LECTURE 21

In this lecture, we introduce ∞ -operads and monoidal ∞ -categories.

1. Symmetric monoidal ∞-category

1.1. Recall a monoidal category is an (ordinary) category C equipped with the following structure:

- A binary functor $-\otimes -$: $C \times C \rightarrow C$, called the **monoidal product**;
- An object $\mathbb{1} \in \mathsf{C}$, called the **monoidal unit**;
- An invertible natural transformation of the form $X \otimes (Y \otimes Z) \simeq (X \otimes Y) \otimes Z$, called the asssociator;
- Invertible natural transformations of the form $\mathbb{1} \otimes X \simeq X$, $X \otimes \mathbb{1} \simeq X$, called the left and right unitors

such that certain diagrams, including the pentagon diagram, commute.

Informally, we can say a monoidal category is a category equpped with a multiplication which is unital and associative up to coherent homotopy. Here the coherence data are finite because ordinary categories form a 2-category. In fact, the definition of monoidal categories only invokes *n*-ary operators $C^{\times n} \to C$ for $0 \le n \le 4$.

1.2. Also recall a symmetric monoidal category is a monoidal category C equipped with:

• An invertible natural transformation of the form $X \otimes Y \simeq Y \otimes X$, called the swap natural transformation

such that certain diagrams, including the inverse law, commute.

1.3. We would like to generalize the above to a notion of *(symmetric) monoidal* ∞ -categories. Now the coherence data should invoke *n*-ary operators for all $n \geq 0$.

Instead of writing down such coherence data, we would like to encode them as a functor $F: J \to \text{Cat}_{\infty}$, a.k.a. a homotopy coherent diagram of ∞ -categories, where J is a clever-designed simplicial set such that

- For $n \geq 0$, there is a vertex $\langle n \rangle$ which is sent by F to the n-th power $\mathsf{C}^{\times n}$;
- There is an edge $\langle 2 \rangle \rightarrow \langle 1 \rangle$ encoding the monoidal product;
- There is an edge $\langle 0 \rangle \rightarrow \langle 1 \rangle$ encoding the monoidal unit;
- The coherence data are encoded by cells in J .

Note that the first point is actually a *structure rather than property*: we need to provide projections $p_k : F(\langle n \rangle) \to F(\langle 1 \rangle)$ for each $1 \leq k \leq n$ that exhibit $F(\langle n \rangle)$ as the *n*-th power of $F(\langle 1 \rangle)$. Hence we should have:

• There is an edge $\langle n \rangle \to \langle 1 \rangle$ encoding the projection functor $pr_i : C^{\times n} \to C$ for each $i \in \{1, \dots, n\}.$

Also, in the symmetric monoidal setting, to encode the swap natural transformations, we need to be able to swap the factors in $C^{\times n}$. Hence we should have:

• For $n \geq 0$, the symmetric group Σ_n should act on $\langle n \rangle$.

Date: Dec. 6, 2024.

2 LECTURE 21

In fact, the above two requirements can be combined together as:

• For each *injective* map $\phi : \{1, \dots, m\} \rightarrow \{1, \dots, n\}$, there is an edge from $\langle n \rangle \to \langle m \rangle$ encoding the projection functor $pr_{\phi}: C^{\times n} \to C^{\times m}$.

These edges in J will be called the **inert morphisms**. In contrast, edges encoding data such as the product and the unit are called the active morphisms.

Our intuition says:

- In the symmetric monoidal setting, there is a unique **active** morphism $\langle n \rangle \rightarrow \langle 1 \rangle$.
- In the monoidal setting, active morphisms $\langle n \rangle \rightarrow \langle 1 \rangle$ should be acted freely and transitively by Σ_n .

Exercise 1.4. Show that injective maps $\phi : \{1, \dots, m\} \to \{1, \dots, n\}$ are in natural bijection with maps between marked sets

$$
\alpha: \{*, 1, 2, \cdots, n\} \to \{*, 1, 2, \cdots, m\}
$$

such that $\alpha^{-1}(\{j\})$ is a singleton for any $1 \leq j \leq m$.

