LECTURE 25

In this lecture, we define and study several symmetric monoidal ∞-categories.

1. Cartesian symmetric monoidal structure

1.1. Let C be an ∞ -category that admits finite products. In this section, we endow C with a symmetric monoidal structure $C^* \to \overline{Comm}^{\otimes}$ such that the multiplication functor is given by

$$
C \times C \to C, (X, Y) \mapsto X \times Y.
$$

Definition 1.2. We say a symmetric monoidal structure $C^{\otimes} \rightarrow$ Comm[®] on C is Cartesian if it satisfies the following properties:

- (1) The unit object $\mathbb{1}_{C} \in C$ is final.
- (2) For objects $X, Y \in \mathsf{C}$, the morphisms

$$
X \xleftarrow{\simeq} X \otimes \mathbb{1}_{\mathbb{C}} \leftarrow X \otimes Y \to \mathbb{1}_{\mathbb{C}} \otimes Y \xrightarrow{\simeq} Y
$$

exhibits $X \otimes Y$ as a product of X and Y in C .

Theorem 1.3 (HA.2.4.1.19). The functor $C^{\otimes} \rightarrow C$ defines an equivalence between

- (i) The ∞-category of (small) Cartesian symmetric monoidal ∞-categories, and symmetric monoidal functors between them;
- (ii) The ∞ -category of (small) ∞ -categories that admit finite products, and finite-product-preserving functors between them.

1.4. In particular, for an ∞ -category C that admits finite products, there is an essentially unique Cartesian symmetric monoidal structure on it, which we denote by $C^{\times} \rightarrow \text{Fin}_{*}$. Note that when using this notation, we need to equip it with an identification $C_{(1)}^{\times} \simeq C$.

1.5. We can equip Cat_{∞} with the Cartesian symmetric monoidal structure $\mathsf{Cat}_{\infty}^{\times} \to$ Fin[∗] and consider O-algebra object in it. Note that such objects are a priori different from O-monoidal ∞-categories: the former is a functor $O^{\&} \rightarrow \text{Cat}^{\times}_{\infty}$ while the latter is a functor $\mathsf{O}^{\otimes} \to \mathsf{Cat}_{\infty}$ (via straightening). To compare these notions, we need a functor

$$
\mathsf{Cat}_\infty^\times \to \mathsf{Cat}_\infty
$$

that sends an object $(D_1, ..., D_n) \in (Cat_{\infty}^{\times})_{(n)}$ to $\prod_{i=1}^{n} D_i \in Cat_{\infty}$. As a sanity check, note that the inert morphism $(D_1, ..., D_n) \to D_k$ can be sent to the projection functor $D_1 \times \cdots \times D_n \to D_k$. It turns out this can be generalized to any *Cartesian* symmetric monoidal structure C^* , including $\mathsf{Cat}_{\infty}^{\times}$.

Exercise 1.6. Convince yourself that there is no similar functor $C^{\otimes} \rightarrow C$ for general symmetric monoidal ∞ -category C.

Date: Dec. 20, 2024.

1.7. To give the precise construction of the desired functor $C^* \rightarrow C$, we need some terminologies.

Definition 1.8. Let $p: O^{\otimes} \to \text{Fin}_{*}$ be an ∞ -operad and D be an ∞ -category that admits finite products. Let

$$
Mon_{O}(D) \subseteq Fun(O^{\otimes}, D)
$$

be the full sub-∞-category consisting of functors $M: \mathsf{O}^\otimes \to \mathsf{D}$ such that:

(i) For any multi-color $X = (X_1, ..., X_n)$ in $\mathbb{O}_{(n)}^{\otimes}$, the canonical morphisms $M(X) \rightarrow M(X_i)$ induce an equivalence

$$
M(X) \stackrel{\simeq}{\to} \prod_{i=1}^n M(X_i).
$$

Objects in $Mon_0(C)$ are called **O-monoids** in C.

Example 1.9. When $C = Cat_{\infty}$, an O-monoid in Cat_∞ is just an O-monoidal ∞-category via straightening.

