In this lecture, we study O-algebras for an ∞ -operad O^{\otimes} .

1. n-Ary operators of an algebra

1.1. Last time, for any ∞ -operads O^{\otimes} and C^{\otimes} , we defined an O-algebra in C as an ∞ -operad map $p: O^{\otimes} \to C^{\otimes}$, i.e., a functor defined over Fin_{*} that preserves inert morphisms. Let us first justify this definition.

1.2. Let $C^{\otimes} \to \operatorname{Fin}_*$ be a symmetric monoidal category and $p: O^{\otimes} \to C^{\otimes}$ be an O-algebra in C. For any *n*-ary operator in O^{\otimes} , i.e., an active morphoism $f: X = (X_1, \dots, X_n) \to Y$ lying over the unique active morphism $\operatorname{mult}_n : \langle n \rangle \to \langle 1 \rangle$ in Fin_* , we can construct a morphism

(1.1)
$$p(X_1) \otimes \cdots \otimes p(X_n) \to p(Y)$$

in C as follows. Since $C^{\otimes} \to \operatorname{Fin}_{*}$ is coCartesian, there exists an essential unique factorization of p(f) as $p(X) \xrightarrow{g} Z \xrightarrow{h} p(Y)$ such that g is a coCartesian arrow over the active morphism mult_n and h is contained in $C^{\otimes}_{(1)} =: C$. Using the assumption that p preserves inert morphisms, one can show $p(X) \simeq (p(X_1), \dots, p(X_n))$. It follows that

$$Z \simeq \mathsf{mult}_{n,\dagger}(p(X_1), \cdots, p(X_n)) \simeq p(X_1) \otimes \cdots \otimes p(X_n),$$

where the last isomorphism can be seen via straightening. Now the morphism $h: Z \to p(Y)$ gives the desired morphism (1.1).

Exercise 1.3. Generalize the above construction to obtain a functor

$$O_{\text{active}}^{\otimes} \to \mathsf{C}, (X_1, \dots, X_n) \mapsto p(X_1) \otimes \dots \otimes p(X_n)$$

where O_{active}^{\otimes} is the 1-full sub- ∞ -category of O^{\otimes} consisting of active morphisms.

2. Triv-Algebras and \mathbb{E}_0 -Algebras

2.1. Last time we introduced the ordinary operads $Assoc^{\otimes}$ and $Comm^{\otimes}$. We will study the corresponding algebras and modules in details in future lectures. For now, let us consider some even simpler operads.

Exercise 2.2. Let Triv^{\otimes} be the subcategory of Fin_* consists of inert morphisms. Show that Triv^{\otimes} is an operad, and evaluation at $\langle 1 \rangle \in \text{Triv}^{\otimes}$ induces an equivalence

$$Alg_{Triv}(C) \xrightarrow{\sim} C$$

for any $C^{\otimes} \in Op_{\infty}$.

Exercise 2.3. Let \mathbb{E}_0^{\otimes} be the subcategory of Fin_{*} consists of morphisms $f : \langle n \rangle \to \langle m \rangle$ such that $f^{-1}\{j\}$ is either empty or a singleton. Show that

(1) The functor $\mathbb{E}_0^{\otimes} \to \operatorname{Fin}_*$ makes \mathbb{E}_0^{\otimes} an operad.

Date: Dec. 10, 2024.

(2) For any ∞ -operad C^{\otimes} over \mathbb{E}_{0}^{\otimes} , evaluating at the unique morphism $\langle 0 \rangle \rightarrow \langle 1 \rangle$ in \mathbb{E}_{0}^{\otimes} induces an equivalence

$$\mathsf{Alg}_{/\mathbb{E}_0}(\mathsf{C}) \xrightarrow{\simeq} \mathsf{Fun}_{\mathbb{E}_0^{\otimes}}(\Delta^1, \mathsf{C}^{\otimes}).$$

(3) Knwoing an \mathbb{E}_0 -monoidal ∞ -category C^{\otimes} is equivalent to knowing an ∞ -category C and an object $\mathbb{1}$ in it. More precisely, there is an equivalence

 $\mathsf{Mon}_{\mathsf{E}_0}(\mathsf{Cat}_\infty) \xrightarrow{\simeq} (\mathsf{Cat}_\infty)_* \coloneqq (\mathsf{Cat}_\infty)_{\{*\}/2}$

given by the covariant transport along the morphism $(0) \rightarrow (1)$.