1.5. The above discussion motivates the following definition by Segal.

Definition 1.6. Let Fin_{*} be the minimal model for the ordinary category of marked finite sets. For each $n \geq 0$, let $\langle n \rangle \in \mathsf{Fin}_*$ be the object

$$
\langle n \rangle \coloneqq \{ * \} \sqcup \langle n \rangle^{\circ} \coloneqq \{ * , 1, 2, \cdots, n \}.
$$

Let α : $\langle n \rangle \rightarrow \langle m \rangle$ be a morphism in Fin_{*}, we say

- (1) The morphism α is **inert** if $\alpha^{-1}(\{j\})$ is a singleton for any non-marked element $j \in \langle m \rangle^{\circ}$.
- (2) The morphism α is **active** if $\alpha^{-1}(\{\ast\}) = \{\ast\}.$

We also write

$$
Comm^{\otimes} := Fin_{*}.
$$

Exercise 1.7. A morphism in $Comm^{\otimes}$ is an isomorphism iff it is both inert and active.

Exercise 1.8. Any morphism $\langle n \rangle \rightarrow \langle m \rangle$ can be written as $\langle n \rangle \stackrel{\beta}{\rightarrow} \langle l \rangle \stackrel{\gamma}{\rightarrow} \langle m \rangle$ with β inert and γ active. Moreover, such expression is unique up to unique isomorphism.

Definition 1.9. A symmetric monoidal ∞ -category is a functor

 $F: \mathsf{Comm}^{\otimes} \to \mathsf{Cat}_{\infty}$

that sends the inert morphisms $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^{\circ}$ to functors

$$
F(\rho^i): F(\langle n \rangle) \to F(\langle 1 \rangle)
$$

that exhibit $F(\langle n \rangle)$ as $F(\langle 1 \rangle)^{\times n}$. We call $F(\langle 1 \rangle)$ its **underlying** ∞ **-category**.

Exercise 1.10. If $F(\langle 1 \rangle)$ is ordinary, then F determines a symmetric monoidal category.

${\tt LECTURE\ 21} \hspace{2.5cm} {\tt 3}$

1.11. The non-symmetric case can be encoded by the following variant of Comm[®].

Definition 1.12. Let Assoc[®] be the ordinary category defined as follows:

- An object in Assoc[®] is a marked finite set $\langle n \rangle$ with $n \geq 0$.
- A morphism from $\langle n \rangle$ to $\langle m \rangle$ is a pair (α, \leq_i) where
	- α is a map $\langle n \rangle \rightarrow \langle m \rangle$ between marked sets
	- $-$ For each j ∈ $\langle m \rangle^\circ$, \leq_j is a linear ordering on $\alpha^{-1}(j)$.

For a morphism (α, \leq_j) , we say it is inert (resp. active) if α is so.

Definition 1.13. A monoidal ∞ -category is a functor

 $F: \text{Assoc}^\otimes \to \text{Cat}_\infty$

that sends the inert morphisms $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^{\circ}$ to functors

 $F(\rho^i): F(\langle n \rangle) \rightarrow F(\langle 1 \rangle)$

that exhibit $F(\langle n \rangle)$ as $F(\langle 1 \rangle)^{\times n}$. We call $F(\langle 1 \rangle)$ its **underlying** ∞ -category.

Exercise 1.14. Show that Exercise [1.7-](#page-1-0)[1.10](#page-1-1) remain valid for Assoc^{\otimes} instead of Fin∗.

Exercise 1.15. Show that for both Comm[®] and Assoc[®], the group of automorphisms on $\langle n \rangle$ can be identified with Σ_n .

1.16. There is a functor $\text{Assoc}^{\otimes} \to \text{Comm}^{\otimes}$ that sends a symmetric monoidal ∞ category to a monoidal one via restriction.

Warning 1.17. Although Assoc[®] \rightarrow Comm[®] behaves like a quotient functor (it is surjective on both objects and morphisms), one should not think a symmetric monoidal ∞ -category as a monoidal one satisfying certain properties. Rather, even for a functor Assoc[®] \rightarrow D into a (2,1)-category D, such as that of ordinary categories, a weak factorization through $\overline{Comm^{\otimes}}$ is a structure rather than property.

