LECTURE 26

In this lecture, we introduce tensor products of ∞ -operads. The idea is to have a symmetric monoidal structure \odot on Op_{∞} , such that

$$\mathsf{Alg}_{\mathsf{O}_1}(\mathsf{Alg}_{\mathsf{O}_2}(\mathsf{C})) \simeq \mathsf{Alg}_{\mathsf{O}_1 \odot \mathsf{O}_2}(\mathsf{C})$$

holds for any symmetric monoidal ∞ -category C.

1. Definition

1.1. Recall Op_{∞} is a 1-full sub- ∞ -category of $(Cat_{\infty})_{/Fin_*}$. We first construct a symmetric monoidal structure on Fin_* .

Construction 1.2. Recall Spc_* has a symmetric monoidal structure $(Spc_*)^{\wedge} \rightarrow$ Comm^{\otimes} given by smash products of pointed spaces. Let $(\mathsf{Fin}_*)^{\wedge} \subseteq (\mathsf{Spc}_*)^{\wedge}$ be the full subcategory consisting of objects (X_1, \dots, X_n) such that each X_k is an object in Fin_{*} \subseteq Spc_{*}. It is easy to see (Fin_{*})^{\wedge} \rightarrow Comm^{\otimes} exhibits Fin_{*} as a symmetric monoidal ordinary category, with the multiplication functor given by

$$-\wedge -: \operatorname{Fin}_* \times \operatorname{Fin}_* \to \operatorname{Fin}_*, (\langle m \rangle, \langle n \rangle) \to \langle mn \rangle.$$

In other words, we obtain an object

$$Fin_* \in Alg_{Comm}(Cat_{\infty})$$

where Cat_{∞} is equipped with the Cartesian symmetric monoidal structure.

Exercise 1.3. Construct the symmetric monoidal category (Fin_{*}, \wedge) explicitly by providing the associators, unitors and swap natural transformations.

1.4. The next step is to construct a symmetric monoidal structure on $(Cat_{\infty})_{/Fin_*}$ using that on Fin_* . This construction works for any slice ∞ -categories.

Proposition-Construction 1.5 (HA.2.2.2.4). Let $C^{\otimes} \rightarrow \text{Comm}^{\otimes}$ be any ∞ -operad and $A \in Alg_{Comm}(C)$ be a commutative algebra. Then there is a canonical ∞ -operad $(C_{/A})^{\otimes}$ equipped with an ∞ -operad map

$$q:(\mathsf{C}_{/A})^{\otimes}\to\mathsf{C}^{\otimes}$$

such that

- The ∞-category (C_{/A})[⊗]₍₁₎ is identified with C_{/A((1))}.
 A morphism f in (C_{/A})[⊗] is inert iff q(f) is inert.
- (3) If C^{\otimes} is symmetric monoidal, so is $(C_{IA})^{\otimes}$, and q is a symmetric monoidal functor.

Remark 1.6. Informally speaking, for objects $M \in C_{A}$ and $N \in C_{A}$, their tensor product is the object in C_{IA} given by the composition $M \otimes N \to A \otimes A \to A$.

Remark 1.7. In fact, similar construction exists even when $Comm^{\otimes}$ is replaced by a general ∞ -operad O^{\otimes} .

Date: Dec. 24, 2024.

1.8. In particular, the object $Fin_* \in Alg_{Comm}(Cat_{\infty})$ induces a symmetric monoidal structure on $(Cat_{\infty})_{/Fin_*}$.

Warning 1.9. This is not the Cartesian symmetric monoidal structure on $(Cat_{\infty})_{/Fin_*}$.

Theorem-Definition 1.10 (HA.2.2.5.7¹). Let

$$(\mathsf{Op}_{\infty})^{\odot} \subseteq \left((\mathsf{Cat}_{\infty})_{/\mathsf{Fin}_{*}} \right)^{\otimes}$$

be the 1-full sub- ∞ -category such that

- (i) An object (C_1, \dots, C_n) is contained in $(Op_{\infty})^{\odot}$ iff each $C_k \to Fin_*$ is an ∞ -operads;
- (ii) A morphism $(C_1, \dots, C_m) \to (D_1, \dots, D_n)$ defined over $\alpha : \langle m \rangle \to \langle n \rangle$ is contained in $(Op_{\infty})^{\circ}$ iff for each $j \in \langle n \rangle^{\circ}$, the corresponding functor

(1.1)
$$\prod_{i \in \alpha^{-1}(j)} \mathsf{C}_i \to \mathsf{D}_j$$

preserves inert morphisms in each factor.

