LECTURE 22

In this lecture, we study O-algebras for an co-operad O®.

1. n-ARY OPERATORS OF AN ALGEBRA

1.1. Last time, for any co-operads O® and C®, we defined an O-algebra in C as an
oo-operad map p : O® - C®, i.e., a functor defined over Fin, that preserves inert
morphisms. Let us first justify this definition.

1.2. Let C® - Fin, be a symmetric monoidal category and p : O® — C® be an
O-algebra in C. For any n-ary operator in O%, i.e., an active morphoism f : X =
(X1, Xp) = Y lying over the unique active morphism mult, : (n) - (1) in Fin,,
we can construct a morphism

(1.1) p(X1) ® @ p(Xy,) ~p(Y)

in C as follows. Since C® — Fin, is coCartesian, there exists an essential unique

. . h . .
factorization of p(f) as p(X) % Z = p(Y) such that g is a coCartesian arrow over
the active morphism mult,, and h is contained in Cﬁ) =: C. Using the assumption

that p preserves inert morphisms, one can show p(X) =~ (p(X1), -, p(Xn)). It
follows that

Z = mU|tn7-‘-(p(X1),~~~,p(Xn)) gp(‘le) @ ®p(Xn)7

where the last isomorphism can be seen via straightening. Now the morphism
h:Z - p(Y) gives the desired morphism (I.1)).

Exercise 1.3. Generalize the above construction to obtain a functor
O® _)Ca (X177Xn)’_>p(X1)®®p(X’ﬂ)

active
where O®_. is the 1-full sub-oco-category of O® consisting of active morphisms.

active
2. Triv-ALGEBRAS AND [Eo-ALGEBRAS

2.1. Last time we introduced the ordinary operads Assoc® and Comm®. We will
study the corresponding algebras and modules in details in future lectures. For
now, let us consider some even simpler operads.

Exercise 2.2. Let Triv® be the subcategory of Fin, consists of inert morphisms.
Show that Triv® is an operad, and evaluation at (1) € Triv® induces an equivalence

Algr;, (C) = C
for any C® € Op,,.

Exercise 2.3. Let EY be the subcategory of Fin,. consists of morphisms f : (n) - (m)
such that f~1{j} is either empty or a singleton. Show that

(1) The functor E§ — Fin, makes E§ an operad.
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(2) For any oco-operad C® over E, evaluating at the unique morphism (0) — (1)
in E® induces an equivalence

Algg, © 5 Fun[Eg (Al7 C®).

(3) Knwoing an Eg-monoidal co-category C® is equivalent to knowing an oo-
category C and an object 1 in it. More precisely, there is an equivalence

MonEO(Catoo) 5 (Catoo)* = (Catw){*}/

given by the covariant transport along the morphism (0) — (1).
(4) For an Eg-monoidal co-category C®,

Algg, (C) = Cyy.

Remark 2.4. In future lectures, we will fill in more terms in the sequence

Triv® — £ — Assoc® - Comm®.

3. UNITALITY

3.1. Exercise and Exercise suggest E§ is the unital version of Triv®. The
difference can be better formulated via the following exercise.

Exercise 3.2. Show that there is no nullary operators in Triv®, while there is a
unique nullary operator in EY.

3.3. This motivates the following definition.
Definition 3.4. Let O% be an oo-operad and (0) € O‘(’%> be the essentially unique

object.

o We say O® is wnital if for any color X € O, the mapping space
Mapsge ((0), X) is contractible.

o We say 0% is mon-unital if for any color X € O, the mapping space
Mapsge ({0), X) is empty.

Let Opﬁgit (resp. Opus) be the full sub-co-categories of small unital (resp. mon-
unital) co-operads.

Warning 3.5. An oo-operad maybe neither unital nor non-unital.

Warning 3.6. A (symmetric) monoidal co-category C® may not be unital as an
oo-operad. See Exercise[3.13 for a criterion for C® being unital as an co-operad.

3.7. Lurie denoted the object (0) € O%) by @. Note however it is in general not
an initial object in the entire O®. Nevertheless, we have the following results.

