates the following definition by Segal.

Definition 1.6. Let Fin∗ be the minimal model for the ordinary category of marked
finite sets. For each n ≥ 0, let ⟨n⟩ ∈ Fin∗ be the object

⟨n⟩ ∶= {∗} ⊔ ⟨n⟩○ ∶= {∗,1,2,⋯, n}.

Let α ∶ ⟨n⟩→ ⟨m⟩ be a morphism in Fin∗, we say

(1) The morphism α is inert if α−1({j}) is a singleton for any non-marked
element j ∈ ⟨m⟩○.

(2) The morphism α is active if α−1({∗}) = {∗}.
We also write

Comm⊗ ∶= Fin∗.

Exercise 1.7. A morphism in Comm⊗ is an isomorphism iff it is both inert and
active.

Exercise 1.8. Any morphism ⟨n⟩→ ⟨m⟩ can be written as ⟨n⟩ βÐ→ ⟨l⟩ γÐ→ ⟨m⟩ with β
inert and γ active. Moreover, such expression is unique up to unique isomorphism.

Definition 1.9. A symmetric monoidal ∞-category is a functor

F ∶ Comm⊗ → Cat∞

that sends the inert morphisms ρi ∶ ⟨n⟩→ ⟨1⟩, i ∈ ⟨n⟩○ to functors

F (ρi) ∶ F (⟨n⟩)→ F (⟨1⟩)

that exhibit F (⟨n⟩) as F (⟨1⟩)×n. We call F (⟨1⟩) its underlying ∞-category.

Exercise 1.10. If F (⟨1⟩) is ordinary, then F determines a symmetric monoidal
category.



LECTURE 21 3

1.11. The non-symmetric case can be encoded by the following variant of Comm⊗.

Definition 1.12. Let Assoc⊗ be the ordinary category defined as follows:

● An object in Assoc⊗ is a marked finite set ⟨n⟩ with n ≥ 0.
● A morphism from ⟨n⟩ to ⟨m⟩ is a pair (α,⪯j) where

– α is a map ⟨n⟩→ ⟨m⟩ between marked sets
– For each j ∈ ⟨m⟩○, ⪯j is a linear ordering on α−1(j).

For a morphism (α,⪯j), we say it is inert (resp. active) if α is so.

Definition 1.13. A monoidal ∞-category is a functor

F ∶ Assoc⊗ → Cat∞

that sends the inert morphisms ρi ∶ ⟨n⟩→ ⟨1⟩, i ∈ ⟨n⟩○ to functors

F (ρi) ∶ F (⟨n⟩)→ F (⟨1⟩)

that exhibit F (⟨n⟩) as F (⟨1⟩)×n. We call F (⟨1⟩) its underlying ∞-category.

Exercise 1.14. Show that Exercise 1.7-1.10 remain valid for Assoc⊗ instead of
Fin∗.

Exercise 1.15. Show that for both Comm⊗ and Assoc⊗, the group of automor-
phisms on ⟨n⟩ can be identified with Σn.

1.16. There is a functor Assoc⊗ → Comm⊗ that sends a symmetric monoidal ∞-
category to a monoidal one via restriction.

Warning 1.17. Although Assoc⊗ → Comm⊗ behaves like a quotient functor (it
is surjective on both objects and morphisms), one should not think a symmetric
monoidal ∞-category as a monoidal one satisfying certain properties. Rather, even
for a functor Assoc⊗ → D into a (2,1)-category D, such as that of ordinary cate-
gories, a weak factorization through Comm⊗ is a structure rather than property.

Remark 1.18. In fact, we can encode non-symmetric monoidal ∞-categories in a
more efficient way, where the role of Assoc⊗ is replaced by ∆op. This is known as
the simplicial model for monoids. Roughly speaking, this amounts to cancel out the
Σn-action Hom(⟨n⟩, ⟨1⟩) from the data encoded by a functor Assoc⊗ → Cat∞.

Comparing with Assoc⊗, this simplicial model has several advantages. For in-
stance, one can define An-algebras using the truncation (∆≤n)op. However, it is
hard to directly compare monoidal structures encoded by the simplicial model with
the symmetric monoidal ones because the Σn-action is hidden.

See HA.4.1 and 4.2.2 for more details.