(4) For an \mathbb{E}_0 -monoidal ∞ -category C^{\otimes} ,

$$\operatorname{Alg}_{\mathbb{E}_0}(\mathsf{C}) \simeq \mathsf{C}_{\mathbb{1}/\mathbb{C}}$$

Remark 2.4. In future lectures, we will fill in more terms in the sequence

 $\mathsf{Triv}^{\otimes} \to \mathbb{E}_0^{\otimes} \to \mathsf{Assoc}^{\otimes} \to \mathsf{Comm}^{\otimes}.$

3. UNITALITY

3.1. Exercise 2.2 and Exercise 2.3 suggest \mathbb{E}_0^{\otimes} is the *unital* version of Triv^{\otimes}. The difference can be better formulated via the following exercise.

Exercise 3.2. Show that there is no nullary operators in Triv^{\otimes}, while there is a unique nullary operator in \mathbb{E}_{0}^{\otimes} .

3.3. This motivates the following definition.

Definition 3.4. Let O^{\otimes} be an ∞ -operad and $\langle 0 \rangle \in O_{\langle 0 \rangle}^{\otimes}$ be the essentially unique object.

- We say O[⊗] is unital if for any color X ∈ O, the mapping space Maps_{O[⊗]}((0), X) is contractible.
- We say O[⊗] is non-unital if for any color X ∈ O, the mapping space Maps_{O[⊗]}((0), X) is empty.

Let $\operatorname{Op}_{\infty}^{\operatorname{unit}}$ (resp. $\operatorname{Op}_{\infty}^{\operatorname{nu}}$) be the full sub- ∞ -categories of small unital (resp. non-unital) ∞ -operads.

Warning 3.5. An ∞ -operad maybe neither unital nor non-unital.

Warning 3.6. A (symmetric) monoidal ∞ -category C^{\otimes} may not be unital as an ∞ -operad. See Exercise 3.13 for a criterion for C^{\otimes} being unital as an ∞ -operad.

3.7. Lurie denoted the object $\langle 0 \rangle \in O_{\langle 0 \rangle}^{\otimes}$ by \emptyset . Note however it is in general not an initial object in the entire O^{\otimes} . Nevertheless, we have the following results.

Exercise 3.8. Let O^{\otimes} be any ∞ -operad, show that $\langle 0 \rangle \in O^{\otimes}$ is a final object.

Exercise 3.9. An ∞ -operad O^{\otimes} is unital iff $\langle 0 \rangle \in O^{\otimes}$ is an initial object.

Definition 3.10. Let O^{\otimes} be a unital ∞ -operad and $p: C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category. We say a morphism $Y_0 \to Y$ in C^{\otimes} exhibits Y as an X-unit object of C if it is a p-coCartesian edge lying over $\langle 0 \rangle \to X$.

 $\mathbf{2}$

3.11. Since $\langle 0 \rangle \in O^{\otimes}$ is initial and $C_{\langle 0 \rangle}^{\otimes} \simeq C^{\times 0}$ is contractible, for fixed $X \in C^{\otimes}$, morphisms $Y_0 \to Y$ as above are essentially unique and $Y_0 \simeq \langle 0 \rangle$. Hence it makes sense to talk about *the* X-unit object $\mathbb{1}_X$ of C and treat the coCartesian edge $\langle 0 \rangle \to \mathbb{1}_X$ as implicit.

Warning 3.12. The object $\langle 0 \rangle \in C^{\otimes}$ may not be initial, and coCartesian edges $\langle 0 \rangle \rightarrow \mathbb{1}_X$ are not essentially unique. In fact, one can identify the space of such edges with that of automorphisms on $\mathbb{1}_X$ (Exercise).

Exercise 3.13. Let O^{\otimes} be a unital ∞ -operad. Show that an O-monoidal ∞ -category C^{\otimes} is unital as an ∞ -operad iff for any color $X \in O$, the object $\mathbb{1}_X \in C_X^{\otimes}$ is initial.

3.14. In classical category theory, for a (symmetric) monoidal category C, there is a canonical (commutative) algebra object in C whose underlying object is the monoidal unit 1. Moreover, this (commutative) algebra is initial in the category of all (commutative) algebras in C. The following result generalize this to any ∞ -operads.

Proposition-Definition 3.15 (HA.3.2.1.8¹). Let O^{\otimes} be a unital ∞ -operad and $p: C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category. For an O-algebra $A \in Alg_{/O}(C)$, the following conditions are equivalent:

- (1) The object A is initial in $Alg_{O}(C)$;
- (2) For any object $X \in O^{\otimes}$, the morphism $A(\langle 0 \rangle) \to A(X)$ exhibits A(X) as an X-unit object of C;
- (3) For any color $X \in O$, the morphism $A(\langle 0 \rangle) \to A(X)$ exhibits A(X) as an X-unit object of C.