Remark 1.18. In fact, we can encode non-symmetric monoidal ∞ -categories in a more efficient way, where the role of Assoc[®] is replaced by Δ^{op} . This is known as the simplicial model for monoids. Roughly speaking, this amounts to cancel out the Σ_n -action Hom($\langle n \rangle$, $\langle 1 \rangle$) from the data encoded by a functor Assoc[⊗] → Cat_∞.

Comparing with Assoc[®], this simplicial model has several advantages. For instance, one can define A_n -algebras using the truncation $(\Delta_{\leq n})^{\mathsf{op}}$. However, it is hard to directly compare monoidal structures encoded by the simplicial model with the symmetric monoidal ones because the Σ_n -action is hidden.

See HA.4.1 and 4.2.2 for more details.

2. ∞ -OPERADS

Exercise 2.1. Show that for both Comm[®] and Assoc[®], the following data are equivalent:

- An active morphism $\alpha : \langle n \rangle \rightarrow \langle m \rangle$;
- A decomposition $\langle n \rangle^{\circ} \simeq \bigcup_{j \in \{m\}^{\circ}} \langle n_j \rangle^{\circ}$ and active morphisms $\alpha_j : \langle n_j \rangle \to \langle 1 \rangle$ labelled by $j \in \langle m \rangle^{\circ}$.

Hint: for each α , consider the factorization of $\rho_i \circ \alpha$ in Exercise [1.8.](#page-1-2)

2.2. In fact, the categories $Comm^{\otimes}$ and $Assoc^{\otimes}$ can be recovered from the following data:

- (i) For each $n \geq 0$, the set $\mathsf{O}(n)$ of active morphisms $\langle n \rangle \to \langle 1 \rangle$;
- (ii) The action of Σ_n on $\mathsf{O}(n)$;
- (iii) For $m \ge 0$ and n_j labelled by $j \in \langle m \rangle^{\circ}$, a map

$$
\mathsf{O}(m) \times (\prod_j \mathsf{O}(n_j)) \to \mathsf{O}(n_1 + \dots + n_m)
$$

given by the above exercise.

In the classical literatures, a collection of such data satisfying certain compatibilities is called a *(symmetric) operad*. Here $O(n)$ is the set of *n*-ary operators and (iii) are called composition maps.

2.3. One can also consider operads with enriched structures. For instance, we have the notions of *simplicial operads*, *topological operads*, *k*-linear operads, *dg*operads, using enrichment over the *ordinary* symmetric monoidal categories Set_{Δ} , $\mathrm{Top}, \, \mathsf{Mod}^\otimes_k, \, \mathrm{Ch}(\mathsf{Ab})...$

We would like to have a notion of operads *weakly* enriched over the ∞ -category Spc. In other words, each $O(n)$ should be a space, and the composition maps are associative up to coherent homotopies.

Following the general philosephy in this course, it is better to $define$ an ∞ -operad as an ∞-category satisfying certain conditions, such as Comm[⊗] and Assoc[⊗] , rather than listing all these coherence data.

2.4. Before giving the definition of ∞ -operads, let us conduct one more generalization.

Let A be a symmetric monoidal ∞ -category and M be an ∞ -category. We want to define an A-action on M via a functor $F : \mathsf{CMod}^{\otimes} \to \mathsf{Cat}_{\infty}$. The index category CMod[⊗] should contain Comm[⊗] as a full subcategory, and the remaining part should encode the A-module structure on M. Hence we should at least have:

- objects (a, \dots, a) which comes from $\langle n \rangle \in \text{Assoc}^{\otimes}$ and should be sent to $A^{\times n}$ by F :
- objects $(a, ..., a, m)$ which should be sent to $A^{\times n} \times M$ by F ;
- a unique active morphism $(a, \dots, a, m) \rightarrow m$ encoding the action functor $A^{\times n} \times M \rightarrow M$.

Note that we should also have objects of the form (m, a, \dots, a) and more generally $(a, \dots, a, m, a, \dots, a)$. For technical reasons, it is more convenient to even allow sequences with multiple m-terms. Of course, we will not allow any active morphism from (m, m) to m.