Exercise 3.8. Let O® be any co-operad, show that (0) € O® is a final object.
Exercise 3.9. An oo-operad O® is unital iff (0) € O® is an initial object.

Definition 3.10. Let O% be a unital co-operad and p: C® — O® be an O-monoidal
oo-category. We say a morphism Yo - Y in C® exhibits Y as an X -unit object
of C if it is a p-coCartesian edge lying over (0) — X.
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3.11. Since (0) € O® is initial and Cf, ~ C** is contractible, for fixed X € C®,
morphisms Yy — Y as above are essentially unique and Yy ~ (0). Hence it makes
sense to talk about the X-unit object 1x of C and treat the coCartesian edge
(0) - 1x as implicit.

Warning 3.12. The object (0) € C® may not be initial, and coCartesian edges
(0) - 1x are not essentially unique. In fact, one can identify the space of such
edges with that of automorphisms on 1x (Ezercise).

Exercise 3.13. Let O% be a unital co-operad. Show that an O-monoidal co-category
C® is unital as an co-operad iff for any color X € O, the object 1x € C% is initial.

3.14. In classical category theory, for a (symmetric) monoidal category C, there
is a canonical (commutative) algebra object in C whose underlying object is the
monoidal unit 1. Moreover, this (commutative) algebra is initial in the category
of all (commutative) algebras in C. The following result generalize this to any
oo-operads.

Proposition-Definition 3.15 (HA.3.2.1.®. Let O® be a unital co-operad and
p: C® - 0% be an O-monoidal co-category. For an O-algebra A € Alg/o(C), the
following conditions are equivalent:
(1) The object A is initial in Alg)o(C);
(2) For any object X € O®, the morphism A({0)) — A(X) ezhibits A(X) as an
X -unit object of C;
(3) For any color X € O, the morphism A({0)) - A(X) exhibits A(X) as an
X -unit object of C.
We call A the unit O-algeb’r‘cﬂ in C, and denote it by 1c.

3.16. Let us also record the following result.

Proposition 3.17 (HA.2.3.1.9). The embedding Op“"* ¢ Op,, admits a left adjoint.

e}

Remark 3.18. In future lectures, we will endow Op,, with a symmetric monoidal
structure, i.e., construct a coCartesian fibration of co-operads Op2 — Comm®
whose fiber over (1) is Op,,. The monoidal unit of Op,, is given by Triv®. Moreover,
by HA.2.53.1.9, the composition

Op., — Opi* — Op,,
is identified with the functor Eg ® —. It follows that an oco-operad O% is unital iff
0% - Triv® ® 0% - E§ ® 0%
is an equivalence. In particular, Opf;r,'it inherits a symmetric monoidal structure
from Op,, with monoidal unit ES

4. NON-UNITAL ALGEBRAS
4.1.  Given an co-operad O®, we can produce a non-unital co-operad 08, satisfying

certain universal property.

Lurie proved (1)«<>(2). The equivalence (2)<(3) follows from the axioms of co-operads.
2Lurie called it the trivial O-algebra in C.
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Exercise 4.2. Let Fin®™ ¢ Fin, be the subcategory consisting of surjective mor-
phisms. Show that for any oco-operad O, the fiber product

® ._O® s surj
Ony :=0% x Fin}
Fin,

is a mon-unital co-operad.

Exercise 4.3. Show that (EQ)n, ~ Triv®.

Exercise 4.4. Show that the functor
Op., - Opy, 0% = Og,

is Tight adjoint to the embedding functor. In other words,
Algp(Ony) = Algp (0)

for any non-unital D®.

Definition 4.5. Let

O/® C®
\ .

be maps between oo-operads. A non-unital O'-algebra in C (relative to O) is an
object in

Algdro(C) = Algo, 10(C).

4.6. Recall for a non-unital (commutative) ring, being unital is a property rather
than a structure: the unit element is unique. This can be generalized to the oco-
setting:

Theorem 4.7 (HA.5.4.4.5, 5.4.4.7). Let O® be Assoc® or Comm® and C® - O® be
an O-monoidal oo-category. Then 0%, — O® induces a fully faithful functor

Alg/O(C) - AIg/onu (©).