Then $(Op_{\infty})^{\odot} \to Comm^{\otimes}$ exhibits Op_{∞} with a symmetric monoidal structure. We denote the multiplication functor by

$$(\mathsf{Op}_{\infty})^{\odot} \times (\mathsf{Op}_{\infty})^{\odot} \to (\mathsf{Op}_{\infty})^{\odot}, \ (\mathsf{O}^{\otimes},\mathsf{O}'^{\otimes}) \mapsto (\mathsf{O} \odot \mathsf{O}')^{\otimes}.$$

Remark 1.11. Condition (ii) is equivalent to: the functor (1.1) sends any morphism $(f_i)_{i\in\alpha^{-1}(j)}$ such that each f_i is an inert morphism in C_i to an inert morphism in D_j . Indeed, this follows from the fact that inert morphisms are closed under compositions.

1.12. Similar to the case of the Lurie tensor products, for ∞ -operads $O_i^{\otimes} \in Op_{\infty}$, there is a canonical functor

$$\prod_{i=1}^{n} \mathsf{O}_{i}^{\otimes} \to \left(\bigodot_{i=1}^{n} \mathsf{O}_{i}\right)^{\otimes}$$

defined over $\prod_{i=1}^{n} \operatorname{Fin}_{*} \xrightarrow{\wedge} \operatorname{Fin}_{*}$ that preserves inert morphisms in each factor.

Exercise 1.13. For any $C^{\otimes} \in Op_{\infty}$, composing with the above functor induces an equivalence between the spaces of

- ∞ -operads maps $(\bigcirc_{i=1}^{n} \mathsf{O}_{i})^{\otimes} \to \mathsf{C}^{\otimes};$
- functors ∏ⁿ_{i=1} O[⊗]_i → C[⊗] defined over ∏ⁿ_{i=1} Fin_{*} [^]→ Fin_{*} that preserves inert morphisms in each factor.

The same is true if we consider the ∞ -categories of these functors.

2. TENSOR WITH Triv^{\otimes} , \mathbb{E}_0^{\otimes} and Comm^{\otimes}

Exercise 2.1. Show that $\operatorname{Triv}^{\otimes} \in \operatorname{Op}_{\infty}$ is the unit object.

Exercise 2.2. $(\mathbb{E}_0 \odot \mathbb{E}_0)^{\otimes} \simeq \mathbb{E}_0^{\otimes}$ and $(\text{Comm} \odot \text{Comm})^{\otimes} \simeq \text{Comm}^{\otimes}$.

 $\mathbf{2}$

¹In HA.2.2.5.7, Lurie actually constructed a symmetric monoidal structure on the model category of ∞ -preoperads. Unwinding the definitions, one can show the underlying symmetric monoidal ∞ -category of this symmetric monoidal model category s is equivalent to $(Op_{\infty})^{\circ}$.

Proposition 2.3 (HA.2.3.1.9). The obvious functor $\operatorname{Triv}^{\otimes} \to \mathbb{E}_0^{\otimes}$ makes \mathbb{E}_0^{\otimes} an object in $\operatorname{Alg}_{\operatorname{Comm}}^{\operatorname{idem}}(\operatorname{Op}_{\infty})$, and

$$\mathsf{Mod}_{\mathbb{E}_0^{\otimes}}^{\mathsf{Comm}}(\mathsf{Op}_{\infty}) \subseteq \mathsf{Op}_{\infty}$$

consists exactly of unital ∞ -operads. In particular, the latter are closed under \odot .

