
LECTURE 4

For the purpose of this course, we do not give proofs in this lecture, nor present
the results in the logical order.

1. Quasi-categories

1.1. Last time, we constructed a Quillen equivalence

∣ − ∣ ∶ Set∆ ÐÐ→←ÐÐ Top ∶ Sing.

This implies:

● Any ∞-groupoid, which can be identified with a homotopy type by the
Homotopy Hypothesis, can also be realized as a bifibrant object in Set∆,
i.e., a Kan complex.

● Any functor between ∞-groupoids can be realized as a homotopy class
of morphisms between the corresponding Kan complexes. Here two mor-
phisms f, g ∶X → Y are homotopic iff there exists a morphism H ∶X×∆1 →
Y with H(−,0) = f and H(−,1) = g.

1.2. Recall a simplicial set X is a Kan complex iff it has the right lifting property
against all horn inclusions with n ≥ 2

Λni
//

��

X

∆n.

==

Let us inspect these lifting properties for different choices of (n, i) using the language
of higher category theory.

1.3. For n = 2, i = 0, the lifting property says that for a given morphism f ∶ x0 → x1,
any morphism of the form x0 → x2 can factor through f .

For n = 3, i = 0, the lifting property says that for a given morphism f ∶ x0 → x1,
any commutative diagram

x2

!!
x0

==

// x3,

or more precisely, an invertible 2-morphism witnessing such a diagram, can fac-
tor through f . This means the above 2-morphism is equivalent to the horizontal
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2 LECTURE 4

composition of a 2-morphism

x2

!!
x1

==

// x3

with the identity 2-morphism idf .

In general, the lifting properties for i = 0 imply that for a given morphism
f ∶ x→ y, any homotopy coherent diagram with initial vertex x can factor through
f . Note that this is a feature of ∞-groupoids rather than general ∞-categories: it
implies the given morphism f has a left inverse.

1.4. Dually, the lifting properties for i = n imply that for a given morphism f ∶
x → y, any homotopy coherent diagram with final vertex y can factor through f .
Again, this is a feature of ∞-groupoids rather than general ∞-categories: it implies
the given morphism f has a right inverse.

1.5. On the other hand, the lifting properties for 0 < i < n imply that for a given
object x, one can compose any homotopy coherent diagram with final vertex x with
another homotopy coherent diagram with initial vertex x. This requirement should
be satisfied by any category-like entity in mathematics.

1.6. The above discussion motivates the following definition:

Definition 1.7 (Boardman–Vogt, 1973). A simplicial set X is called a quasi-
category if it has the right lifting property against inner horn inclusions:

Λni
//

��

X

∆n

>>

for 0 < i < n.

Let X be a quasi-category. We call a 0-simplex x ∈ X0 an object of X, and a
1-simplex e ∈X0 a morphism from d1

0(e) to d1
1(e).

Let X and Y be quasi-categories, we call a morphism F ∶ X → Y in Set∆ a
functor from X to Y .

Let QCat ⊂ Set∆ be the full subcategory of quasi-categories.

Example 1.8. Kan complexes are quasi-categories.

Exercise 1.9. Nerves of categories are quasi-categories.

Exercise 1.10. The opposite Xop of a quasi-category is a quasi-category. (See
[Lecture 3, Construction 1.14]).

1.11. In the 1980s, Joyal proposed:

Quasi-categories are models for (∞,1)-categories.

In this lecture, we take the above proposal as acknowledged, and use it to develop
basic languages about (∞,1)-categories. We will justify this proposal in the next
lecture.
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2. Composition of morphisms

Definition 2.1. Let C be a quasi-category. For a 2-simplex σ of the form

y
g

��
x

f
??

h
// z,

we say σ witnesses h as a composition of f and g.

Remark 2.2. Note that in the above definition, the morphism h is not determined
by f and g, nor is σ determined by f , g and h. We may say:

Composition of morphisms in quasi-categories is not concrete.

Nevertheless, we will soon see that composition of morphisms in the ∞-category
represented by C is well-defined, as long as we interpret well-definedness correctly.

3. Homotopy between morphisms

Definition 3.1. Let C be a quasi-category. For a 2-simplex σ of the form

y

id

��
x

f
??

g
// y,

we say σ is a left pinched homotopy1, or left pinched 2-morphism, from f
to g.