Definition 1.10. Let $p: O^{\otimes} \to \text{Fin}_{*}$ be a symmetric monoidal ∞ -category and D be an ∞ -category that admits finite products. Let

$$
Fun^{\times}(\mathsf{O}^{\otimes}, \mathsf{D}) \subseteq Mon_{\mathsf{O}}(\mathsf{D})
$$

be the full sub-∞-category consisting of O-monoids $M: \mathsf{O}^\otimes \to \mathsf{D}$ such that:

(ii) For any p-coCartesian morphism $X = (X_1, ..., X_n) \rightarrow Y$ over the unique active morphism $\langle n \rangle \rightarrow \langle 1 \rangle$, the image under M is an equivalence

$$
M(X) \xrightarrow{\simeq} M(Y).
$$

Remark 1.11. Informally, (i) and (ii) say that M sends $\otimes_{i=1}^{n} X_i$ to $\prod_{i=1}^{n} M(X_i)$.

Proposition 1.12 (HA.2.4.1.6). Let C and D be ∞ -categories that admit finite products. Then restriction along $C \to C^{\times}$ defines an equivalence

$$
\mathsf{Fun}^\times(C^\times,D)\xrightarrow{\simeq} \mathsf{Fun}^\times(C,D),
$$

where

$$
\mathsf{Fun}^\times(\mathsf{C},\mathsf{D})\subset \mathsf{Fun}(\mathsf{C},\mathsf{D})
$$

is the full sub- ∞ -category of functors $C \rightarrow D$ that preserves finite products.

1.13. It follows that there is an essentially unique functor

$$
\pi:\mathsf{C}^\times\to\mathsf{C}
$$

in Fun^{\times}(C^{\times}, C) such that the composition $C \to C^{\times} \stackrel{\pi}{\to} C$ is the identity functor.

Proposition 1.14 (HA.2.4.1.7). Let C be an ∞ -category that admits finite products. We equip C with the Cartesian symmetric monoidal structure. Then:

(1) For any ∞ -operad $O^{\otimes} \to \text{Fin}_*$, composing with $\pi : C^{\times} \to C$ induces an equivalence

$$
\mathsf{Alg}_{\mathsf{O}}(\mathsf{C}) \xrightarrow{\simeq} \mathsf{Mon}_{\mathsf{O}}(\mathsf{C}).
$$

(2) For any symmetric monoidal ∞ -category $\mathbb{O}^{\otimes} \to \text{Fin}_*$, composing with π : $C^{\times} \rightarrow C$ induces an equivalence

$$
\mathsf{Fun}^{\otimes}(\mathsf{O},\mathsf{C}) \xrightarrow{\simeq} \mathsf{Fun}^{\times}(\mathsf{O}^{\otimes},\mathsf{C}).
$$

${\tt LECTURE\ 25}\qquad \qquad {\tt 3}$

Remark 1.15. Note that (2) implies the functor in Theorem [1.3](#page-0-0) is fully faithful. Indeed, in HA, Lurie first gave an explicit construction of a Cartesian symmetric monoidal structure C^{\times} , then verified it satisfies the claims in Proposition [1.12](#page-1-0) and [1.14,](#page-1-1) and finally deduced Theorem [1.3](#page-0-0) from them. For details, see HA.2.4.1.

Remark 1.16. In HA, Lurie used the following terminologies:

- Objects in Mon_O(C) are also called lax Cartesian structures on O^{\otimes} ;
- Objects in Fun^{\times}(O^{\otimes} , D) are called weak Cartesian structures on O^{\otimes} .
- A Cartesian structure on \mathbb{O}^{\otimes} is a weak one such that the composition $\mathbb{O} \rightarrow$ $O^{\otimes} \rightarrow D$ is an equivalence.