We call A the unit O-algebra² in C, and denote it by $\mathbb{1}_C$.

3.16. Let us also record the following result.

Proposition 3.17 (HA.2.3.1.9). The embedding $Op_{\infty}^{unit} \subseteq Op_{\infty}$ admits a left adjoint.

Remark 3.18. In future lectures, we will endow Op_{∞} with a symmetric monoidal structure, i.e., construct a coCartesian fibration of ∞ -operads $Op_{\infty}^{\otimes} \rightarrow Comm^{\otimes}$ whose fiber over $\langle 1 \rangle$ is Op_{∞} . The monoidal unit of Op_{∞} is given by Triv[®]. Moreover, by HA.2.3.1.9, the composition

$$\operatorname{Op}_{\infty} \to \operatorname{Op}_{\infty}^{\operatorname{unit}} \to \operatorname{Op}_{\infty}$$

is identified with the functor $\mathbb{E}_0 \otimes -$. It follows that an ∞ -operad O^{\otimes} is unital iff

$$O^{\otimes} \to \mathsf{Triv}^{\otimes} \otimes O^{\otimes} \to \mathbb{E}_0^{\otimes} \otimes O^{\otimes}$$

is an equivalence. In particular, Op_{∞}^{unit} inherits a symmetric monoidal structure from Op_{∞} , with monoidal unit \mathbb{E}_{0}^{∞}

4. Non-unital algebras

4.1. Given an ∞ -operad O^{\otimes} , we can produce a non-unital ∞ -operad O_{nu}^{\otimes} satisfying certain universal property.

¹Lurie proved (1) \Leftrightarrow (2). The equivalence (2) \Leftrightarrow (3) follows from the axioms of ∞ -operads. ²Lurie called it the **trivial O-algebra** in C.

Exercise 4.2. Let $\operatorname{Fin}^{\operatorname{surj}}_* \subseteq \operatorname{Fin}_*$ be the subcategory consisting of surjective morphisms. Show that for any ∞ -operad O^{\otimes} , the fiber product

$$O_{nu}^{\otimes} \coloneqq O^{\otimes} \underset{Fin_{*}}{\times} Fin_{*}^{surj}$$

is a non-unital ∞ -operad.

Exercise 4.3. Show that $(\mathbb{E}_0^{\otimes})_{nu} \simeq \text{Triv}^{\otimes}$.

Exercise 4.4. Show that the functor

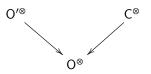
$$Op_{\infty} \rightarrow Op_{\infty}^{nu}, \ O^{\otimes} \mapsto O_{nu}^{\otimes}$$

is right adjoint to the embedding functor. In other words,

$$\operatorname{Alg}_{D}(O_{nu}) \xrightarrow{\simeq} \operatorname{Alg}_{D}(O)$$

for any non-unital D^{\otimes} .

Definition 4.5. Let



be maps between ∞ -operads. A non-unital O'-algebra in C (relative to O) is an object in

$$\operatorname{Alg}_{O'/O}^{\operatorname{nu}}(C) \coloneqq \operatorname{Alg}_{O'_{\operatorname{nu}}/O}(C).$$

4.6. Recall for a non-unital (commutative) ring, being unital is a *property rather* than a structure: the unit element is unique. This can be generalized to the ∞ -setting:

Theorem 4.7 (HA.5.4.4.5, 5.4.4.7). Let O^{\otimes} be $Assoc^{\otimes}$ or $Comm^{\otimes}$ and $C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category. Then $O_{nu}^{\otimes} \to O^{\otimes}$ induces a fully faithful functor

$$Alg_{O(C)} \rightarrow Alg_{O(C)}$$

Remark 4.8. In fact, loc.cit. proved that the essential image of the above embedding consists exactly those non-unital associative (resp. commutative) algebras in C whose images in hC is unital.

Remark 4.9. Similar claim remains true for the ∞ -operads \mathbb{E}_k^{\otimes} with $1 \leq k \leq \infty$.

Warning 4.10. Similar claim is false for general ∞ -operads.

Exercise 4.11. Show that $Alg_{\mathbb{E}_0}(C) \to Alg_{/(\mathbb{E}_0)_{nu}}(C)$ may not be fully faithful for an \mathbb{E}_0 -monoidal ∞ -category C.

5. Limits and colimits of algebras

5.1. In this section, we study limits and colimits of O-algebras in an O-monoidal ∞ -category $C^{\otimes} \to O^{\otimes}$.