Dually, a 2-simplex of the form

x
f

  
x

id

??

g
// y.

is called a right pinched homotopy, or right pinched 2-morphism, from f to
g.

Exercise 3.2. The following conditions are equivalent:

● There exists a left pinched homotopy from f to g,
● There exists a right pinched homotopy from f to g,

Moreover, these conditions define an equivalent relation on the set of morphisms
from x to y. Hint: horn inclusions Λ3

1 →∆3 and Λ3
2 →∆3.

Definition 3.3. Let C be a quasi-category and f, g ∶ x → y be morphisms. We say
f is homotopic to g if they satisfy the conditions in the above exercise.

1This terminology is not standard. For instance, [Rez22] called it a right homotopy.
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4. Homotopy category

Exercise 4.1. Let C be a quasi-category. Show that the following construction
defines a category hC:

● Objects of hC are objects of C;
● Morphisms of hC are homotopy classes of morphisms of C;
● Composition of [f] and [g] is equal to [h] in hC iff h is a composition of
f and g in C.

Definition 4.2. Let C be a quasi-category. We call the category in the above
exercise the homotopy category of C, and denote it by hC.

Exercise 4.3. We have an adjoint pair

h ∶ QCatÐÐ→←ÐÐ Cat ∶ N●.

Remark 4.4. The above exercise says that hC is the category obtained by forcing
all the higher morphisms in the ∞-category represented by C to be identities. Note
that this is not the same as abandoning all the higher morphisms. The latter
construction is evil because it violates the principle of isomorphism.

4.5. As indicated by their names, homotopy categories of quasi-categories are
related to homotopy categories of model categories. We will explain such relations
in future lectures.

5. Isomorphisms

Definition 5.1. Let C be a quasi-category. We say a morphism f is an isomor-
phism iff the morphism [f] in hC is an isomorphism.

5.2. In other words, f ∶ x → y is an isomorphism iff there exists a morphism
g ∶ y → x such that g ○ f is homotopic to idx and f ○ g is homotopic to idy.

Exercise 5.3. A quasi-category is a Kan complex iff all morphisms of it are iso-
morphisms.

Exercise 5.4. For a quasi-category C, there is a unique Kan complex C≃ ⊂ C,
called the core of C, that contains all the isomorphisms of C. The obtained functor
(−)≃ ∶ QCat→ Kan is right adjoint to the embedding functor Kan→ QCat.

6. Morphism spaces: idea

6.1. As a sanity check for Joyal’s proposal, for a pair of objects x, y in a quasi-
category C, we should construct an ∞-groupoid MapsC(x, y) such that:

● Objects in MapsC(x, y) are morphisms from x to y;
● Morphisms in MapsC(x, y) are 2-morphisms between morphisms from x to
y;

● . . .

In this lecture, we provide three constructions of Kan complexes that represent this
∞-groupoid (see [Lecture 3, Definition 8.3] for what this means). These three Kan
complexes are weak homotopy equivalent but not isomorphic to each other.
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6.2. In a model-independent or axiomatic theory2 of (∞,1)-categories, these three
constructions should correspond respectively to the following ∞-groupoids:

(B) The fiber product

{x} ×
Fun({0},C)

Fun([1],C) ×
Fun({1},C)

{y},

where Fun(D,C) is the (∞,1)-category of functors from D to C.
(L) The fiber product

Cx/ ×C {y},

where Cx/ is the coslice (∞,1)-category of C under x;
(R) The fiber product

{x} ×
C
C/y,

where C/y is the slice (∞,1)-category of C over y;

Exercise 6.3. Convince yourself that the above three ∞-groupoids should be canon-
ically equivalent.

7. Functor quasi-categories

7.1. To realize (B) via quasi-categories, we need to define the quasi-category of
functors between two quasi-categories.

Definition 7.2. We say a category C is Cartesian closed if it satisfies the fol-
lowing conditions:

(1) Finite products exist in C;
(2) For any objects X and Y in C, the functor

Hom(X × −, Y ) ∶ Cop → Set

is corepresentable, i.e., there exists an object Y X , called the exponential
object, satisfying the following universal property:

Hom(X ×Z,Y ) ≃ Hom(Z,Y X).

Remark 7.3. Condition (2) is equivalent to

(2′) For any object X, the functor X × − ∶ C → C has a right adjoint.