2. CoCartesian symmetric monoidal structure

2.1. Using the automorphism $\text{Cat}_{\infty} \to \text{Cat}_{\infty}$, $C \to C^{op}$, we obtain the dual version of Definition [1.2](#page-0-1) and Theorem [1.3:](#page-0-0)

Definition 2.2. We say a symmetric monoidal structure $C^{\otimes} \rightarrow Fin_{*}$ on C is co-Cartesian if it satisfies the following properties:

- (1) The unit object $\mathbb{1}_{\mathsf{C}} \in \mathsf{C}$ is initial.
- (2) For objects $X, Y \in \mathsf{C}$, the morphisms

 $X \xrightarrow{\simeq} X \otimes \mathbb{1}_{\mathsf{C}} \to X \otimes Y \leftarrow \mathbb{1}_{\mathsf{C}} \otimes Y \xleftarrow{\simeq} Y$

exhibits $X \otimes Y$ as a coproduct of X and Y in C.

Corollary 2.3. The functor $C^{\otimes} \rightarrow C$ defines an equivalence between

- (i) The ∞-category of (small) coCartesian symmetric monoidal ∞-categories, and symmetric monoidal functors between them;
- (ii) The ∞ -category of (small) ∞ -categories that admit finite coproducts, and finite-coproduct-preserving functors between them.

2.4. For an ∞ -category C that admits finite coproducts, we denote the coCartesian symmetric monoidal structure on it by $C^{\sqcup} \to \text{Fin}_*$.

2.5. Note however that by Exercise [1.6,](#page-0-2) Proposition [1.12](#page-1-0) and [1.14](#page-1-1) cannot survive in the coCartesian setting. As a compensate, we have the following result:

Proposition 2.6 (HA.2.4.3.9). Let C be an ∞ -category that admits finite coproducts. We equip C with the coCartesian symmetric monoidal structure. Then for any unital ∞ -operad O^{\otimes} , the forgetful functor

$$
\mathsf{Alg}_{\mathsf{O}}(\mathsf{C}) \to \mathsf{Fun}(\mathsf{O},\mathsf{C})
$$

is an equivalence.

Remark 2.7. Let $A: \mathbb{O}^{\otimes} \to \mathbb{C}^{\perp}$ be an O-algebra. The above proposition says the functor A is determined by its restriction on O. Informally speaking, for any active morphism $X = (X_1, ..., X_n) \to Y$ in \mathbb{O}^{\otimes} , its image $A(X) \to A(Y)$ can be described as follows. First, this morphism essentially uniquely factors as

$$
A(X) \xrightarrow{f} \prod_{i=1}^{n} A(X_i) \xrightarrow{g} A(Y)
$$

such that f is coCartesian over Fin_{*} while g is contained in C. The morphism g is determined by morphisms $A(X_i) \rightarrow A(Y)$, which by definition, must be the image of $X_i \to (X_1, \dots, X_n) \to Y$ under A. Here the morphism $X_i \to (X_1, \dots, X_n)$ is guaranteed by the assumption that O^\otimes is unit.

Exercise 2.8. Describe the essential image of $\text{Fun}^{\otimes}(\text{O},\text{C}) \subseteq \text{Alg}_{\text{O}}(\text{C})$ in $\text{Fun}(\text{O},\text{C})$.

Remark 2.9. In fact, for any ∞ -category O that not necessarilly admits finite coproducts, there is a canonical unital ∞ -operad O^\sqcup such that the analogue of Propo-sition [2.6](#page-2-0) is true. Such ∞ -operads are called **coCartesian** ∞ -operads. For more details, in HA.2.4.3.

3. Tensor products of ∞-categories

Theorem-Definition 3.1 (HA.4.8.1.15). Let $\widehat{\text{Cat}_{\infty}}$ be equiped with the Cartesian symmetric monoidal structure. Consider the 1-full sub-∞-category

$$
(\mathsf{Pr}^{\mathsf{L}})^{\otimes} \subseteq (\widehat{\mathsf{Cat}_{\infty}})^{\times}
$$

defined as follows:

- An object $(C_1, ..., C_n)$ is contained in $(\mathsf{Pr}^{\mathsf{L}})^{\otimes}$ iff each C_k is presentable.
- A morphism $(C_1, ..., C_m) \rightarrow (D_1, ..., D_n)$ defined over $\alpha : \langle m \rangle \rightarrow \langle n \rangle$ is contained in $(\mathsf{Pr}^{\mathsf{L}})^{\otimes}$ iff for each $j \in \langle n \rangle^{\circ}$, the corresponding functor

$$
\prod_{i \in \alpha^{-1}(j)} \mathsf{C}_i \to \mathsf{D}_j
$$

preserves colimits in each factor.

