LECTURE 23

In this lecture, we define O-modules for an ∞ -operad O^{\otimes} .

1. OUTLINE

1.1. In the previous lectures, we constructed operads CMod[⊗], LMod[⊗], RMod[⊗] and BMod[⊗] such that the corresponding *algebra objects* in a symmetric monoidal ∞ category are pairs/triples of commutative/associative algebras and certain types of modules of them. However, these constructions are conducted in an ad hoc manner based on the explicit description of Comm[⊗] and Assoc[⊗]. In this lecture, we give a general theory of modules for O-algebras for *coherent* ∞ -operad O^{\otimes} .

1.2. The definition of coherent ∞ -operads will be given later. For now, let us treat it as a blackbox.

Let O^{\otimes} be a coherent ∞ -operad and $p:\mathsf{C}^{\otimes} \to \mathsf{O}^{\otimes}$ be an $\mathsf{O}\text{-monoidal} \infty$ -category. Let $A \in Alg_{10}(C)$ be an O-algebra. For each color $X \in O$, we will construct an ∞-category, Mod_A(C)_X^o, called the ∞-category of O-A-modules in C of color X. There will be a forgetful functor

$$
\mathsf{Mod}_A^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \to \mathsf{C}_X^{\otimes}
$$

which sends an $O-A$ -module to its **underlying object**. In fact, we will allow X to be a *multi-color*, i.e., any object in \mathbb{O}^{\otimes} . Moreover, we will have a *parameterized* version

(1.1) Mod^O (C) [⊗] → Alg/O(C) × O ⊗

such that its fiber at (A, X) is $\mathsf{Mod}_A^O(\mathsf{C})_X$. Under good conditions, we have the following results, details of which will be explained in the next lecture.

• For fixed $A \in Alg_{10}(C)$, the fiber of (1.1)

$$
\mathsf{Mod}_A^O(\mathsf{C})^\otimes\rightarrow O^\otimes
$$

will be an O-monoidal ∞-category. This generalizes the relative tensor products $-\otimes_A -$ in commutative algebra.

• The projection

$$
\mathsf{Mod}^O(\mathsf{C})^\otimes \to \mathsf{Alg}_{/O}(\mathsf{C})
$$

will be a Cartesian fibration. This generalizes the restriction functors in commutative algebra.

• Note however that for a morphism $A \to B$ in $\text{Alg}_{\text{O}}(\text{C})$, the contravariant transport functor

$$
\mathsf{res}:\mathsf{Mod}^{\mathsf{O}}_B(\mathsf{C})^\otimes\rightarrow\mathsf{Mod}^{\mathsf{O}}_A(\mathsf{C})^\otimes
$$

is not an O-monoidal functor. Instead, it is only a right lax O-monoidal one, i.e., an ∞-operad map. This generalizes the corresponding fact in commutative algebra.

Date: Dec. 13, 2024.

• For fixed $X \in \mathbb{O}^{\otimes}$, the fiber of (1.1)

$$
\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \to \mathsf{Alg}_{/\mathsf{O}}(\mathsf{C})
$$

will be a coCartesian fibration. This generalizes the induction functors in commutative algebra.

 $\bullet\,$ Note however that the functors

$$
\text{ind} : \text{Mod}_A^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \to \text{Mod}_B^{\mathsf{O}}(\mathsf{C})_X^{\otimes}, X \in \mathsf{O}^{\otimes}
$$

cannot be assembled to a functor over \mathbb{O}^{\otimes} . Indeed, as the left adjoint of the right lax O-monoidal functor res, the functor ind should in general only be left lax O-monoidal. In the commutative case, the induction functor happens to be O-monoidal, but this already fails for O^{\otimes} = Assoc^{\ones}. See Exercise [1.4](#page-1-0) below.

Warning 1.3. For O^{\otimes} = Assoc^{\otimes}, objects in Mod^{Assoc}(C) are (A, A) -bimodules rather than left or right A-modules. Indeed, to define relative tensor products over A, we need a left A-module and a right A-module.

Exercise 1.4. Let $A \rightarrow B$ be a homomorphism between associative rings. Show that the restriction functor

$$
\textsf{res} : \, {}_B \textsf{BMod}_B \to \, {}_A \textsf{BMod}_A
$$

has a left adjoint

$$
\mathsf{ind} : {}_A \mathsf{BMod}_A \to {}_B \mathsf{BMod}_B
$$

which is left lax monoidal but not monoidal.

2. Coherent ∞-operads

2.1. The ∞-category $\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes}_X$ will be defined as a certain full sub-∞-category

$$
\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \subseteq \mathsf{Fun}_{\mathsf{O}^{\otimes}}(\mathsf{K}_X,\mathsf{C}^{\otimes}),
$$

where K_X is a certain ∞ -category over O^{\otimes} that plays the role of CMod[®] in the Comm-case.