Proposition 2.4 (HA.3.2.4.6). The obvious functor $\text{Triv}^{\otimes} \rightarrow \text{Comm}^{\otimes}$ makes Comm^{\otimes} an object in $\text{Alg}_{\text{Comm}}^{\text{idem}}(\text{Op}_{\infty})$, and we have

$$\mathsf{Mod}_{\mathsf{Comm}^{\otimes}}^{\mathsf{Comm}}(\mathsf{Op}_{\infty}) \subseteq \mathsf{Op}_{\infty}$$

consists exactly of coCartesian ∞ -operads. In particular, the latter are closed under \odot .

Exercise 2.5. Show that the tensor product of C^{\sqcup} and D^{\sqcup} is equivalent to $(C \times D)^{\sqcup}$.

3. Algebras in Algebras

3.1. Now we turn to the equivalence

$$\operatorname{Alg}_{O_1}(\operatorname{Alg}_{O_2}(C)) \simeq \operatorname{Alg}_{O_1 \odot O_2}(C).$$

The first task is to define an ∞ -operad $Alg_{O_2}(C)^{\otimes}$.

Construction 3.2. Let $O_1^{\otimes}, O_2^{\otimes} \in Op_{\infty}$ and $(O_1 \odot O_2)^{\otimes} \to O^{\otimes}$ be an ∞ -operad map. Consider the correspondence

$$\mathsf{O}_1^{\otimes} \xleftarrow{p} \mathsf{O}_1^{\otimes} \times \mathsf{O}_2^{\otimes} \xrightarrow{m} \mathsf{O}^{\otimes}$$

For any ∞ -operad $C^{\otimes} \rightarrow O^{\otimes}$ over O^{\otimes} , let

$$\mathsf{Alg}_{\mathsf{O}_2/\mathsf{O}}(\mathsf{C})^{\otimes} \subseteq p_* \circ m^*(\mathsf{C}^{\otimes})$$

be the full sub- ∞ -category consisting of objects

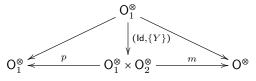
$$F \in \mathsf{Fun}_{\mathsf{O}^{\otimes}_{*} \times \mathsf{O}^{\otimes}_{*}}(\{X\} \times \mathsf{O}^{\otimes}_{2}, m^{*}(\mathsf{C}^{\otimes})) \simeq \mathsf{Fun}_{\mathsf{O}^{\otimes}}(\{X\} \times \mathsf{O}^{\otimes}_{2}, \mathsf{C}^{\otimes})$$

such that the corresponding functor $\{X\} \times \mathsf{O}_2^{\otimes} \to \mathsf{C}^{\otimes}$ preserves inert morphisms, where $X \in \mathsf{O}_1^{\otimes}$ is the image of F under the functor $p_* \circ m^*(\mathsf{C}^{\otimes}) \to \mathsf{O}_1^{\otimes}$.

Remark 3.3. By definition, the fiber $\operatorname{Alg}_{O_2/O}(C)_X^{\otimes}$ of $\operatorname{Alg}_{O_2/O}(C)^{\otimes}$ at $X \in O_1^{\otimes}$ is the ∞ -category of O_2 -algebras in C relative to O, where the structure functor $O_2^{\otimes} \to O^{\otimes}$ is given by

$$\mathsf{O}_2^{\otimes} \simeq \{X\} \times \mathsf{O}_2^{\otimes} \to \mathsf{O}_1^{\otimes} \times \mathsf{O}_2^{\otimes} \to \mathsf{O}^{\otimes}$$

Exercise 3.4. Show that for any object $Y \in O_2^{\otimes}$, the diagram



induces a natural functor

$$\mathsf{Alg}_{\mathsf{O}_2/\mathsf{O}}(\mathsf{C})^{\otimes} \to \mathsf{O}_1^{\otimes} \underset{\mathsf{O}^{\otimes}}{\times} \mathsf{C}^{\otimes}.$$

In particular, we obtain a functor

$$\operatorname{ev}_Y : \operatorname{Alg}_{O_2/O}(\mathsf{C})^{\otimes} \to \mathsf{C}^{\otimes}.$$

Proposition 3.5 (HA.3.2.4.3). In the above setting:

