LECTURE 23

In this lecture, we define O-modules for an ∞ -operad O^{\otimes} .

1. Outline

1.1. In the previous lectures, we constructed operads CMod^{\otimes} , LMod^{\otimes} , RMod^{\otimes} and BMod^{\otimes} such that the corresponding *algebra objects* in a symmetric monoidal ∞ -category are pairs/triples of commutative/associative algebras and certain types of modules of them. However, these constructions are conducted in an *ad hoc* manner based on the explicit description of Comm^{\otimes} and Assoc^{\otimes} . In this lecture, we give a general theory of modules for O-algebras for *coherent* ∞ -operad O^{\otimes} .

1.2. The definition of coherent ∞ -operads will be given later. For now, let us treat it as a blackbox.

Let O^{\otimes} be a coherent ∞ -operad and $p: C^{\otimes} \to O^{\otimes}$ be an O-monoidal ∞ -category. Let $A \in Alg_{/O}(C)$ be an O-algebra. For each color $X \in O$, we will construct an ∞ -category, $Mod_A^O(C)_X^{\otimes}$, called the ∞ -category of O-A-modules in C of color X. There will be a forgetful functor

$$\mathsf{Mod}_A^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \to \mathsf{C}_X^{\otimes}$$

which sends an O-A-module to its **underlying object**. In fact, we will allow X to be a *multi-color*, i.e., any object in O^{\otimes} . Moreover, we will have a *parameterized* version

(1.1)
$$\operatorname{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes} \to \operatorname{Alg}_{/\mathsf{O}}(\mathsf{C}) \times \mathsf{O}^{\otimes}$$

such that its fiber at (A, X) is $Mod_A^O(C)_X$. Under *good conditions*, we have the following results, details of which will be explained in the next lecture.

• For fixed $A \in Alg_{O}(C)$, the fiber of (1.1)

$$\mathsf{Mod}_A^{\mathsf{O}}(\mathsf{C})^{\otimes} \to \mathsf{O}^{\otimes}$$

will be an O-monoidal ∞ -category. This generalizes the relative tensor products – \otimes_A – in commutative algebra.

• The projection

$$Mod^{O}(C)^{\otimes} \rightarrow Alg_{/O}(C)$$

will be a Cartesian fibration. This generalizes the restriction functors in commutative algebra.

• Note however that for a morphism $A \to B$ in $Alg_{O}(C)$, the contravariant transport functor

$$\mathsf{es}:\mathsf{Mod}_B^{\mathsf{O}}(\mathsf{C})^{\otimes}\to\mathsf{Mod}_A^{\mathsf{O}}(\mathsf{C})^{\otimes}$$

is not an O-monoidal functor. Instead, it is only a right lax O-monoidal one, i.e., an ∞ -operad map. This generalizes the corresponding fact in commutative algebra.

Date: Dec. 13, 2024.

• For fixed $X \in O^{\otimes}$, the fiber of (1.1)

$$\operatorname{Aod}^{O}(C)_{X}^{\otimes} \to \operatorname{Alg}_{/O}(C)$$

will be a coCartesian fibration. This generalizes the induction functors in commutative algebra.

• Note however that the functors

ind : $\operatorname{Mod}_{A}^{O}(C)_{X}^{\otimes} \to \operatorname{Mod}_{B}^{O}(C)_{X}^{\otimes}, X \in O^{\otimes}$

cannot be assembled to a functor over O^{\otimes} . Indeed, as the left adjoint of the right lax O-monoidal functor res, the functor ind should in general only be *left lax* O-monoidal. In the commutative case, the induction functor *happens* to be O-monoidal, but this already fails for $O^{\otimes} = Assoc^{\otimes}$. See Exercise 1.4 below.

Warning 1.3. For $O^{\otimes} = Assoc^{\otimes}$, objects in $Mod_A^{Assoc}(C)$ are (A, A)-bimodules rather than left or right A-modules. Indeed, to define relative tensor products over A, we need a left A-module and a right A-module.

Exercise 1.4. Let $A \rightarrow B$ be a homomorphism between associative rings. Show that the restriction functor

$$\mathsf{res}: {}_B\mathsf{BMod}_B \to {}_A\mathsf{BMod}_A$$

has a left adjoint

$$ind : {}_{A}BMod_{A} \rightarrow {}_{B}BMod_{B}$$

which is left lax monoidal but not monoidal.

2. Coherent ∞ -operads

2.1. The ∞ -category $\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})^{\otimes}_X$ will be defined as a certain full sub- ∞ -category

$$\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})_X^{\otimes} \subseteq \mathsf{Fun}_{\mathsf{O}^{\otimes}}(\mathsf{K}_X,\mathsf{C}^{\otimes})$$

where K_X is a certain ∞ -category over O^{\otimes} that plays the role of $CMod^{\otimes}$ in the Comm-case.