We will obtain the functoriality of $\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes}_X$ in X via that of K_X . In other words, we will define a certain ∞ -category K_O equipped with *two* projections

$$
(ev_0, ev_1): K_O \to O^\otimes \times O^\otimes
$$

and define

$$
\mathsf{K}_X \coloneqq \{X\} \underset{\mathsf{O}^{\otimes},\mathsf{ev}_0}{\times} \mathsf{K}_\mathsf{O} \xrightarrow{\mathsf{ev}_1} \mathsf{O}^{\otimes}
$$

where the fiber product uses ev_0 , and the projection $K_X \to \mathbb{O}^{\otimes}$ uses ev_1 .

To achieve this, we will *not* make K_X an ∞ -operad. When O^{\otimes} = Comm[®] and $X = \langle 1 \rangle$, this means we only allow objects in CMod[⊗] with at most one m-term.

2.2. To define K_0 , we need some terminologies.

Definition 2.3. Let O^{\otimes} be an ∞ -operad. We say a morphism $f : (X_1, \dots, X_m) \rightarrow$ $(Y_1, ..., Y_n)$ lying over $\langle m \rangle \stackrel{\alpha}{\rightarrow} \langle n \rangle$ is **semi-inert** if for each $j \in \langle n \rangle^{\circ}$, exactly one of the following conditions holds:

- (a) The set $\alpha^{-1}(\{j\})$ is empty.
- (b) The set $\alpha^{-1}(\{j\})$ contains exactly one element i, and the corresponding morphism $X_i \rightarrow Y_j$ is an isomorphism.

Exercise 2.4. Show that f is inert iff (b) holds for each $j \in \langle n \rangle^{\circ}$.

Definition 2.5. Let

$$
\mathsf{K}_0\subseteq \mathsf{Fun}(\left[1\right],\mathsf{O}^\otimes)
$$

be the full sub- ∞ -category of semi-inert morphisms in \mathbb{O}^{\otimes} and

$$
\mathsf{K}_X \coloneqq \{X\} \underset{\mathsf{O}^{\otimes},\mathsf{ev}_0}{\times} \mathsf{K}_\mathsf{O}
$$

be the ∞ -category of semi-inert morphisms out of X.

Definition 2.6. We say a morphism in K_Q is **inert** iff both functors ev_0 and ev_1 send it to an inert morphism in O^{\otimes} .

Exercise 2.7. For O^{\otimes} = Comm^{\& and} X = $\{1\}$, describe the category K_X and construct a canonical functor $K_X \to CMod^{\otimes}$ defined over Comm[®]. Show that

$$
\mathsf{Alg}_{\mathsf{CMod}}(\mathsf{C}) \to \mathsf{Fun}_{\mathsf{Comm}^{\otimes}}(\mathsf{CMod}^{\otimes}, \mathsf{C}^{\otimes}) \to \mathsf{Fun}_{\mathsf{Comm}^{\otimes}}(\mathsf{K}_X, \mathsf{C}^{\otimes})
$$

is fully faithful and the essential image consists of those functors $K_X \to C^{\otimes}$ that preserves inert morphisms.

2.8. We are ready to give the definition of coherent ∞ -operads.

Definition 2.9. Let O^{\otimes} be a small ∞ -operad. We say O^{\otimes} is **coherent** if it satisfies the following conditions

- (i) The ∞ -operad O^{\otimes} is unital.
- (ii) The ∞ -category O of colors is a space.
- (iii) The base-change functor along $ev_0 : K_0 \to O^{\otimes}$

$$
ev_0^* : (Cat_{\infty})_{/O^{\otimes}} \to (Cat_{\infty})_{/K_O}, D \mapsto D \underset{O^{\otimes}, ev_0}{\times} K_O
$$

admits a right adjoint $ev_{0,*}$.

Proposition 2.10 (HA.3.3.1.12, 4.1.1.20). The ∞ -operads Comm[®] and Assoc[®] are coherent.

2.11. Although we have not yet defined E_k , let us record the following result.

Theorem 2.12 (HA.5.1.1.1). The ∞ -operad E_k^{\otimes} is coherent for any $k \geq 0$.

Remark 2.13. Using the results in HA.B.3, one can show (iii) is equivalent to

(iii') The functor $ev_0: K_0 \to O^{\otimes}$ is a flat categorical fibration.

Hence by HA.3.3.2.2, our definition of coherent ∞ -operads coincides with Lurie's definition in HA.3.3.1.1. In fact, under these equivalent conditions, the adjunction

$$
\mathsf{ev}_0^* \colon (\mathsf{Cat}_\infty)_{/ \mathsf{O}^\otimes} \xrightarrow{\longrightarrow} (\mathsf{Cat}_\infty)_{/ \mathsf{K}_\mathsf{O}} : \mathsf{ev}_{0,*}
$$

can be realized as a Quillen adjunction between the (slice) Joyal model categories. It follows that for a categorical fibration D over K_0 , the functor $ev_{0,*}$ sends it to the quasi-category $ev_{0,*}(D)$ over O^{\otimes} satisfying the following univresal property

$$
\mathsf{Hom}_{(\mathsf{Set}_{\Delta})_{/O^{\otimes}}}(J,\mathsf{ev}_{0,*}(D)) \simeq \mathsf{Hom}_{(\mathsf{Set}_{\Delta})_{/K_O}}(J \underset{O^{\otimes}}{\times} K_O,D),
$$

where the fiber product in the RHS is the naive one.