LECTURE 26

- (1) The functor $\operatorname{Alg}_{O_2/O}(\mathsf{C})^{\otimes} \to O_1^{\otimes}$ exhibits $\operatorname{Alg}_{O_2/O}(\mathsf{C})^{\otimes}$ as an ∞ -operad over O_1^{\otimes} . Moreover, a morphism in $Alg_{O_2/O}(C)^{\otimes}$ is inert iff
 - its image in O_1^{\otimes} is inert;

4

- for any $Y \in O_2$, its image under ev_Y is inert.
- (2) If $C^{\otimes} \to O^{\otimes}$ is an O-monoidal ∞ -category, then $Alg_{O_2/O}(C)^{\otimes} \to O_1^{\otimes}$ is an O_1 -monoidal ∞ -category. Moreover, a morphism in $Alg_{O_2/O}(C)^{\otimes}$ is co-Cartesian over O_1^{\otimes} iff for any $Y \in O_2$, its image under ev_Y is coCartesian over O^{\otimes} .

Example 3.6. For any ∞ -operad O^{\otimes} , we have an ∞ -operad map $(\mathsf{Comm} \odot O)^{\otimes} \rightarrow$ Comm^{\otimes} . It follows that for any ∞ -operad C^{\otimes} , there is a canonical ∞ -operad $Alg_O(C)^{\otimes}$, equipped with an ∞ -operad map to C^{\otimes} , whose underlying ∞ -category of colors is $Alg_{O}(C)$. Moreover, if C is symmetric monoidal, so is $Alg_{O}(C)$, and the forgetful functor $Alg_{\Omega}(C)^{\otimes} \to C^{\otimes}$ is symmetric monoidal.

Exercise 3.7. In the setting of Construction 3.2, when $O^{\otimes} := (O_1 \odot O_2)^{\otimes}$, we have a canonical equivalence

$$\operatorname{Alg}_{O_1}(\operatorname{Alg}_{O_2}(\mathsf{C})) \simeq \operatorname{Alg}_{O_1 \odot O_2}(\mathsf{C}).$$

Proposition 3.8 (HA.3.2.4.7). Let C^{\otimes} be a symmetric monoidal ∞ -category. Then the symmetric monoidal structure on $Alg_{Comm}(C)^{\otimes}$ is coCartesian. In particular, Alg_{Comm}(C) admits coproducts.

Remark 3.9. Informally speaking, the above proposition says coproducts of commutative algebras are given by tensor products.

4. \mathbb{E}_k -ALGEBRAS

Definition 4.1. Let $k \ge 0$ be a nonnegative integer. Define a topological operad ${}^{t}\mathbb{E}_{k}^{\otimes} \to \operatorname{Fin}_{*} such that:$

- an object in ^tE[⊗]_k is a marked finite set ⟨n⟩;
- the topological space of morphisms from $\langle m \rangle$ to $\langle n \rangle$ is

$$\bigsqcup_{(m) \xrightarrow{\alpha} (n)} \prod_{j \in (n)^{\circ}} \operatorname{Rect}(\Box^k \times \alpha^{-1}(j), \Box^k),$$

where $\Box := (-1,1)$ and $\mathsf{Rect}(-,-)$ is the space of open embeddings $\Box^k \times$ $\alpha^{-1}(j) \to \Box^k$ such that for each $i \in \alpha^{-1}(j)$, the map $f_i : \Box^k \to \Box^k$ is a rectilinear embedding, i.e., a map of the form

$$f_i(x_1, \dots, x_k) = (a_1 x_1 + b_1, \dots, a_k x_k + b_k).$$

Let \mathbb{E}_k^{\otimes} be the ∞ -operad corresponding to ${}^{\mathsf{t}}\mathbb{E}_k^{\otimes}$ via the functor $\mathsf{Cat}_{\mathsf{Top}} \to \mathsf{Cat}_{\infty}$. We call if the little cube ∞ -operad of dimension k.

Exercise 4.2. The space of (active) m-ary operators in \mathbb{E}_k^{\otimes} can be realized as the homotopy type of m distinct points in \Box^k . In particular:

- (0) \mathbb{E}_{k}^{\otimes} is unital, *i.e.*, the space of nullary operators is contractible;
- (1) 𝔼^𝔅_k is reduced, i.e., the space of uniary operators is contractible;
 (2) the space of binary operators in 𝔼^𝔅_k is homotopic to 𝔇^{k-1}.