2. ∞-operads

Exercise 2.1. Show that for both Comm⊗ and Assoc⊗, the following data are equiv-
alent:

● An active morphism α ∶ ⟨n⟩→ ⟨m⟩;
● A decomposition ⟨n⟩○ ≃ ⊔j∈⟨m⟩○⟨nj⟩○ and active morphisms αj ∶ ⟨nj⟩ → ⟨1⟩

labelled by j ∈ ⟨m⟩○.
Hint: for each α, consider the factorization of ρj ○ α in Exercise 1.8.



4 LECTURE 21

2.2. In fact, the categories Comm⊗ and Assoc⊗ can be recovered from the following
data:

(i) For each n ≥ 0, the set O(n) of active morphisms ⟨n⟩→ ⟨1⟩;
(ii) The action of Σn on O(n);
(iii) For m ≥ 0 and nj labelled by j ∈ ⟨m⟩○, a map

O(m) × (∏
j

O(nj))→ O(n1 +⋯ + nm)

given by the above exercise.

In the classical literatures, a collection of such data satisfying certain compatibilities
is called a (symmetric) operad. Here O(n) is the set of n-ary operators and (iii) are
called composition maps.

2.3. One can also consider operads with enriched structures. For instance, we
have the notions of simplicial operads, topological operads, k-linear operads, dg-
operads, using enrichment over the ordinary symmetric monoidal categories Set∆,
Top, Mod♡k , Ch(Ab)...

We would like to have a notion of operads weakly enriched over the ∞-category
Spc. In other words, each O(n) should be a space, and the composition maps are
associative up to coherent homotopies.

Following the general philosephy in this course, it is better to define an ∞-operad
as an ∞-category satisfying certain conditions, such as Comm⊗ and Assoc⊗, rather
than listing all these coherence data.

2.4. Before giving the definition of ∞-operads, let us conduct one more general-
ization.

Let A be a symmetric monoidal ∞-category and M be an ∞-category. We want
to define an A-action on M via a functor F ∶ CMod⊗ → Cat∞. The index category
CMod⊗ should contain Comm⊗ as a full subcategory, and the remaining part should
encode the A-module structure on M. Hence we should at least have:

● objects (a,⋯,a) which comes from ⟨n⟩ ∈ Assoc⊗ and should be sent to A×n

by F ;
● objects (a,⋯,a,m) which should be sent to A×n ×M by F ;
● a unique active morphism (a,⋯,a,m) → m encoding the action functor
A×n ×M→M.

Note that we should also have objects of the form (m,a,⋯,a) and more generally
(a,⋯,a,m,a,⋯,a). For technical reasons, it is more convenient to even allow se-
quences with multiple m-terms. Of course, we will not allow any active morphism
from (m,m) to m.

Definition 2.5. Let CMod⊗ be the category defined as folllows:

● An object is a pair (⟨n⟩, c), where ⟨n⟩ ∈ Fin∗ and c ∶ ⟨n⟩○ → {a,m} is a map.
● A morphism from (⟨n⟩, c) to (⟨m⟩, d) is a morphism α ∶ ⟨n⟩ → ⟨m⟩ in
Comm⊗ such that

– If c(i) = m, then either α(i) = ∗ or d(α(i)) = m.
– If d(j) = m, then there is a unique i ∈ α−1({j}) with c(i) = m.

For such a morphism, we say it is inert (resp. active) if the underlying morphism
in Comm⊗ is so.



LECTURE 21 5

2.6. Similarly, we can define a category LMod⊗ encoding monoids and their left
modules.

Definition 2.7. Let LMod⊗ be the category defined as folllows:

● An object is a pair (⟨n⟩, c), where ⟨n⟩ ∈ Fin∗ and c ∶ ⟨n⟩○ → {a,m} is a map.
● A morphism from (⟨n⟩, c) to (⟨m⟩, d) is a morphism (α,⪯j) ∶ ⟨n⟩→ ⟨m⟩ in

Assoc⊗ such that
– If c(i) = m, then either α(i) = ∗ or d(α(i)) = m.
– If d(j) = m, then there is a unique i ∈ α−1({j}) with c(i) = m, which

is also the maximal element for the ordering ⪯j.
For such a morphism, we say it is inert (resp. active) if the underlying morphism
in Assoc⊗ is so.

