
LECTURE 24

In this lecture, we study O-modules for an ∞-operad O⊗. Throughout this
lecture, O⊗ is a coherent O-operad and q ∶ C⊗ → O⊗ is an ∞-operad map.

1. Relative tensor products

1.1. Last time we defined an∞-category ModO(C)⊗ fitting into the following com-
mutative diagram

(1.1) ModO(C)⊗ //

��

C⊗

q

��
Alg

/O(C) ×O
⊗ // O⊗.

Objects in ModO(C)⊗ should be viewed as triples (A,X,M), where

● A ∈ Alg
/O(C) is an O-algebra in C,

● X ∈ O⊗ is a multi-color in O⊗,
● M is an object in C⊗X equipped with an O-A-module structure of type X.

The top horizontal functor in (1.1) sends (A,X,M) to the underlying object M ,
while the left vertical functor sends the triple to (A,X).

Theorem 1.2 (HA.3.3.3.9, 3.3.3.10). Let A ∈ Alg
/O(C) be an O-algebra in C. Then

ModOA(C)
⊗ is an ∞-operad, and the forgetful functor

ModOA(C)
⊗
→ C⊗

is an ∞-operad map.

Proposition 1.3 (HA.3.4.2.1). Suppose q ∶ C⊗ → O⊗ is an O-monoidal ∞-category.
Let A ∶= 1C ∈ Alg/O(C) be the unit algebra in C. Then the forgetful functor

ModO
1C
(C)⊗ → C⊗

is an equivalence.

Theorem 1.4 (HA.3.4.4.2). Let A ∈ Alg
/O(C) be an O-algebra in C. Suppose:

(i) The ∞-operad O⊗ is essentially small;
(ii) The functor q ∶ C⊗ → O⊗ exhibits C⊗ as a presentable O-monoidal ∞-

category.

Then the functor

ModOA(C)
⊗
→ O⊗

exhibits ModOA(C)
⊗ as a presentable O-monoidal ∞-category.
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Remark 1.5. Informally speaking, the above theorem says the relative tensor prod-
ucts of A-modules in an O-monoidal ∞-category exist as long as the absolute tensor
products behave well under colimits. Moreover, these relative tensor products define
an O-monoidal structure on the ∞-category of A-modules.

Remark 1.6. For O⊗ = Assoc⊗, Comm⊗, or more generally E
⊗

k for k ≥ 1, the

relative tensor product M ⊗A N of two objects M,N ∈ModOA(C) ∶=ModOA(C)
⊗

⟨1⟩
can

be calculated explicitly as a geometric realization

M ⊗N M ⊗A⊗Noo oo M ⊗A⊗A⊗N ⋯oo oooo

known as the Bar construction. For more details, see HA.4.4 and 5.1.3.

Proposition 1.7 (HA.3.4.4.4). In the setting of Theorem 1.4, for any multi-color

X ∈ O⊗, the X-unit object in ModOA(C)
⊗ has underlying object in C⊗ canonically

isomorphic to A(X).

Remark 1.8. More precisely, a morphism M0 →M in ModOA(C)
⊗ lying over ⟨0⟩ →

X exhibits M as an X-unit object iff the corresponding functor

∆1
×
O⊗

KO → C⊗

sends the morphism between (⟨0⟩ → X) ∈ K⟨0⟩ and (X
idX
ÐÐ→ X) ∈ KX to an isomor-

phism in C⊗X .

1.9. The following result generalizes the corresponding well-known result in com-
mutative algebra.

Proposition 1.10 (HA.3.4.1.7). Let A ∈ Alg
/O(C) be an O-algebra in C. Then

there is a canonical equivalence

Alg
/O(ModOA(C)) → Alg

/O(C)A/

compatible with the forgetful functors to Alg
/O(C).

Remark 1.11. Informally speaking, the above equivalence is induced by restriction
along a functor

O⊗ ×∆1
→ KO

which sends (X,0) to the null morphism ⟨0⟩ →X, and sends (X,1) to the identity

morphism X
idX
ÐÐ→X.

1.12. We can also describe modules in ModOA(C)
⊗.

Proposition 1.13 (HA.3.4.1.8). Let A ∈ Alg
/O(C) be an O-algebra in C. Then

there is a canonical pullback diagram of ∞-categories:

ModO(ModOA(C))
⊗ //

��

Alg
/O(ModOA(C))

≃ // Alg
/O(C)A/

��
ModO(C)⊗ // Alg

/O(C).
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1.14. The meaning of the above proposition can be explained via the following
corollary of it.

Corollary 1.15. Let ϕ ∶ A → B be a morphism in Alg
/O(C). Then there is a

canonical equivalence

ModOB(ModOA(C))
⊗ ≃

Ð→ModOB(C)
⊗,

where in the source we view B as an O-algebra in ModOA(C)
⊗.

2. Restrictions and limits

Theorem 2.1 (HA.3.4.3.4). The functor

(2.1) ModO(C)⊗ → Alg
/O(C)

is a Cartesian fibration, and a morphism in ModO(C)⊗ is Cartesian iff its image
in C⊗ is an isomorphism.

Exercise 2.2. Let A ∈ Alg
/O(C). Show that the forgetful functor ModOA(C)

⊗
→ C⊗

is conservative.

Exercise 2.3. Show that the straightening of (2.1)

Alg
/O(C)

op
→ Cat∞

canonically factors through (Cat∞)/C⊗ .

Exercise 2.4. Let A ∈ Alg
/O(C). Show that a morphism in ModOA(C)

⊗ is inert iff

its image in C⊗ is so. Deduce that for a morphism ϕ ∶ A → B in Alg
/O(C), the

contravariant transport functor

resϕ ∶ModOB(C)
⊗
→ModOA(C)

⊗

is an ∞-operad map.