Definition 2.5. Let CMod^{\otimes} be the category defined as folllows:

- An object is a pair $(\langle n \rangle, c)$, where $\langle n \rangle \in \text{Fin}_*$ and $c : \langle n \rangle^{\circ} \to \{ \mathfrak{a}, \mathfrak{m} \}$ is a map.
- A morphism from $(\langle n \rangle, c)$ to $(\langle m \rangle, d)$ is a morphism $\alpha : \langle n \rangle \rightarrow \langle m \rangle$ in Comm® such that
	- $-If c(i) = m$, then either $\alpha(i) = * \text{ or } d(\alpha(i)) = m$.
	- $-If d(j) = \mathfrak{m}$, then there is a **unique** $i \in \alpha^{-1}(\{j\})$ with $c(i) = \mathfrak{m}$.

For such a morphism, we say it is inert (resp. active) if the underlying morphism in Comm[⊗] is so.

${\tt LECTURE\ 21} \hspace{2.0cm} 5$

2.6. Similarly, we can define a category $LMod^{\otimes}$ encoding monoids and their *left* modules.

Definition 2.7. Let $LMod^{\otimes}$ be the category defined as folllows:

- An object is a pair $(\langle n \rangle, c)$, where $\langle n \rangle \in \text{Fin}_*$ and $c : \langle n \rangle^{\circ} \to \{ \mathfrak{a}, \mathfrak{m} \}$ is a map.
- A morphism from $(\langle n \rangle, c)$ to $(\langle m \rangle, d)$ is a morphism $(\alpha, \leq_i) : \langle n \rangle \rightarrow \langle m \rangle$ in Assoc[⊗] such that
	- $-If c(i) = \mathfrak{m}$, then either $\alpha(i) = * \text{ or } d(\alpha(i)) = \mathfrak{m}$.
	- $-If d(j) = m$, then there is a **unique** $i \in \alpha^{-1}(\{j\})$ with $c(i) = m$, which is also the maximal element for the ordering \leq_i .

For such a morphism, we say it is inert (resp. active) if the underlying morphism in Assoc[⊗] is so.

Dually, we define RMod[®] by replacing maximal by minimal.

2.8. Categories such as $CMod^{\otimes}$, LMod^{\otimes} or RMod $^{\otimes}$ are *colored operads*, and the symbols a, m are the *colors*.

Exercise 2.9. Construct an ordinary colored operad BMod[⊗] with three colors (a_l, m, a_r) encoding two monoids and a bimodule of them.

Exercise 2.10. Let O[⊗] be either Comm®, Assoc®, CMod®, LMod®, RMod® or BMod[⊗]. Consider the natural functor $p: \mathbb{O}^{\otimes} \to \mathsf{Fin}_*$. Show that

- (1) For any inert morphism in Fin_{\ast} , there are enough p-coCartesian liftings of it. Moreover, a morphism in O^{\otimes} is inert iff it is a p-coCartesian over an inert morphism in Fin*.
- (2) Let $C \in \mathcal{O}_{(n)}^{\otimes}$ be an object lying over $\langle n \rangle$, and $C \to C_i$ be p-coCartesian morphisms lying over $\rho^i : \langle n \rangle \to \langle 1 \rangle$, $i \in \langle n \rangle^{\circ}$. Then these morphisms exhibit C as a p-limit^{[1](#page-4-0)}. In other words, for any testing object $D \in \mathbb{O}^{\otimes}$, the following square is Cartesian

$$
\begin{array}{ccc}\n\text{Maps}_{\mathsf{O}^{\otimes}}(D, C) & \longrightarrow & \prod_{i} \text{Maps}_{\mathsf{O}^{\otimes}}(D, C_{i}) \\
\downarrow & \downarrow & \downarrow \\
\text{Maps}_{\text{Fin}_{*}}(p(D), \langle n \rangle) & \longrightarrow & \prod_{i} \text{Maps}_{\text{Fin}_{*}}(p(D), \langle 1 \rangle).\n\end{array}
$$

(3) The covaraint transport functors ρ_f^i exhibit $O_{(n)}^{\otimes}$ as $(O_{(1)}^{\otimes})^{\times n}$.

Definition [2](#page-4-1).11. An ∞ -operad² is an ∞ -category O^{\otimes} over Fin_{*} satisfying the conclusions in the above exercise^{[3](#page-4-2)}. We call

$$
O := O_{\langle 1 \rangle}^{\otimes}
$$

the ∞ -category of colors in \mathbb{O}^{\otimes} .