Dually, we define RMod⊗ by replacing maximal by minimal.

2.8. Categories such as CMod⊗, LMod⊗ or RMod⊗ are colored operads, and the
symbols a,m are the colors.

Exercise 2.9. Construct an ordinary colored operad BMod⊗ with three colors
(al,m,ar) encoding two monoids and a bimodule of them.

Exercise 2.10. Let O⊗ be either Comm⊗, Assoc⊗, CMod⊗, LMod⊗, RMod⊗ or
BMod⊗. Consider the natural functor p ∶ O⊗ → Fin∗. Show that

(1) For any inert morphism in Fin∗, there are enough p-coCartesian liftings of
it. Moreover, a morphism in O⊗ is inert iff it is a p-coCartesian over an
inert morphism in Fin∗.

(2) Let C ∈ O⊗
⟨n⟩ be an object lying over ⟨n⟩, and C → Ci be p-coCartesian

morphisms lying over ρi ∶ ⟨n⟩→ ⟨1⟩, i ∈ ⟨n⟩○. Then these morphisms exhibit
C as a p-limit1. In other words, for any testing object D ∈ O⊗, the following
square is Cartesian

MapsO⊗(D,C) //

��

∏iMapsO⊗(D,Ci)

��
MapsFin∗(p(D), ⟨n⟩) // ∏iMapsFin∗(p(D), ⟨1⟩).

(3) The covaraint transport functors ρi† exhibit O⊗
⟨n⟩ as (O⊗

⟨1⟩)
×n.

Definition 2.11. An ∞-operad2 is an ∞-category O⊗ over Fin∗ satisfying the
conclusions in the above exercise3. We call

O ∶= O⊗
⟨1⟩

the ∞-category of colors in O⊗.

Definition 2.12. Let p ∶ O⊗ → Fin∗ be an ∞-operad and f ∶ C → C ′ be a morphism
in O⊗, we say

● The morphism f is inert if it is p-coCartesian over an inert morphism in
Fin∗.

● The morphism f is active if p(f) is active.

1See HTT.4.3.2 for a discussion about relative limits in general.
2A better terminology might be colored ∞-operad.
3More precisely, we should say a functor p ∶ O⊗ → Fin∗ exhibits O⊗ as an essential ∞-operad,

if any/all realization O⊗ → N(Fin∗) of p as an inner fibration satisfies the above conditions.



6 LECTURE 21

2.13. We often denote an object C ∈ O⊗
⟨n⟩ by (C1,⋯,Cn)4 with Ci ∈ O and treat

the inert morphisms C → Ci as implicit.

Exercise 2.14. A morphism in O⊗ is an isomorphism iff it is both inert and active.

Exercise 2.15. Show that any morphism in O⊗ can be essentially uniquely written
as a composition of an inert morphism followed by an active one.

2.16. Let O⊗ be an ∞-operad. We can define an O-monoidal ∞-category as a
functor O⊗ → Cat∞ satisfying certain conditions. In practice, it is better to describe
such conditions via the corresponding coCartesian fibration over O⊗.

Definition 2.17. Let O⊗ be an ∞-operad. An O-monoidal ∞-category is an
(essential) coCartesian fibration C⊗ → O⊗ such that the composition C⊗ → O⊗ →
Fin∗ exhibits C⊗ as an ∞-operad. We call C ∶= C⊗⟨1⟩ the underlying ∞-category

of C⊗.

Definition 2.18. Let C⊗ and C′⊗ be O-monoidal ∞-categories. An O-monoidal
functor is a functor C⊗ → C′⊗ defined over O⊗ that preserves all coCartesian
arrows. Let

Fun⊗O(C,C′) ⊆ FunO⊗(C⊗,C′⊗)
be the full sub-∞-category of O-monoidal functors.

Let

MonO(Cat∞) ⊆ (Cat∞)/O⊗
be the 1-full sub-∞-category of small O-monoidal ∞-categories and O-monoidal
functors between them.

Exercise 2.19. Show that for O⊗ = Comm⊗ or Assoc⊗, the above definition recov-
ers the notions of (symmetric) monoidal ∞-categories and monoidal functors via
straightening.

Exercise 2.20. What are the initial and final objects in MonO(Cat∞)?

