
LECTURE 27

In this lecture, we explain the following analogy:

Classical Algebra ∞-categorical Algebra
Sets Spaces

Abelian groups Spectra
Tensor products Smash products
Associative rings E1-rings

Commutative rings E∞-rings

1. Spectra vs abelian groups

1.1. In this section, we explain the analogy between spactra and abelian groups.

1.2. An abelian group is a commutative monoid G in Set such that each element
has an inverse. The latter condition means the maps

(p1,m) ∶ G ×G→ G ×G, (m,p2) ∶ G ×G→ G ×G

are invertible. This notion makes sense in any Cartesian symmetric monoidal ∞-
category.

Definition 1.3. Let C be an ∞-category that admits finite products. We say an
associative monoid G ∈ MonE1(C) is a group in C if the morphisms (p1,m) and
(m,p2) are invertible.

For 1 ≤ k ≤∞, we say an Ek-monoid G ∈MonEk
(C) is an Ek-group1 in C if its

image under

MonEk
(C)→MonE1(C)

is a group.
Let

GrpEk
(C) ⊆MonEk

(C)

be the full sub-∞-category of Ek-groups in C.

Example 1.4. Let X ∈ Spc
∗

be any pointed space. For 0 < k <∞, the k-fold loop
space ΩkX has a canonical Ek-group structure desribed as follows.

Choose a topological realization of X, then ΩkX can be realized as the topological
space of maps f ∶ [−1,1]k → X such that f sends the boundary to the base point of
X. For any m-ary operator γ ∶ ◻k × ⟨m⟩

○
→ ◻

k in tEk, we have a homomorphism

multγ ∶ (Ω
kX)

×m
→ ΩkX

that sends (f1,⋯, fm) ∈ (ΩkX)
×m to the map

f(s) ∶= {
fi(t) if s = γ(t, i)

∗ otherwise

Date: Dec. 27, 2024.
1Alternative terminology: grouplike Ek-monoids.
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One can check this defines an tEk-group ΩkX in Top (where everything is enriched
over topological spaces). Passing to ∞-categories, we obtain an Ek-group in Spc.

The above construction in functorial in X and gives a functor

(1.1) Ωk ∶ Spc
∗
→ GrpEk

(Spc).

Exercise 1.5. For any ∞-category C that admits finite products, construct a func-
tor Ωk ∶ C∗ → GrpEk

(C). Hint: Yoneda lemma.

1.6. The functor (1.1) is not an equivalence. In fact, it is not even conservative.
Indeed, ΩX can only see the neutral connected component of X. It turns out this
is the only reason that (1.1) is not an equivalence.

Theorem 1.7 (Boardman–Vogt, May). For 0 < k <∞, let (Spc
∗
)≥k ⊆ Spc

∗
be the

full sub-∞-category of k-connective spaces2. Then the functor

(1.2) Ωk ∶ (Spc
∗
)≥k → GrpEk

(Spc)

is an equivalence.

Remark 1.8. The degenerate case k = 0 is: Spc
∗
≃MonE0(Spc).

Exercise 1.9. For 0 < k <∞, construct a canonical commutative diagram

(Spc
∗
)≥k+1

Ω //

Ωk+1

��

(Spc
∗
)≥k

Ωk

��
GrpEk+1

(Spc) // GrpEk
(Spc).

1.10. By the above exercise, we can pass to inverse limits in k and obtain the
following characterization of connective spectra3.

Corollary 1.11. There is a canonical equivalence

Ω∞
∶ Sptr

≥0

≃

Ð→ GrpE∞(Spc),

compatible with the forgetful functors to Spc.

Remark 1.12. In other words, connective spectra are just Picard ∞-groupoids, i.e,
a symmetric monoidal ∞-groupoid such that each object is invertible with respect
to the tensor products.

Remark 1.13. We denote the inverse of (1.2) by

Bk ∶ GrpEk
(Spc)→ (Spc

∗
)≥k,

and call it the k-fold delooping functor. Informally, this functor can be described
as follows.