Definition 2.12. Let $p: \mathbb{O}^{\otimes} \to \mathsf{Fin}_*$ be an ∞ -operad and $f: C \to C'$ be a morphism in O^{\otimes} , we say

- The morphism f is **inert** if it is p-coCartesian over an inert morphism in Fin∗.
- The morphism f is **active** if $p(f)$ is active.

¹See HTT.4.3.2 for a discussion about relative limits in general.

²A better terminology might be *colored* ∞-operad.

³More precisely, we should say a functor $p: \mathsf{O}^{\otimes} \to \mathsf{Fin}_*$ exhibits O^{\otimes} as an essential ∞-operad, if any/all realization $\mathcal{O}^{\otimes} \to N(\mathsf{Fin}_\ast)$ of p as an inner fibration satisfies the above conditions.

2.13. We often denote an object $C \in \mathsf{O}_{(n)}^{\otimes}$ by $(C_1, \dots, C_n)^4$ $(C_1, \dots, C_n)^4$ with $C_i \in \mathsf{O}$ and treat the inert morphisms $C \rightarrow C_i$ as implicit.

Exercise 2.14. A morphism in O^{\otimes} is an isomorphism iff it is both inert and active.

Exercise 2.15. Show that any morphism in O^{\otimes} can be essentially uniquely written as a composition of an inert morphism followed by an active one.

2.16. Let O^{\otimes} be an ∞ -operad. We can define an $\mathsf{O}\text{-monoidal}\infty\text{-category}$ as a functor $\mathsf{O}^{\otimes} \to \mathsf{Cat}_{\infty}$ satisfying certain conditions. In practice, it is better to describe such conditions via the corresponding coCartesian fibration over O^{\otimes} .

Definition 2.17. Let O^{\otimes} be an ∞ -operad. An $\mathsf{O}\text{-}monoidal \infty\text{-}category$ is an (essential) coCartesian fibration $C^{\otimes} \to O^{\otimes}$ such that the composition $C^{\otimes} \to O^{\otimes} \to$ Fin_∗ exhibits C^{\otimes} as an ∞ -operad. We call $C := C^{\otimes}_{(1)}$ the **underlying** ∞ -category of C^{\otimes} .

Definition 2.18. Let C^{\otimes} and C'^{\otimes} be O-monoidal ∞ -categories. An O-monoidal **functor** is a functor $C^{\otimes} \to C'^{\otimes}$ defined over O^{\otimes} that preserves all coCartesian arrows. Let

 $\mathsf{Fun}^{\otimes}_O(\mathsf{C},\mathsf{C}') \subseteq \mathsf{Fun}_{O^{\otimes}}(\mathsf{C}^{\otimes},\mathsf{C}'^{\otimes})$

be the full sub- ∞ -category of O-monoidal functors. Let

 $Mon_{O}(Cat_{\infty}) \subseteq (Cat_{\infty})_{/O^{\otimes}}$

be the 1-full sub-∞-category of small O-monoidal ∞-categories and O-monoidal functors between them.

Exercise 2.19. Show that for O^{\otimes} = Comm^{\& or} Assoc^{\&}, the above definition recovers the notions of (symmetric) monoidal ∞ -categories and monoidal functors via straightening.

Exercise 2.20. What are the initial and final objects in $Mon_0(Cat_{\infty})$?

3. Algebras

3.1. One advantage of defining O-monoidal ∞ -categories via coCartesian fibrations is that the definition of algebras inside them is extremely simple.

Definition 3.2. Let O^{\otimes} and C^{\otimes} be ∞ -operads. An ∞ -operad map between them is a functor $p: \mathbb{O}^{\otimes} \to \mathbb{C}^{\otimes}$ defined over Fin_\ast that preserves inert morphisms. We also call such a functor an O-algebra in C. Let

$$
\mathsf{Op}_\infty \subseteq (\mathsf{Cat}_\infty)_{/\mathsf{Fin}_*}
$$

be the 1-full sub-∞-category consisting of small ∞ -operads and ∞ -operad maps between them.