Indeed, this right adjoint is given by (−)X ∶ C → C.

Proposition-Definition 7.4. The category Set∆ is Cartesian closed. For simpli-
cial sets X and Y , we denote the exponential object by

Fun(X,Y ) def== Y X ∈ Set∆.

Exercise 7.5. Fun(Xop, Y op) ≃ Fun(X,Y )op.

Exercise 7.6. Prove that the nerve functor N● ∶ Cat → Set∆ is compatible with
products and exponentials, i.e.,

N●(C ×D) ≃Ð→ N●(C) ×N●(D),

N●(Fun(C,D)) ≃Ð→ Fun(N●(C),N●(D)).
2I am not aware of the existence of such a theory, hence the discussion below only serves as

motivations.
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Proposition 7.7 (Ker.00TN). For X ∈ Set∆ and Y ∈ Kan, we have Fun(X,Y ) ∈
Kan.

Proposition 7.8 (Ker.0066). For X ∈ Set∆ and Y ∈ QCat, we have Fun(X,Y ) ∈
QCat.

Corollary 7.9. The category QCat is Cartesian closed.

Proposition-Definition 7.10 (Ker.01JC). Let C be a quasi-category and x, y be
be objects in C. Then the simplicial set

HomB
C(x, y)

def== {x} ×
Fun({0},C)

Fun(∆1,C) ×
Fun({1},C)

{y}

is a Kan complex, which is called the balanced complex of morphisms3 from x
to y.

7.11. By definition, for a testing simplicial set K, we have a bijection between the
sets of

● morphisms K → HomB
C(x, y)

● morphisms K × ∆1 → C with constant value x on K × {0} and constant
value y on K × {1}.

7.12. In particular, a 1-simplex in HomB
C(x, y) corresponds to a diagram ∆1×∆1 →

C of the form

x
f //

��
id

��

y

id

��
x g

// y.

We call such a diagram a balanced homotopy4, or balanced 2-morphism, from
f to g.

Exercise 7.13. Let C be a quasi-category and f, g ∶ x→ y be morphisms. Show that
f is homotopic to g iff there exists a balanced homotopy from f to g.

Exercise 7.14. Constrct a canonical isomorphism HomB
C(x, y)op

≃Ð→ HomB
Cop(y, x).

8. Slice and coslice

8.1. To realize (L) and (R) via quasi-categories, we need to generalize the
slice/coslice categories to quasi-categories.

Definition 8.2. Let C and D be categories. The join of C and D, denoted by C⋆D,
is the category defined by

Ob(C ⋆D) ∶def== Ob(C) ⊔Ob(D)

HomC⋆D(x, y) def==

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

HomC(x, y) if x, y ∈ C
HomD(x, y) if x, y ∈ D

{∗} if x ∈ C, y ∈ D
∅ if x ∈ D, y ∈ C.

Example 8.3. We have [i] ⋆ [n − i − 1] ≃ [n].
3This terminology is not standard. For instance, Lurie called it the space of morphisms.
4This terminology is not standard.

https://kerodon.net/tag/0066
https://kerodon.net/tag/0066
https://kerodon.net/tag/01JC
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8.4. The above definition can be generalized to simplicial sets.

Definition 8.5. Let X and Y be simplicial sets. The join of X and Y , denoted
by X ⋆ Y , is the simplicial set defined by

(X ⋆ Y )([n]) def== ⊔
−1≤i≤n

(X([i]) × Y ([n − i − 1])),

where we use the convention [−1] = ∅ and thereby X[−1] = Y [−1] = {∗}. In the
above definition, the functoriality in [n] is provided by the equivalences [i]⋆ [n− i−
1] ≃ [n].

Example 8.6. We have ∆i ⋆∆n−i−1 ≃ ∆n.

Proposition 8.7 (Ker.02QV). Let X and Y be quasi-categories. Then the join
X ⋆ Y is also a quasi-category.

Definition 8.8. Let X be a simplicial set. We define the left cone and right
cone of X to be

X⊲ def== ∆0 ⋆X, X⊳ def== X ⋆∆0.

Definition 8.9. Let X be a simplicial set and x be a 0-simplex in X. The slice
simplicial set of X over x is the simplicial set X/x defined by

Hom(Y,X/x) ≃ Hom(Y ⊳,X) ×
Hom(∆0,X)

{x}.