5.2. In classical algebra, the limit $\lim A_i$ of the underlying abelian groups of a diagram of rings $i \mapsto A_i$ admits a ring structure given by

$$(\lim_{i \in K} A_i) \otimes (\lim_{i \in K} A_i) \to \lim_{(i,j) \in K^2} (A_i \otimes A_j) \to \lim_{i \in K} (A_i \otimes A_i) \to \lim_{i \in K} A_i.$$

This can be genealized to any ∞ -operad O^{\otimes} .

Theorem 5.3 (HA.3.2.2.5). Suppose $C^{\otimes} \to O^{\otimes}$ is an O-monoidal ∞ -category such that each fiber C_X^{\otimes} admits K-indexed limits for a fixed index simplicial set K. Then the ∞ -category Alg_{/O}(C) admits K-indexed limits, and the forgetful functors

$$Alg_{O}(C) \rightarrow C_X^{\otimes}, X \in O$$

preserve and detect K-indexed limits.

Remark 5.4. Note that in the above theorem, we do not assume the covariant transport functors $C_X^{\otimes} \to C_Y^{\otimes}$ preserves K-indexed limits.

5.5. As we have seen in the case $K = \emptyset$, the analogue of Theorem 5.3 for colimits is false in general. Indeed, the above composition would become a correspondence

$$(\operatorname{colim}_{i \in K} A_i) \otimes (\operatorname{colim}_{i \in K} A_i) \leftarrow \operatorname{colim}_{(i,j) \in K^2} (A_i \otimes A_j) \leftarrow \operatorname{colim}_{i \in K} (A_i \otimes A_i) \rightarrow \operatorname{colim}_{i \in K} A_i.$$

This suggests the similar claim would be true if the two leftward morphisms are invertible. To give a precise statement, we need some definitions.

Definition 5.6. Let O^{\otimes} be any ∞ -operad and $p: C^{\otimes} \to O^{\otimes}$ be an O-monoidal category. For a simplicial set K, we say p is compatible with K-indexed (co)limits if

- For any object X ∈ O[®], the fiber C[®]_X admits K-indexed (co)limits;
 For any morphism X → X' in O[®], the covariant transport functor C[®]_X → C[®]_{X'}, preserves K-indexed (co)limits.

We say C is a presentable O-monoidal ∞ -category if each C_X^{\otimes} is presentable and p is compatible with small colimits.

Theorem 5.7 (HA.3.2.3.1). Let K be a sifted simplicial set and $C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category compatible with K-indexed colimits. Then the ∞ -category $Alg_{O}(C)$ admits K-indexed colimits, and the forgetful functors

$$\operatorname{Alg}_{/\mathsf{O}}(\mathsf{C}) \to \mathsf{C}_X^{\otimes}, X \in \mathsf{O}$$

preserve and detect K-indexed colimits.

5.8. For general colimits, the first claim remains true, but the second would fail.

Theorem 5.9 (HA. 3.1.3.5, 3.2.3.3). Let $C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category compatible with small colimits. Suppose O^{\otimes} is essentially small. Then

(i) The forgetful functor

$$Alg_{O}(C) \rightarrow Fun_{O}(O,C)$$

admits a left adjoint

 $Free_{O}: Fun_{O}(O, C) \rightarrow Alg_{O}(C).$

(ii) The ∞ -category Alg₁₀(C) admits small colimits.

Remark 5.10. As in classical algebra, the finite coproducts of O-algebras can be calculated by taking simplicial resolutions of them by free O-algebras. Namely, for an O-algebra A, we have a simplicial object

 $\Delta^{\mathsf{op}} \to \mathsf{Alg}_{/\mathsf{O}}(\mathsf{C}), \ [n] \mapsto \mathsf{Free}_{\mathsf{O}}^{\circ(n+1)}(A)$

whose colimit is equivalent to A. This will be discussed in future lectures.

Remark 5.11. In future lectures, we will identify finite coproducts of Commalgebras as tensor products of them.

5.12. Let us also record the following result.

Proposition 5.13 (HA.3.2.3.5). Let $C^{\otimes} \to O^{\otimes}$ be a presentable O-monoidal ∞ -category such that O^{\otimes} is essentially small. Then $Alg_{/O}(C)$ is presentable.

APPENDIX A. AUGMENTED ALGEBRAS

A.1. Recall for a non-unital (commutative) ring A, there is a canonical unital (commutative) ring structure on $\mathbb{Z} \oplus A$. Moreover, this construction gives a equivalence between the theory of *non-unital* (commutative) rings and their modules and *augmented* (commutative) rings and their modules. These can be generalized to any unital ∞ -operad O^{\otimes} and an O-monoidal ∞ -category C^{\otimes} satisfies certain conditions.

A.2. Suggested readings. HA.5.4.4.