3. Algebras

3.1. One advantage of defining O-monoidal ∞-categories via coCartesian fibrations
is that the definition of algebras inside them is extremely simple.

Definition 3.2. Let O⊗ and C⊗ be ∞-operads. An ∞-operad map between them
is a functor p ∶ O⊗ → C⊗ defined over Fin∗ that preserves inert morphisms. We also
call such a functor an O-algebra in C. Let

Op∞ ⊆ (Cat∞)/Fin∗
be the 1-full sub-∞-category consisting of small ∞-operads and ∞-operad maps
between them.

Let

AlgO(C) ⊆ FunFin∗(O⊗,C⊗)
be the full sub-∞-category of ∞-operad maps O⊗ → C⊗.

Exercise 3.3. What are the initial and final objects in Op∞?

4Lurie’s books use C1⊕⋯⊕Cn, which might cause confusion because C is neither the (absolute)
product nor coproduct of Ci’s.



LECTURE 21 7

3.4. To define associative algebra in a category, we only need to equip the latter
with a monoidal structure rather than a symmetric monoidal one. More generally,
we have the following relative version of Definition 3.2.

Definition 3.5. Let
O′⊗

q

!!

C⊗

}}
O⊗

be maps between ∞-operads. An O′-algebra in C (relative to O) is an object in

(3.1) AlgO′/O(C) ∶= AlgO′(C) ×
AlgO′(O)

{q}.

When q is the identity map on O⊗, we also write

Alg/O(C) ∶= AlgO/O(C).
Warning 3.6. The ∞-categories Alg/O(C) and AlgO(C) are different.

Remark 3.7. If C⊗ → O⊗ is realized as a categorical fibration, then the fiber product
(3.1) can be calculated as the naive fiber product.

Exercise 3.8. Show that
(C ×

O
O′)⊗ ∶= C⊗ ×

O⊗
O′⊗

is an ∞-operad, and
AlgO′/O(C) ≃ Alg/O′(C ×

O
O′).

Exercise 3.9. Show that restriction along ⟨1⟩ ∈ Fin∗ gives a conservative functor

AlgO′/O(C)→ FunO(O′,C),
which is called the forgetful functor.

Definition 3.10. Let C⊗ and C′⊗ be O-monoidal ∞-categories. An object in
AlgC/O(C′) is called a (right) lax O-monoidal functor from C⊗ to C′⊗

Remark 3.11. Show that for O⊗ = Comm⊗ or Assoc⊗, the above definition general-
izes the notions of lax (symmetric) monoidal functors between ordinary categories.

4. Unitality

4.1. Note that for any
We say an ∞-operad O⊗ is unital if there is an essentially unique nullary operator

into any color X ∈ O.

Appendix A. Monoidal envelope

A.1. By definition, any symmetric monoidal ∞-category is an ∞-operad. The
converse is false because an ∞-operad C⊗ → Fin∗ might not have enough coCartesian
arrows.

Exercise A.2. Let C⊗ → Fin∗ be any symmetric monoidal ∞-category and C′ ⊆ C
be a full sub-∞-category. Let C′⊗ ⊂ C⊗ be the full sub-∞-category consisting of
objects (X1,⋯,Xn) with Xi ∈ C′. Show that C′⊗ is an ∞-operad.

Exercise A.3. Conversely, show that any ∞-operad C⊗ can be realized as a full
sub-∞-category of a symmetric monoidal ∞-category.



8 LECTURE 21

A.4. In fact, there is a universal symmetric monoidal ∞-category Env(C)⊗ con-
taining C⊗ such that for any test symmetric monoidal ∞-category D⊗, we have

Fun⊗(Env(C),D) ≃ AlgC(D).
This is called the symmetric monoidal envelope of C.

A.5. Suggested readings. HA.2.2.4.


	1. Symmetric monoidal oo-category
	1.1. 
	1.2. 
	1.3. 
	1.5. 
	1.11. 
	1.16. 

	2. oo-operads
	2.2. 
	2.3. 
	2.4. 
	2.6. 
	2.8. 
	2.13. 
	2.16. 

	3. Algebras
	3.1. 
	3.4. 

	4. Unitality
	4.1. 

	Appendix A. Monoidal envelope
	A.1. 
	A.4. 
	A.5. Suggested readings