Dually, the coslice simplicial set of X under x is defined to be the simplicial
set Xx/ satisfying the following universal property

Hom(Y,Xx/) ≃ Hom(Y ⊲,X) ×
Hom(∆0,X)

{x}.

Exercise 8.10. Show that Xx/ and X/x are quasi-categories if X is so.

8.11. The embeddings Y → Y ⊲ and Y → Y ⊳ induce forgetful morphisms

Xx/ →X, X/x →X.

Proposition-Definition 8.12 (Ker.01L0). Let C be a quasi-category and x, y be
objects in X. The simplicial sets5

HomL
C(x, y)

def== Cx/ ×C {y}

HomR
C(x, y)

def== {x} ×
C
C/y

are Kan complexes, which are called the left/right pinched complex of mor-
phisms from x to y.

8.13. By definition, for a testing simplicial set K, we have a bijection between the
sets of

● morphisms K → HomL
C(x, y)

● morphisms K⊲ → C with value x on the apex ∆0 ⊂ K⊲ and constant value
y on the base K ⊂K⊲.

Dually, we have a bijection between the sets of

● morphisms K → HomR
C(x, y)

5In below, {x} stands for a simplicial set ∆0 with the 0-simplex labelled by x.

https://kerodon.net/tag/02QV
https://kerodon.net/tag/01L0
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● morphisms K⊳ → C with value y on the apex ∆0 ⊂ K⊳ and constant value
x on the base K ⊂K⊳.

In particular, morphisms in HomL
C(x, y) and HomR

C(x, y) represents respectively
left/right pinched 2-morphisms in C.

Exercise 8.14. Construct a canonical isomorphism HomL
C(x, y)op

≃Ð→ HomR
Cop(y, x).

9. Morphism spaces

9.1. For a testing simplicial set K, we have natural maps

K⊲ ←K ×∆1 →K⊳,

where the leftward (resp. rightward) morphism collapse K × {0} (resp. K × {1})
onto the apex of the left (resp right) cone. By §8.13 and §7.11, we obtain morphisms

(9.1) HomL
C(x, y)→ HomB

C(x, y)← HomR
C(x, y).

Proposition 9.2 (Ker.01L5). Morphisms in (9.1) are weak homotopy equivalences.

9.3. It follows that the ∞-groupoids/spaces represented by the Kan complexes in
(9.1) are canonically equivalent.

Definition 9.4. Let C be a quasi-category and x, y be objects in X. Let

MapsC(x, y) ∈ hGrpd∞
def== Set∆[W −1]

be the object represented by (9.1)6. We call it the mapping space from x to y.

9.5. Whatever the following means, we call a morphism in the ∞-groupoid
MapsC(x, y) a 2-morphism in the ∞-category represented by C.

Exercise 9.6. Construct a canonical isomorphism MapsC(x, y)
≃Ð→ MapsCop(x, y).

Hint: [Lecture 3, Exercise 6.5].

10. Composition in ∞-categories

10.1. The following result, due to Joyal, is combinatorial but fundamental. See
Ker.0079 for a proof.

Theorem 10.2. A simplicial set X is a quasi-category iff

Fun(∆2,X)→ Fun(Λ2
1,X)

is an acyclic Kan fibration in Set∆.

10.3. Let C be a quasi-category. By definition, a 0-simplex in Fun(Λ2
1,C) is a pair

of composable morphisms in C:
y

g

��
x

f
??

z,

6See §11 for what this actually means.

https://kerodon.net/tag/01L5
https://kerodon.net/tag/0079


LECTURE 4 9

and a lift of this 0-simplex to Fun(∆2,C) is a 2-simplex σ

(10.1) y
g

��
x

f
??

h
// z,

witnessing h as a composition of f and g.

Now the above theorem implies the simplicial set of such lifts is a weakly con-
tractible Kan complex. In other words, a composition of f and g, when un-
derstood as a 2-simplex, is defined up to a contractible space of choices. By
Slogan 11.4 below, we can say:

The composition g○f is well-defind as an object in the mapping ∞-groupoid
MapsC(x, y).

10.4. To obtain the above result, it is crucial that we incorporate the witness
2-simplex as part of the data in a composition. We can say:

Slogan 10.5. In an ∞-category, composition is a structure rather than a property.