Exercise 2.14. Let $D \in (Cat_{\infty})_{/Q^{\otimes}}$, show that the fiber of $ev_{0,*} \circ ev_1^*(D)$ at $X \in Q^{\otimes}$ is equivalent to $Fun_{O^{\otimes}}(K_X, D)$.

4 LECTURE 23

3. Definition of modules

3.1. We are finally ready to construct $Mod^O(C)[®]$.

Definition 3.2. Let O^{\otimes} be a coherent ∞ -operad and $C^{\otimes} \to O^{\otimes}$ be an ∞ -operad map. We define

$$
\mathsf{Mod}^O(\mathsf{C})^\otimes \subseteq \mathsf{ev}_{0,*} \circ \mathsf{ev}_1^*(\mathsf{C}^\otimes)
$$

to be the full sub-∞-category consisting of those objects such that the corresponding functor $K_X \rightarrow C^{\otimes}$ (see Exercise [2.14\)](#page-2-0) preserves inert morphisms.

3.3. Note that one projection in [\(1.1\)](#page-0-0) is automatic: we have a structure functor

$$
\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes} \to \mathsf{O}^{\otimes}.
$$

Exercise 3.4. For O^{\otimes} = Comm^{\8}}, identify the fiber of the above functor at $\langle 1 \rangle$ with $\mathsf{Alg}_{\mathsf{CMod}}(\mathsf{C}).$

3.5. To obtain the other projection

$$
\mathsf{Mod}^O(\mathsf{C})^\otimes \rightarrow \mathsf{Alg}_O(\mathsf{C}),
$$

we need more definitions.

Definition 3.6. Let \mathbb{O}^{\otimes} be an ∞ -operad. We say a morphism $f : (X_1, \dots, X_m) \rightarrow$ $(Y_1, ..., Y_n)$ lying over $\langle m \rangle \stackrel{\alpha}{\rightarrow} \langle n \rangle$ is **null** if for each $j \in \langle n \rangle^{\circ}$,

(a) The set $\alpha^{-1}(\{j\})$ is empty.

Let $K^0_0 \subseteq K_0$ be the full sub- ∞ -category of null morphisms.

Exercise 3.7. Show that f is null iff it factors through the object $(0) \in O^{\otimes}$.

Exercise 3.8. Show that the functor (ev_0^0, ev_1^0) : $K_0^0 \rightarrow O^{\otimes} \times O^{\otimes}$ is an equivalence.

Exercise 3.9. Show that the diagram

induces a natural functor

$$
\mathrm{ev}_{0,*} \circ \mathrm{ev}_1^*(C^\otimes) \to \mathrm{ev}_{0,*}^0 \circ \mathrm{ev}_1^{0,*}(C^\otimes) \simeq O^\otimes \times \mathrm{Fun}_{O^\otimes}(O^\otimes, C^\otimes)
$$

which restricts to a functor

$$
\mathsf{Mod}^O(\mathsf{C})^\otimes\rightarrow O^\otimes\times\mathsf{Alg}_O(\mathsf{C})
$$

defined over O ⊗.

3.10. Let us conclude by constructing the forgetful functor

$$
\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes} \to \mathsf{C}^{\otimes}.
$$

Exercise 3.11. Show that any isomorphism in \mathbb{O}^{\otimes} is semi-inert. In particular, there is a functor

$$
\Delta: \mathsf{O}^{\otimes} \to \mathsf{K}_{\mathsf{O}}, \ X \mapsto \mathsf{id}_X.
$$

Exercise 3.12. Show that the diagram

induces a natural functor

$$
\text{ev}_{0,*} \circ \text{ev}_1^*(C^\otimes) \to C^\otimes
$$

defined over O [⊗]. Its restriction

$$
\mathsf{Mod}^O(\mathsf{C})^\otimes \to \mathsf{C}^\otimes
$$

is called the forgetful functor.

Appendix A. Flat fibrations

A.1. Let $q: X \to Y$ be a categorical fibration between quasi-categories. As men-tioned in Remark [2.13,](#page-2-1) the functor $q_* : (\text{Cat}_{\infty})_{/X} \to (\text{Cat}_{\infty})_{/Y}$ exists iff q is a flat categorical fibration. The latter condition has a nice characterization via simplicial sets, which says q is flat iff for any $\Delta^2 \to Y$, the map $X \times_Y \Lambda_1^2 \to X \times_Y \Lambda^2$ is a categorical equivalence. Informally speaking, this means for any chain $u \stackrel{f}{\rightarrow} v \stackrel{g}{\rightarrow} w$ in Y, the correspondence between X_u and X_w over $g \circ f$ is the composition of the correspondences over f and g .

A.2. Suggested readings. HA.B.3.