Exercise 4.3. The space of (active) m-ary operators in \mathbb{E}_{k}^{\otimes} is (k-1)-connective, *i.e.*, has $\pi_i \simeq 0$ for i < k - 1.

Exercise 4.4. Show that \mathbb{E}_0^{\otimes} defined above coincides with our previous definition: the subcategory of Fin_{*} consists of injective morphisms.

Exercise 4.5. Show that $\mathbb{E}_1^{\otimes} \simeq \mathsf{Assoc}^{\otimes}$.

4.6. For $0 \le k \le k'$, we have an ∞ -operad map $\mathbb{E}_k^{\otimes} \to \mathbb{E}_{k'}^{\otimes}$ which sends a rectilinear embedding $f : \Box^k \to \Box^k$ to $(f, \mathsf{id}) : \Box^k \times \Box^{k'-k} \to \Box^k \times \Box^{k'-k}$.

Proposition 4.7 (HA.5.1.1.5). We have

$$\operatorname{colim}_{k} \mathbb{E}_{k}^{\otimes} \simeq \operatorname{Comm}^{\otimes},$$

where the colimit is taken in $\mathsf{Op}_\infty.$ In particular, for any $\infty\text{-operad}\ \mathsf{C},$ we have

$$\operatorname{Alg}_{\operatorname{Comm}}(\mathsf{C}) \simeq \lim_{k} \operatorname{Alg}_{\mathbb{E}_{k}}(\mathsf{C})$$

4.8. Motivatived by the above result, we also write $\mathbb{E}_{\infty}^{\otimes} := \mathsf{Comm}^{\otimes}$.

Construction 4.9. Let $k, k' \ge 0$ be nonnegative integers. We have a functor

 ${}^{\mathsf{t}}\mathbb{E}_{k}^{\otimes} \times {}^{\mathsf{t}}\mathbb{E}_{k'}^{\otimes} \to {}^{\mathsf{t}}\mathbb{E}_{k+k'}^{\otimes}$

defined over $\operatorname{Fin}_* \times \operatorname{Fin}_* \xrightarrow{\wedge} \operatorname{Fin}_*$ induced by $\Box^k \times \Box^{k'} \simeq \Box^{k+k'}$. Passing to ∞ -categories, we obtain a functor

$$\mathbb{E}_{k}^{\otimes} \times \mathbb{E}_{k'}^{\otimes} \to \mathbb{E}_{k+k'}^{\otimes}$$

Exercise 4.10. Write down the explicit formula for the above functor, and check that it preserves inert morphisms in each factor.

4.11. The following result is known as the Dunn Additivity Theorem.

Theorem 4.12 (HA.5.1.2.2). Let $k, k' \ge 0$ be nonnegative integers. The functor $\mathbb{E}_{k}^{\otimes} \times \mathbb{E}_{k'}^{\otimes} \to \mathbb{E}_{k+k'}^{\otimes}$ induces an equivalence

$$(\mathbb{E}_k \odot \mathbb{E}_{k'})^{\otimes} \simeq \mathbb{E}_{k+k'}^{\otimes}.$$

Remark 4.13. Informally, the above theorem says an $\mathbb{E}_{k+k'}$ -algebra is the same as an \mathbb{E}_k -algebra in $\mathbb{E}_{k'}$ -algebras.

Corollary 4.14. Let $k \ge 0$ be nonnegative integers. Then $(\mathbb{E}_k \odot \text{Comm})^{\otimes} \simeq \text{Comm}^{\otimes}$.

4.15. The following result, known as the *Baez-Dolan Stabilization Hypothesis*, follows from Exercise 4.3.

Proposition 4.16. If C is a symmetric monoidal (n, 1)-category. Then the map $\mathbb{E}_k^{\otimes} \to \mathbb{E}_{\infty}^{\otimes}$ induces an equivalence

$$\operatorname{Alg}_{\mathbb{E}_{\infty}}(\mathsf{C}) \simeq \operatorname{Alg}_{\mathbb{E}_{k}}(\mathsf{C})$$

for any k > n.