10.6. Since this is a quite important point, let us rephrase it as follows. In an ∞-
category, when saying h is the composition of f and g, we always mean we supply
a commutative diagram (10.1). Otherwise, the words the composition do not make
sense.

Exercise 10.7. Alternatively, one can justify the above claim as follows. Let C be
a quasi-category.

(1) Use Theorem 10.2 to deduce that

Fun(∆2,C) ×
C×3

{(x, y, z)}→ Fun(Λ2
1,X) ×

C×3
{(x, y, z)}

is an acyclic Kan fibration in Set∆.
(2) Identify the target of the above morphism with

HomB
C(x, y) ×HomB

C(y, z)
(3) Construct a morphism

Fun(∆2,C) ×
C×3

{(x, y, z)}→ HomB
C(x, z)

in Set∆.
(4) Construct a morphism

HomB
C(x, y) ×HomB

C(y, z)→ HomB
C(x, z)

in hGrpd∞
def== Set∆[W −1].

(5) Show that the composition in (4) satisfies strict identity and associativity
axioms.

Exercise 10.8. In an ∞-category C, composing with an isomorphism induces equiv-
alence betwen mapping spaces. In other words, for a quasi-category C,

(1) If f ∶ x→ y is an isomorphism, then it induces a weak homotopy equivalence
between Kan complexes:

− ○ f ∶ HomB
C(y, z)

∼Ð→ HomB
C(x, z).
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(2) If g ∶ y → z is an isomorphism, then it induces a weak homotopy equivalence
between Kan complexes:

g ○ − ∶ HomB
C(x, y)

∼Ð→ HomB
C(x, z).

11. When is an object well-defined?

11.1. This section serves to answer the following questions:

Why is g ○ f well-defined as an object in the ∞-groupoid MapsC(x, y)?

11.2. First, let us make it clear: we do not claim g○f is a well-defined 1-simplex in
the quasi-category C, nor a well-defined 0-simplex in any of the Kan complexes in
(9.1). Instead, we claim it is well-defined as a morphism in the ∞-category modeled
by C, or equivalently, well-defined as an object in the ∞-groupoid modeled by (9.1).

Since we have already sketched a mathematical proof of this claim in Exercise
10.7, now we will provide a more metaphysical/ideological argument for this claim.

11.3. In classical category theory, construction often means

● specifying an element in a given set ;

However, in infinity category theory, we want to keep track of automorphisms
between objects, as well as automorphisms between automorphisms, etc.. Hence
construction should mean

● specifying an object in a given ∞-groupoid,

or equivalently

● specifying a point of a homotopy type.

Note that we cannot distinguish the homotopy type of a point with that of any
contractible space. Hence we may say:

Slogan 11.4. In an ∞-groupoid, an object is well-defined if it is defined up to a
contractible space of choices7.

11.5. From now on,

essentially unique = unique up to a contractible space of choices.

Appendix A. Inverse

A.1. The lifting property in §1.3 actually implies f is an isomorphism (rather than
just has a left inverse), as long as the simplicial set is a quasi-category. In more
precise words:

Exercise A.2. Let C be a quasi-category and f be a morphism. Suppose

Λn0
φ //

��

X

∆n

>>

n ≥ 2

has a solution for any φ such that φ∣∆{0,1} = f . Show that f is an isomorphism.

7A radical consequence of this philosophy is the so-called univalent foundations of mathematics.
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A.3. The following exercises say the left inverse, right inverse, and inverse of an
isomorphism f is well-defined, i.e., defined up to a contractible space of choices.
However, one has to be careful about the meanings of these words.

Exercise A.4. Let C be a quasi-category and f be a morphism. Find the correct
meaning of the words

● A 2-simplex σ witnesses g as a left/right inverse of f .

If f is an isomorphism, show that the left/right inverse of f is well-defined by
imitating §10.

Exercise A.5. Let C be a quasi-category and f be an isomorphism. Find a sim-
plicial set I such that the words

● A morphism I → C witnesses g as an inverse of f

is the correct notion. Show that the inverse of f is well-defined by imitating §10.
Hint: I should be the nerve of an ordinary category.

Exercise A.6. Make sense of the following words: in an ∞-category, the left in-
verse and right inverse of an isomorphism are canonically equivalent.
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