We will obtain the functoriality of $\mathsf{Mod}^{\mathsf{O}}(\mathsf{C})_X^{\otimes}$ in X via that of K_X . In other words, we will define a certain ∞ -category K_{O} equipped with *two* projections

$$(ev_0, ev_1) : K_0 \to O^{\otimes} \times O^{\otimes}$$

and define

$$\mathsf{K}_X \coloneqq \{X\} \underset{\mathsf{O}^{\otimes}, \mathsf{ev}_0}{\times} \mathsf{K}_{\mathsf{O}} \xrightarrow{\mathsf{ev}_1} \mathsf{O}^{\otimes}$$

where the fiber product uses ev_0 , and the projection $K_X \rightarrow O^{\otimes}$ uses ev_1 .

To achieve this, we will *not* make K_X an ∞ -operad. When $O^{\otimes} = \text{Comm}^{\otimes}$ and $X = \langle 1 \rangle$, this means we only allow objects in CMod^{\otimes} with at most one \mathfrak{m} -term.

2.2. To define K_0 , we need some terminologies.

Definition 2.3. Let O^{\otimes} be an ∞ -operad. We say a morphism $f : (X_1, \dots, X_m) \rightarrow (Y_1, \dots, Y_n)$ lying over $\langle m \rangle \xrightarrow{\alpha} \langle n \rangle$ is **semi-inert** if for each $j \in \langle n \rangle^{\circ}$, exactly one of the following conditions holds:

- (a) The set $\alpha^{-1}(\{j\})$ is empty.
- (b) The set $\alpha^{-1}(\{j\})$ contains exactly one element *i*, and the corresponding morphism $X_i \to Y_j$ is an isomorphism.

 $\mathbf{2}$

Exercise 2.4. Show that f is inert iff (b) holds for each $j \in \langle n \rangle^{\circ}$.

Definition 2.5. Let

$$K_0 \subseteq Fun([1], O^{\otimes})$$

be the full sub- ∞ -category of semi-inert morphisms in O^{\otimes} and

$$\mathsf{K}_X \coloneqq \{X\} \underset{\mathsf{O}^{\otimes},\mathsf{ev}_0}{\times} \mathsf{K}_{\mathsf{O}}$$

be the ∞ -category of semi-inert morphisms out of X.

Definition 2.6. We say a morphism in K_0 is inert iff both functors ev_0 and ev_1 send it to an inert morphism in O^{\otimes} .

Exercise 2.7. For $O^{\otimes} = \text{Comm}^{\otimes}$ and $X = \langle 1 \rangle$, describe the category K_X and construct a canonical functor $K_X \to CMod^{\otimes}$ defined over $Comm^{\otimes}$. Show that

$$\mathsf{Alg}_{\mathsf{CMod}}(\mathsf{C}) \to \mathsf{Fun}_{\mathsf{Comm}^{\otimes}}(\mathsf{CMod}^{\otimes}, \mathsf{C}^{\otimes}) \to \mathsf{Fun}_{\mathsf{Comm}^{\otimes}}(\mathsf{K}_X, \mathsf{C}^{\otimes})$$

is fully faithful and the essential image consists of those functors $K_X \to C^{\otimes}$ that preserves inert morphisms.

2.8. We are ready to give the definition of coherent ∞ -operads.

Definition 2.9. Let O^{\otimes} be a small ∞ -operad. We say O^{\otimes} is coherent if it satisfies the following conditions

- (i) The ∞ -operad O^{\otimes} is unital.
- (ii) The ∞ -category O of colors is a space.
- (iii) The base-change functor along $ev_0 : K_0 \to 0^{\otimes}$

$$\mathsf{ev}_0^*:(\mathsf{Cat}_\infty)_{/\mathsf{O}^\otimes} \to (\mathsf{Cat}_\infty)_{/\mathsf{K}_\mathsf{O}}, \ \mathsf{D} \mapsto \mathsf{D} \underset{\mathsf{O}^\otimes,\mathsf{ev}_0}{\times} \mathsf{K}_\mathsf{O}$$

admits a right adjoint $ev_{0,*}$.

Proposition 2.10 (HA.3.3.1.12, 4.1.1.20). The ∞ -operads Comm^{\otimes} and Assoc^{\otimes} are coherent.

2.11. Although we have not yet defined E_k , let us record the following result.

Theorem 2.12 (HA.5.1.1.1). The ∞ -operad E_k^{\otimes} is coherent for any $k \ge 0$.

Remark 2.13. Using the results in HA.B.3, one can show (iii) is equivalent to

(iii') The functor $ev_0 : K_0 \to 0^{\otimes}$ is a flat categorical fibration.

Hence by HA.3.3.2.2, our definition of coherent ∞ -operads coincides with Lurie's definition in HA.3.3.1.1. In fact, under these equivalent conditions, the adjunction

$$\operatorname{ev}_0^* : (\operatorname{Cat}_\infty)_{/\mathsf{O}^\otimes} \rightleftharpoons (\operatorname{Cat}_\infty)_{/\mathsf{K}_0} : \operatorname{ev}_{0,*}$$

can be realized as a Quillen adjunction between the (slice) Joyal model categories. It follows that for a categorical fibration D over K_0 , the functor $ev_{0,*}$ sends it to the quasi-category $ev_{0,*}(D)$ over O^{\otimes} satisfying the following universal property

$$\operatorname{Hom}_{(\operatorname{Set}_{\Delta})_{/{\mathsf{O}}^{\otimes}}}(J, \operatorname{ev}_{0,*}(D)) \simeq \operatorname{Hom}_{(\operatorname{Set}_{\Delta})_{/{\mathsf{K}}_{\mathsf{O}}}}(J \underset{{\mathsf{O}}^{\times}}{\times} {\mathsf{K}}_{\mathsf{O}}, D),$$

where the fiber product in the RHS is the naive one.