For k = 1, given any associative monoid G in a Cartesian monoidal ∞-category
C, we can form the Bar construction

∗ × ∗ ∗ ×G × ∗
oo oo ∗ ×G ×G × ∗ ⋯oo oooo

which is a simplicial object in C. The colimit BG of this diagram, when exists,
calculates the relative tensor product of ∗ with itself as a bimodule for G. One can
check the image of the obtained functor

B ∶ GrpE1
(Spc)→ Spc

∗

2This means πi ≃ 0 for i < k.
3This means πi ≃ 0 for i < 0.
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is contained in (Spc
∗
)≥0 and indeed gives the desired delooping functor.

For general 0 < k <∞, we note that the composition

GrpE1
(Spc)

B
Ð→ (Spc

∗
)≥1 → Spc,

commutes with finite prodcuts and therefore induces a functor

B ∶ GrpEk+1
(Spc) ≃MonEk

(GrpE1
(Spc))→MonEk

(Spc),

where the first equivalence follows from the Dunn Additivity Theorem. One can
check this functor factors as

B ∶ GrpEk+1
(Spc)→ GrpEk

(Spc).

It follows that we have a functor

Bk ∶ GrpEk
(Spc)→ Spc

∗
.

One can check its image is contained in (Spc
∗
)≥k and indeed gives the desired k-fold

delooping functor.

2. smash products vs. tensor products

2.1. In this section, we explain the analogy between smash products of spectra
and tensor products of abelian groups.

2.2. Recall we have a functor

π● ∶ Sptr → grAb

sending a spectrum X to its homotopy groups

πmX ≃ π0MapsSptr(S[m],X).

Construction 2.3. Consider the isomorphism S ⊗ S
≃

Ð→ S in Sptr given by the
unital structure. Using the fact that − ⊗ − commutes with colimits in each factor,
for integers m and n, we obtain an isomorphism

S[m]⊗ S[n]
≃

Ð→ S[m + n].

Hence for spectra X and Y , we obtain a morphism between spaces:

MapsSptr(S[m],X) ×MapsSptr(S[n], Y )→MapsSptr(S[m]⊗ S[n],X ⊗ Y )

≃

Ð→MapsSptr(S[m + n],X ⊗ Y ).

Taking π0, we obtain a map

πmX × πnY → πm+n(X ⊗ Y ).

One can check this map is bilinear, and therefore gives a morphism in Ab:

πmX ⊗ πnY → πm+n(X ⊗ Y ),

which can be assembled to a morphism

π●X ⊗ π●Y → π●(X ⊗ Y ),

where the source is the graded tensor product. One can check this gives a right
lax symmetric monoidal structure45 on the functor π●. In other words, we have an
∞-operad map

π● ∶ Sptr
⊗
→ grAb⊗.

4There is no higher datum in this structure because grAb is ordinary.
5Warning: the functor grAb→ Ab, (Mi)↦⊕Mi is not symmetric monoidal.
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Warning 2.4. The functor π● is not symmetric monoidal. Indeed, π●(S) differs
dramatically from Z.

2.5. The following exercises say π0 is symmetric monoidal when restricted to
Sptr

≥0.

Exercise 2.6. The full sub-∞-category Sptr
≥0 ⊆ Sptr is closed under smash prod-

ucts. Hint: Sptr
≥0 is generated by S under colimits and extensions.

Exercise 2.7. The lax symmetric monoidal structure on π0 ∶ Sptr≥0 → Ab is strict.

Exercise 2.8. Describe the smash products of spectra via the corresponding Picard
∞-groupoids. Hint: you may first look at the E0-case.

3. Ek-rings

Definition 3.1. We equip Sptr with the smash product symmetric monoidal struc-
ture. For 0 ≤ k ≤∞, an Ek-ring is an Ek-algebra in Sptr.