Remark 4.17. In particular, in an ordinary category, any structure beyond \mathbb{E}_2 is commutative.

4.18. Note that ordinary categories themselves form a (2,1)-category. Hence it is possible to have interesting \mathbb{E}_2 -monoidal ordinary categories that are not symmetric monoidal.

Proposition 4.19 (HA.5.1.2.4). An \mathbb{E}_2 -monoidal ordinary category is just a braided monoidal category.

Remark 4.20. Informally speaking, the space of binary operators in \mathbb{E}_2 is homotopic to \mathbb{S}^1 , which means an \mathbb{E}_2 -monoidal ordinary category \mathbb{C} gives a Σ_2 -equivariant functor $\mathbb{S}^1 \times \mathbb{C} \times \mathbb{C} \to \mathbb{C}$. For any point $s \in \mathbb{S}^1$, we obtain a functor $\operatorname{mult}_s : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ and an equivalence $\operatorname{mult}_s \xrightarrow{\sim} \operatorname{mult}_{-s} \circ \sigma$, where $\sigma(x, y) := (y, x)$. Choosing a path from $1 \in \mathbb{S}^1$ to $-1 \in \mathbb{S}^1$, we obtain an equivalence $\operatorname{mult}_1 \xrightarrow{\sim} \operatorname{mult}_1 \circ \sigma$. In other words, we obtain functorial isomorphisms $\operatorname{mult}_1(x, y) \xrightarrow{\sim} \operatorname{mult}_1(y, x)$, which are the **braiding morphisms** for the corresponding braided monoidal category.

Exercise 4.21. Describe the square of the braidings in terms of the functor $S^1 \times C \times C \rightarrow C$.

Theorem 4.22 (HA.5.1.1.1). For $k \ge 1$ or $k = \infty$, the ∞ -operad \mathbb{E}_{k}^{\otimes} is coherent.

Theorem 4.23 (HA.5.1.3.2). For $k \ge 1$ or $k = \infty$, let $\mathbb{C}^{\otimes} \to \mathbb{E}_{k}^{\otimes}$ be an \mathbb{E}_{k} -monoidal ∞ -category compatible with geometric realizations. Then:

(1) For $A \in Alg_{/\mathbb{E}_{k}}(\mathsf{C})$, the functor

$$\operatorname{\mathsf{Aod}}_A^{\mathbb{E}_k}(\mathsf{C})^\otimes \to \mathbb{E}_k^\otimes$$

is an \mathbb{E}_k -monoidal ∞ -category.

(2) There is a canonical monoidal functor

$$\mathsf{Mod}_{A}^{\mathbb{E}_{k}}(\mathsf{C})^{\otimes} \underset{\mathbb{E}_{k}^{\otimes}}{\times} \mathbb{E}_{1}^{\otimes} \to \mathsf{Mod}_{A'}^{\mathbb{E}_{1}}(\mathsf{C} \underset{\mathbb{E}_{k}}{\times} \mathbb{E}_{1})^{\otimes},$$

where

$$\mathsf{A}' \in \mathsf{Alg}_{/\mathbb{E}_1}(\mathsf{C} \underset{\mathbb{F}}{\times} \mathbb{E}_1) \simeq \mathsf{Alg}_{\mathbb{E}_1/\mathbb{E}_k}(\mathsf{C})$$

is the composition $\mathbb{E}_1^{\otimes} \to \mathbb{E}_k^{\otimes} \xrightarrow{A} \mathbb{C}^{\otimes}$.

Remark 4.24. Informally speaking, the above theorem says the relative tensor products of \mathbb{E}_k -modules are given by those of the underlying \mathbb{E}_1 -modules.

APPENDIX A. FACTORIZATION HOMOLOGY

A.1. Given any \mathbb{E}_k -algebra A, one can obtain an invariant $\int_M A$ for any k-manifold M, known as the *factorization homology* of A over M.

A.2. Suggested readings. HA.5.5., [AF20] (and the references listed there).

References

[AF20] David Ayala and John Francis. A factorization homology primer. In Handbook of homotopy theory, pages 39–101. Chapman and Hall/CRC, 2020.

6