Exercise 2.14. Let $D \in (Cat_{\infty})_{/O^{\otimes}}$, show that the fiber of $ev_{0,*} \circ ev_1^*(D)$ at $X \in O^{\otimes}$ is equivalent to $Fun_{O^{\otimes}}(K_X, D)$.

LECTURE 23

3. Definition of modules

3.1. We are finally ready to construct $Mod^{O}(C)^{\otimes}$.

Definition 3.2. Let O^{\otimes} be a coherent ∞ -operad and $C^{\otimes} \to O^{\otimes}$ be an ∞ -operad map. We define

$$Mod^{O}(C)^{\otimes} \subseteq ev_{0,*} \circ ev_{1}^{*}(C^{\otimes})$$

to be the full sub- ∞ -category consisting of those objects such that the corresponding functor $\mathsf{K}_X \to \mathsf{C}^{\otimes}$ (see Exercise 2.14) preserves inert morphisms.

3.3. Note that one projection in (1.1) is automatic: we have a structure functor

$$Mod^{O}(C)^{\otimes} \rightarrow O^{\otimes}$$

Exercise 3.4. For $O^{\otimes} = Comm^{\otimes}$, identify the fiber of the above functor at $\langle 1 \rangle$ with $Alg_{CMod}(C)$.

3.5. To obtain the other projection

$$Mod^{O}(C)^{\otimes} \rightarrow Alg_{O}(C),$$

we need more definitions.

Definition 3.6. Let O^{\otimes} be an ∞ -operad. We say a morphism $f : (X_1, \dots, X_m) \rightarrow (Y_1, \dots, Y_n)$ lying over $\langle m \rangle \xrightarrow{\alpha} \langle n \rangle$ is **null** if for each $j \in \langle n \rangle^{\circ}$,

(a) The set $\alpha^{-1}(\{j\})$ is empty.

Let $\mathsf{K}^0_{\mathsf{O}} \subseteq \mathsf{K}_{\mathsf{O}}$ be the full sub- ∞ -category of null morphisms.

Exercise 3.7. Show that f is null iff it factors through the object $(0) \in O^{\otimes}$.

Exercise 3.8. Show that the functor $(ev_0^0, ev_1^0) : K_0^0 \to O^{\otimes} \times O^{\otimes}$ is an equivalence.

Exercise 3.9. Show that the diagram

induces a natural functor

$$\mathsf{ev}_{0,*} \circ \mathsf{ev}_1^*(\mathsf{C}^\otimes) \to \mathsf{ev}_{0,*}^0 \circ \mathsf{ev}_1^{0,*}(\mathsf{C}^\otimes) \simeq \mathsf{O}^\otimes \times \mathsf{Fun}_{\mathsf{O}^\otimes}(\mathsf{O}^\otimes,\mathsf{C}^\otimes)$$

which restricts to a functor

$$Mod^{O}(C)^{\otimes} \rightarrow O^{\otimes} \times Alg_{O}(C)$$

defined over O^{\otimes} .

3.10. Let us conclude by constructing the forgetful functor

$$Mod^{O}(C)^{\otimes} \rightarrow C^{\otimes}$$

Exercise 3.11. Show that any isomorphism in O^\otimes is semi-inert. In particular, there is a functor

$$\Delta: \mathsf{O}^{\otimes} \to \mathsf{K}_{\mathsf{O}}, \ X \mapsto \mathsf{id}_X.$$

Exercise 3.12. Show that the diagram

induces a natural functor

$$ev_{0,*} \circ ev_1^*(C^{\otimes}) \to C^{\otimes}$$

defined over O^{\otimes} . Its restriction

$$Mod^{O}(C)^{\otimes} \rightarrow C^{\otimes}$$

is called the forgetful functor.

APPENDIX A. FLAT FIBRATIONS

A.1. Let $q: X \to Y$ be a categorical fibration between quasi-categories. As mentioned in Remark 2.13, the functor $q_*: (Cat_{\infty})_{/X} \to (Cat_{\infty})_{/Y}$ exists iff q is a *flat* categorical fibration. The latter condition has a nice characterization via simplicial sets, which says q is flat iff for any $\Delta^2 \to Y$, the map $X \times_Y \Lambda_1^2 \to X \times_Y \Delta^2$ is a categorical equivalence. Informally speaking, this means for any chain $u \xrightarrow{f} v \xrightarrow{g} w$ in Y, the *correspondence* between X_u and X_w over $g \circ f$ is the composition of the correspondences over f and g.

A.2. Suggested readings. HA.B.3.