Let

 $\mathsf{Alg}_{\mathsf{O}}(\mathsf{C}) \subseteq \mathsf{Fun}_{\mathsf{Fin}_*}(\mathsf{O}^\otimes,\mathsf{C}^\otimes)$

be the full sub-∞-category of ∞-operad maps $\mathsf{O}^{\otimes}\rightarrow \mathsf{C}^{\otimes}.$

Exercise 3.3. What are the initial and final objects in Op_{∞} ?

⁴Lurie's books use $C_1 \oplus \cdots \oplus C_n$, which might cause confusion because C is *neither* the (absolute) product nor coproduct of C_i 's.

3.4. To define associative algebra in a category, we only need to equip the latter with a monoidal structure rather than a symmetric monoidal one. More generally, we have the following relative version of Definition [3.2.](#page-5-1)

Definition 3.5. Let

be maps between ∞ -operads. An O' -algebra in C (relative to O) is an object in

(3.1)
$$
\mathsf{Alg}_{O'/O}(C) := \mathsf{Alg}_{O'}(C) \underset{\mathsf{Alg}_{O'}(O)}{\times} \{q\}.
$$

When q is the identity map on O^{\otimes} , we also write

 $Alg_{10}(C) := Alg_{010}(C)$.

Warning 3.6. The ∞-categories $\mathsf{Alg}_{\mathsf{O}}(\mathsf{C})$ and $\mathsf{Alg}_{\mathsf{O}}(\mathsf{C})$ are different.

Remark 3.7. If $C^{\otimes} \to O^{\otimes}$ is realized as a categorical fibration, then the fiber product [\(3.1\)](#page-6-0) can be calculated as the naive fiber product.

Exercise 3.8. Show that

$$
\big(C\underset{O}{\times}O'\big)^{\otimes}:=C^{\otimes}\underset{O^{\otimes}}{\times}O'^{\otimes}
$$

is an ∞ -operad, and

$$
\mathsf{Alg}_{O'/O}(C) \simeq \mathsf{Alg}_{/O'}(C \underset{O}{\times} O').
$$

Exercise 3.9. Show that restriction along $(1) \in Fin_{\star}$ gives a conservative functor

$$
Alg_{O'/O}(C) \to Fun_O(O', C),
$$

which is called the **forgetful functor**.

Definition 3.10. Let C^{\otimes} and C'^{\otimes} be O-monoidal ∞ -categories. An object in $\mathrm{Alg}_{\mathcal{C}/\mathcal{O}}(\mathcal{C}')$ is called a (right) lax O-monoidal functor from \mathcal{C}^{\otimes} to \mathcal{C}'^{\otimes}

Remark 3.11. Show that for O^{\otimes} = Comm^{\& or} Assoc^{\& or Assoc definition general-} izes the notions of lax (symmetric) monoidal functors between ordinary categories.

4. UNITALITY

4.1. Note that for any

We say an ∞ -operad \mathbb{O}^{\otimes} is unital if there is an essentially unique nullary operator into any color $X \in \mathbb{O}$.

Appendix A. Monoidal envelope

A.1. By definition, any symmetric monoidal ∞ -category is an ∞ -operad. The converse is false because an ∞ -operad $C^{\otimes} \to \text{Fin}_*$ might not have enough coCartesian arrows.

Exercise A.2. Let $C^{\otimes} \to \text{Fin}_{*}$ be any symmetric monoidal ∞ -category and $C' \subseteq C$ be a full sub-∞-category. Let $C^{\otimes} \subset C^{\otimes}$ be the full sub-∞-category consisting of *objects* (X_1, \dots, X_n) with $X_i \in \mathbb{C}'$. Show that \mathbb{C}'^{\otimes} is an ∞ -operad.

Exercise A.3. Conversely, show that any ∞ -operad C^{\otimes} can be realized as a full sub-∞-category of a symmetric monoidal ∞ -category.

 8 $\,$ LECTURE 21

A.4. In fact, there is a universal symmetric monoidal ∞ -category $\mathsf{Env}(\mathsf{C})^{\otimes}$ containing C^{\otimes} such that for any test symmetric monoidal ∞ -category D^{\otimes} , we have

$$
\mathsf{Fun}^{\otimes}(\mathsf{Env}(C), D) \simeq \mathsf{Alg}_C(D).
$$

This is called the symmetric monoidal envelope of C.

A.5. Suggested readings. HA.2.2.4.