Construction 3.2. Since Sptr → grAb is naturally right lax symmetric monoidal,
we obtain a functor

AlgEk
(Sptr)→ AlgEk

(grAb).

Therefore:

● For an E1-ring A, we obtain an associative ring π●A.
● For an Ek-ring A with k ≥ 2, we obtain a graded commutative ring π●A.

Construction 3.3. Note that π0 ∶ Sptr≥0 → Ab can be identified with the functor
τ≤0 via Ab ≃ Sptr♡, and it admits a right adjoint

Ab→ Sptr
≥0, R ↦ HR

sending R to the Eilenberg–Maclane spectrum HR. Since the left adjoint functor
is naturally symmetric monoidal, the right adjoint admits a right lax symmetric
monoidal structure. In particular, we obtain a functor

AlgEk
(Ab)→ AlgEk

(Sptr
≥0)→ AlgEk

(Sptr).

In other words:

● For an associative ring R, we obtain an E1-ring structure on HR.
● For a commutative ring R, we obtain an E∞-ring structure on HR.

3.4. Our final task is to relate modules of HR and R. For simplicity, we work in
the E∞-case.

From now on, let R be a commutative ring, ModR be the abelian category of
R-modules and ModHR(Sptr) be the ∞-category of HR-modules in Sptr.

Construction 3.5. Consider the relative tensor product symmetric monoidal
structure on ModR. Passing to derived ∞-categories, we obtain a presentable
symmetric monoidal structure on D(R) ∶= D(ModR) (see HA.7.1.2.12 for de-
tails). Since D(R) is stable, we obtain a commutative algebra object D(R) ∈

AlgComm(PrStL). Recall Sptr is the unit of PrStL. We obtain a morphism Sptr →

D(R) in AlgComm(PrStL). In other words, a symmetric monoidal functor

F ∶ Sptr → D(R).
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3.6. Note that the underlying functor Sptr → D(R) is the unique colimit-preserving
functor sending S ∈ Sptr to R ∈ D(R). On the other hand, the left adjoint of the
composition

G ∶ D(R)→ D(Z)
DK
Ð→ Sptr

also sends S to R. It follows that we have an adjunction

F ∶ Sptr ÐÐ→←ÐÐ D(R) ∶ G

such that F is symmetric monoidal while G is right lax symmetric monoidal6. Note
that G also preserves colimits.

Exercise 3.7. Identify the composition

G ○ F ∶ Sptr → D(R)→ Sptr

with HR⊗ −.

Theorem 3.8 (HA.7.1.2.13). There is a canonical equivalence of symmetric
monoidal ∞-categories

ModHR(Sptr) ≃ D(R)

such that the adjunction F ∶ Sptr ÐÐ→←ÐÐ D(R) ∶ G can be identified with

indu ∶ModS(Sptr)ÐÐ→←ÐÐModHR(Sptr) ∶ resu

along the unit morphism u ∶ S→ HR.

Appendix A. The Barr–Beck–Lurie Theorem

A.1. The key input in the proof of Theorem 3.8 is the follwing theorem.

Theorem A.2 (Barr–Beck–Lurie). Let F ∶ C ÐÐ→←ÐÐ D ∶ G be an adjunction between
∞-categories such that

(i) The functor G is conservative;
(ii) The functor G preserves G-split simplicial colimits7.

Then there is a canonical equivalence D ≃ LModT (C), where T is a monad acting
on C such that the underlying endomorphism is G ○ F . Moreover, the adjunction
F ∶ CÐÐ→←ÐÐ D ∶ G can be identified with

indT ∶ C→ LModT (C) ∶ oblvT .

A.3. Suggested readings. HA.4.7.

6More precisely, we have an adjunction Sptr⊗ ÐÐ→
←ÐÐ

D(R)⊗ defined over Fin∗
7This means: Let V ∈ D∆ ∶= Fun(∆op,D) be a simplicial object such that G(V ) admits a

splitting. Then V admits a colimit in D, and this colimit is preserved by G.
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