Remark 2.5. Informally speaking, the above results say there are restriction func-
tors along homomorphisms between O-algebras, and these restriction functors are
laxly compatible with relative tensor products, whenever the latter exist.

Exercise 2.6. What is the relationship between resϕ and the equivalence

ModOB(ModOA(C))
⊗ ≃

Ð→ModOB(C)
⊗?

2.7. The next result is about limits of modules. One should compare it with
[Lecture 22, Theorem 5.3], which is about limits of algebras.

Theorem 2.8 (HA.3.4.3.6). Let A ∈ Alg
/O(C) be an O-algebra in C. For a multi-

color X ∈ O⊗ and a simplicial set K, suppose:

(i) The functor q ∶ C⊗ → O⊗ is a coCartesian fibration.
(ii) The fiber C⊗X admits K-indexed limits.

Then the ∞-category ModOA(C)
⊗

X admits K-indexed limits and the foegetful functor

ModOA(C)
⊗

X → C⊗X

preserves and detects K-indexed limits.
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Exercise 2.9. In the above setting, show that for any morphism ϕ ∶ A → B in
Alg

/O(C), the functor

resϕ ∶ModOB(C)
⊗

X →ModOA(C)
⊗

X

preserves K-indexed limits.

Remark 2.10. In fact, Theorem 2.1 and Theorem 2.8 can be combined into a
single statement about limits in ModO(C)⊗ relative to the projection

ModO(C)⊗ → Alg
/O(C) ×O

⊗.

See HA.3.4.3.1 for more details.

3. Induction and colimits

3.1. Exercise 2.9 and the adjoint functor theorem imply the following result.

Corollary 3.2. Suppose:

(i) The ∞-operad O⊗ is essentially small;
(ii) The functor q ∶ C⊗ → O⊗ exhibits C⊗ as a presentable O-monoidal ∞-

category.

Then for any multi-color X ∈ O⊗, the functor

ModO(C)⊗X → Alg
/O(C)

is a coCartesian fibration.

Remark 3.3. For a morphism ϕ ∶ A → B in Alg
/O(C), the covariant transport

functor

indϕ ∶ModOA(C)
⊗

X →ModOB(C)
⊗

X

is called the induction functor.

3.4. The following result says for O⊗ = Comm⊗ the induction functor is symmetric
monoidal.

Theorem 3.5 (HA.4.5.1.3). Let O⊗ = Comm⊗. Suppose:

● The functor q ∶ C⊗ → Comm⊗ exhibits C⊗ as a symmetric monoidal ∞-
category compatible with geometric realizations.

Then the functor

ModComm
(C)⊗ → AlgComm(C) ×O

⊗

is a coCartesian fibration.

Remark 3.6. The induction functor

indϕ ∶ModComm
A (C) →ModComm

B (C)

sends M to B ⊗A M , which can be calculated explicitly as a geometric realization

B ⊗M B ⊗A⊗Noo oo B ⊗A⊗A⊗M ⋯.oo oooo

For more details, see HA.4.5.3.



LECTURE 24 5

3.7. Recall that general colimits of algebras may not be preserved by the forgetful
functors. However, this would not happen for modules.

Theorem 3.8 (HA.3.4.4.6). Let A ∈ Alg
/O(C) be an O-algebra in C. For a multi-

color X ∈ O⊗ and a simplicial set K, suppose:

● The functor q ∶ C⊗ → O⊗ exhibits C⊗ as an O-monoidal ∞-category com-
patible with K-indexed colimits1.

Then the ∞-category ModOA(C)
⊗

X admits K-indexed colimits and the foegetful func-
tor

ModOA(C)
⊗

X → C⊗X

preserves and detects K-indexed colimits.

Remark 3.9. Explain that the above theorem is plausible using an argument similar
to [Lecture 22, §5.5].

Remark 3.10. In fact, Theorem 1.4 and Theorem 3.8 can be combined into a
single statement about colimits in ModOA(C)

⊗ relative to the projection

ModOA(C)
⊗
→ O⊗.

See HA.3.4.4.3 for more details.

4. Left modules and bimodules

4.1. The following result says a Comm-module of a commutative algebra is the
same as a left (or right) module of the underlying associative algebra.

Proposition 4.2 (HA.4.5.1.4). Let O⊗ = Comm⊗. There is a canonical pullback
diagram of ∞-categories:

ModComm
(C) //

��

AlgLMod(C)

��
AlgComm(C) // AlgAssoc(C).

4.3. The following result says an Assoc-module of an associative algebra is the
same as a bimodule of it.

Proposition 4.4 (HA.4.4.1.28). Let O⊗ = Assoc⊗. There is a canonical pullback
diagram of ∞-categories:

ModAssoc(C) //

��

AlgBMod/Assoc(C)

��
Alg

/Assoc(C) // Alg
/Assoc(C) ×Alg/Assoc(C)

where the bottom horizontal functor is the diagonal functor.

1HA.3.4.4.6 is stated under the assumption that q is compatible with arbitrary small colimits.
However, our weaker assumption suffices for the claim below, which is claim (2) in loc.cit..
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Appendix A. More on bimodules

A.1. Knowing an (A,B)-bimodule is equivalent to knowing a right B-module
equipped with a left A-action that commutes with the B-action. In formula,

ABModB(C) ≃ LModA(RModB(C)).

A.2. The monoidal structure on ModAssocA (C) can be generalized to operations

A0BModA1(C) × A1BModA2(C) ×⋯ × An−1BModAn(C) → A0BModAn(C)

satisfying certain compatibilities.

A.3. Suggested readings. HA.4.3.
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