Remark 4.8. In fact, loc.cit. proved that the essential image of the above embed-
ding consists exactly those non-unital associative (resp. commutative) algebras in
C whose images in hC is unital.

Remark 4.9. Similar claim remains true for the co-operads Ef with 1 <k < co.
Warning 4.10. Similar claim is false for general oo-operads.

Exercise 4.11. Show that Algg,(C) = Alg),),,(C) may not be fully faithful for

an Eg-monoidal co-category C.

5. LIMITS AND COLIMITS OF ALGEBRAS

5.1. In this section, we study limits and colimits of O-algebras in an O-monoidal
oo-category C® — 0%,
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5.2. In classical algebra, the limit limA; of the underlying abelian groups of a
diagram of rings ¢ — A; admits a ring structure given by

This can be genealized to any co-operad O%.

Theorem 5.3 (HA.3.2.2.5). Suppose C® — 0% is an O-monoidal co-category such

that each fiber C% admits K -indexed limits for a fized index simplicial set K. Then

the oo-category Alg/o(C) admits K-indezed limits, and the forgetful functors
Alg;o(C) > C%, XeO

preserve and detect K-indexed limits.

Remark 5.4. Note that in the above theorem, we do not assume the covariant
transport functors C% — C% preserves K -indexed limits.

5.5.  As we have seen in the case K = @, the analogue of Theorem [5.3] for colimits
is false in general. Indeed, the above composition would become a correspondence

(cg)el}(m A;)® (C?El}(m A;) < (Zc?)llerlrgz (A4, ® Aj) < c?el}(m (A;® 4;) > C?J;'(m A;.

This suggests the similar claim would be true if the two leftward morphisms are
invertible. To give a precise statement, we need some definitions.

Definition 5.6. Let O® be any oco-operad and p: C® — O® be an O-monoidal cate-
gory. For a simplicial set K, we say p is compatible with K -indexed (co)limits
if
e For any object X € O®, the fiber C% admits K-indexed (co)limits;
o For any morphism X — X' in O®, the covariant transport functor C§ -
C%., preserves K-indexed (co)limits.

We say C is a presentable O-monoidal co-category if each C% is presentable
and p is compatible with small colimits.

Theorem 5.7 (HA.3.2.3.1). Let K be a sifted simplicial set and C® — O% be an
O-monoidal co-category compatible with K -indexed colimits. Then the oo-category
Alg;o(C) admits K-indezed colimits, and the forgetful functors

Alg/o(C) -C%, XeO
preserve and detect K-indexed colimits.
5.8. For general colimits, the first claim remains true, but the second would fail.

Theorem 5.9 (HA. 3.1.3.5, 3.2.3.3). Let C® » 0% be an O-monoidal oco-category
compatible with small colimits. Suppose O% is essentially small. Then

(i) The forgetful functor
Alg;o(C) = Funo(0,C)
admits a left adjoint
Freeo : Funo (O, C) - Alg,o(C).
(ii) The oo-category Alg,o(C) admits small colimits.
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Remark 5.10. As in classical algebra, the finite coproducts of O-algebras can be
calculated by taking simplicial resolutions of them by free O-algebras. Namely, for
an O-algebra A, we have a simplicial object

A% = Alg)o(C), [n] = Freeg "™ (4)
whose colimit is equivalent to A. This will be discussed in future lectures.

Remark 5.11. In future lectures, we will identify finite coproducts of Comm-
algebras as tensor products of them.

5.12. Let us also record the following result.

Proposition 5.13 (HA.3.2.3.5). Let C® — O® be a presentable O-monoidal oo-
category such that O% is essentially small. Then Alg/O(C) is presentable.

APPENDIX A. AUGMENTED ALGEBRAS

A.1. Recall for a non-unital (commutative) ring A, there is a canonical unital
(commutative) ring structure on Z ® A. Moreover, this construction gives a equiva-
lence between the theory of non-unital (commutative) rings and their modules and
augmented (commutative) rings and their modules. These can be generalized to any
unital co-operad O%® and an O-monoidal co-category C® satisfies certain conditions.

A.2. Suggested readings. HA.5.4.4.
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