Then $(\Pr^{\perp})^{\otimes} \to \text{Fin}_{*}$ defines a symmetric monoidal structure on \Pr^{\perp} . We call the multiplication functor

$$
-\otimes - : \mathsf{Pr}^{\mathsf{L}} \times \mathsf{Pr}^{\mathsf{L}} \to \mathsf{Pr}^{\mathsf{L}}
$$

the Lurie tensor product.

3.2. By definition, for $C_i \in Pr^{\mathsf{L}}$, there is a coCartesian morphism $(C_1, \dots, C_n) \to$ $\otimes_{i=1}^n C_i$ in $(Pr^{\perp})^{\otimes} \to Fin_*$. This morphism is almost *never* coCartesian in the bigger fibration $(\widehat{\text{Cat}_{\infty}})^{\times} \to \text{Fin}_{*}$. It follows that we have an essentially unique factorization $\mathrm{in}\;(\widehat{\mathsf{Cat}_\infty})^\times$

$$
(\mathsf{C}_1,\cdots,\mathsf{C}_n)\to\prod_{i=1}^n\mathsf{C}_i\to\bigotimes_{i=1}^n\mathsf{C}_i.
$$

such that the first morphism is coCartesian and the second is contained in $\widehat{\text{Cat}_{\infty}}$.

Exercise 3.3. For any $D \in Pr^L$, precomposing with $\prod_{i=1}^n C_i \to \otimes_{i=1}^n C$ induces an equivalence between the spaces of

- colimit-preserving functors $\mathfrak{D}_{i=1}^n \mathsf{C} \to \mathsf{D}$;
- functors $\prod_{i=1}^{n} C_i \rightarrow D$ that preserve colimits in each factor.

The same is true if we consider ∞ -categories of these functors.

Exercise 3.4. Show that $\text{Spec} \in \text{Pr}^{\perp}$ is the unit object. What is the functor

$$
\mathsf{Spc} \times \mathsf{Spc} \to \mathsf{Spc} \otimes \mathsf{Spc} \simeq \mathsf{Spc} ?
$$

Exercise 3.5. Show that for any C, D, $E \in Pr^L$

$$
\mathsf{LFun}(C \otimes D, E) \simeq \mathsf{LFun}(C, \mathsf{LFun}(D, E)).
$$

In particular, LFun(-,-) calculates the **internal mapping objects** with respect to the Lurie tensor product.

Exercise 3.6. For small ∞ -categories C_0 and D_0 , show that $PShv(C_0) \otimes PShv(D_0) \simeq PShv(C_0 \times D_0).$ **Theorem 3.7** (HA.4.8.1.17). For $C, D \in Pr^L$, there is a canonical equivalence

 $C \otimes D \simeq RFun(C^{op}, D),$

where $RFun(-,-)$ consists of functors that preserve small limits.

Remark 3.8. Roughly speaking, the above equivalence is obtained as follows. For any testing object $E \in Pr^L$, we have functors functorial in E :

$$
\begin{array}{lll} & LFun(C \otimes D,E) \\ \simeq & LFun(C, LFun(D,E)) \\ \rightarrow & LFun(C, RFun(E,D)^{op}) \\ \simeq & LFun(C, LFun(E^{op}, D^{op})) \\ \simeq & LFun(E^{op}, LFun(C, D^{op})) \\ \simeq & RFun(E, RFun(C^{op}, D))^{op} \\ \leftarrow & LFun(RFun(C^{op}, D), E), \end{array}
$$

where the non-invertible functors are obtained by passing to right adjoints:

$$
\mathsf{LFun}(X,Y) \to \mathsf{RFun}(Y,X)^{\mathsf{op}}, F \mapsto F^{\mathsf{R}}.
$$

Such functors is always fully faithful and its essential image contains of accessible right functor $Y \to X$. A careful study shows that the essential images of LFun(C \otimes D, E) and LFun(RFun(C^{op}, D), E) under these embeddings coincide.

Warning 3.9. The equivalence $C \otimes D \simeq RFun(C^{op}, D)$ is not functorial in C and D in the naive way.

Exercise 3.10. Let $F: C_1 \to C_2$ be a morphism in Pr^{L} . Show that the following diagram commutes

$$
C_2 \otimes D \xrightarrow{\simeq} \text{RFun}(C_2^{\text{op}}, D)
$$

$$
\downarrow (F \otimes Id_D)^R \qquad \qquad \downarrow -\circ F^{\text{op}}
$$

$$
C_1 \otimes D \xrightarrow{\simeq} \text{RFun}(C_2^{\text{op}}, D).
$$

Exercise 3.11. Let $G: D_1 \rightarrow D_2$ be a morphism in Pr^{L} . Show that the following diagram commutes

$$
C \otimes D_2 \xrightarrow{\simeq} \text{RFun}(C^{op}, D_2)
$$

$$
\downarrow (Id_C \otimes G)^R \qquad \qquad \downarrow G^{R_{o-}}
$$

$$
C \otimes D_1 \xrightarrow{\simeq} \text{RFun}(C^{op}, D_1).
$$

Exercise 3.12. Use either Exercise [3.10](#page-4-0) or [3.11](#page-4-1) to deduce that the Lurie tensor $product - \otimes - : \mathsf{Pr}^{\mathsf{L}} \times \mathsf{Pr}^{\mathsf{L}} \to \mathsf{Pr}^{\mathsf{L}} \text{ preserves colimits in each factor.}$

Exercise 3.13. Let $C, D \in Pr^{\perp}$. Recall we have adjunctions $D \rightleftarrows D_{*}$, where the left adjoint sends X to $X_+ := X \sqcup \{*\}.$

- (1) Show that there is a canonical equivalence $R\text{Fun}(C^{op}, D_*) \to R\text{Fun}(C^{op}, D_*)$ compatible with forgetful functors to $RFunc(C^{op}, D)$.
- (2) Deduce that there is a canonical equivalence $C \otimes D_* \simeq (C \otimes D)_*$ compatible with the functors out of $C \otimes D$. In particular, $\text{Spc}_* \otimes \text{Spc}_* \simeq \text{Spc}_*$.

Exercise 3.14. Use the above exercise to show that for any $C \in Pr^L$

 $C \otimes S$ ptr ≃ Sptr (C_*) .

In particular, Sptr \otimes Sptr \simeq Sptr.

4. Smash products

Definition 4.1. Let \mathbb{C}^{\otimes} → Fin_{*} be a symmetric monoidal ∞ -category. We say a commutative algebra $A \in \mathsf{Alg}_{\mathsf{Comm}}(\mathsf{C})$ is **idempotent** if $A \otimes A \to A$ is an equivalence. Let

$$
\mathsf{Alg}^{\mathsf{idem}}_{\mathsf{Comm}}(\mathsf{C}) \subseteq \mathsf{Alg}_{\mathsf{Comm}}(\mathsf{C})
$$

be the full sub-∞-category of idempotent commutative algebras in C.

Proposition 4.2 (HA.4.8.2.9). Let C^{\otimes} \rightarrow Fin_{*} be a symmetric monoidal ∞ category. Then the forgetful functor

$$
\mathsf{Alg}_{\mathsf{Comm}}^{\mathsf{idem}}(\mathsf{C}) \to \mathsf{Alg}_{\mathsf{Comm}}(\mathsf{C}) \simeq \mathsf{Alg}_{\mathsf{Comm}}(\mathsf{C})_{\mathbb{1}_{\mathsf{C}}}/\rightarrow \mathsf{C}_{\mathbb{1}_{\mathsf{C}}}/
$$

is fully faithful, and its essential image contains those objects $1\text{C} \rightarrow X$ such that

$$
X \simeq \mathbb{1}_{\mathbb{C}} \otimes X \to X \otimes X
$$

is an isomorphism.

Exercise 4.3. Let $C = Pr^L$ be equiped with the Lurie symmetric monoidal structure. Show that the morphisms $\mathbb{1}_{C} \simeq \mathsf{Spc} \rightarrow \mathsf{Spc}_{*}$ and $\mathbb{1}_{C} \simeq \mathsf{Spc} \rightarrow \mathsf{Sptr}$ satisfy the conditions in the proposition. Deduce that we have essentially unique upgrades of Sptr and \textsf{Spc}_* to objects in

$$
\mathsf{Alg}_{\mathsf{Comm}}(\widehat{\mathsf{Cat}_\infty}) \simeq \mathsf{Mon}_{\mathsf{Comm}}(\widehat{\mathsf{Cat}_\infty})
$$

such that

- These symmetric monoidal structures are compatible with small colimits;
- The unit objects are given respectively by $\mathcal{S} \in \text{Sptr}$ and $\mathcal{S}^0 \in \text{Spc}_{*}$.

Definition 4.4. We denote the multiplication functors of the above symmetric monoidal structures by

$$
-\wedge -: \mathsf{Spc}_* \times \mathsf{Spc}_* \to \mathsf{Spc}_*
$$

$$
-\otimes -: \mathsf{Sptr} \times \mathsf{Sptr} \to \mathsf{Sptr},
$$

and call them the smash products.

Exercise 4.5. Show that $Spec \rightarrow Spec_{*} \rightarrow Sptr$ are natually symmetric monoidal functors.

Proposition 4.6 (HA.4.8.2.10). Let $C^{\otimes} \rightarrow \text{Fin}_{*}$ be a symmetric monoidal ∞ category and $A \in \mathsf{Alg}_{\mathsf{Comm}}^{\mathsf{idem}}(\mathsf{C})$. Then $\mathsf{Mod}_A^{\mathsf{Comm}}(\mathsf{C})^\otimes$ is a symmetric monoidal ∞ category and the forgetful functor

$$
\mathsf{Mod}_A^{\mathsf{Comm}}(\mathsf{C})^\otimes\rightarrow \mathsf{C}^\otimes
$$

is fully faithful. Moreover, an object $M \in \mathbb{C}$ is contained in the essential image iff

$$
M\simeq \mathbb{1}_{\mathsf{C}}\otimes M\to A\otimes M
$$

is an isomorphism.

Corollary 4.7. The functor

$$
\mathsf{Mod}^{\mathsf{Comm}}_{\mathsf{Spc}_*}(Pr^L) \to Pr^L
$$

is fully faithful with its essential image consists exactly of pointed presentable ∞ categories. Moreover, these ∞ -categories are stable under the Lurie tensor product.

Corollary 4.8. The functor

$$
\mathsf{Mod}^{\mathsf{Comm}}_{\mathsf{Sptr}}(\mathsf{Pr}^L) \to \mathsf{Pr}^L
$$

is fully faithful with its essential image consists exactly of stable presentable ∞ categories. Moreover, these ∞ -categories are stable under the Lurie tensor product.

Remark 4.9. Note that the above corollary implies Sptr is the initial object in $\mathrm{Alg}_{\mathsf{Comm}}(\mathsf{PrSt}^{\mathsf{L}})$, which gives an intrinsic characterization of the smash products of spectra.

Appendix A. More on smash products

A.1. The smash product on the ∞ -category Sptr can be rectified to a symmetric monoidal structure on a simplicial model category. The most successful one is the model category of symmetric spectra.

A.2. Suggested readings. [\[HSS00\]](#page-6-0).

REFERENCES

[HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. Journal of the American Mathematical Society, 13(1):149–208, 2000.