
LECTURE 5

In this lecture, we define the quasi-categoryQCat of small quasi-categories, which
models the ∞-category Cat∞ of small ∞-categories.

1. Idea of the construction

1.1. Last time, for quasi-categories C and D, we constructed the quasi-category
Fun(C,D) of functors between them. Let Fun(C,D)≃ be the core Kan complex of
this quasi-category, which can be viewed as obtained from Fun(C,D) by discarding
all non-invertible natural transformations.

1.2. Using these Kan complexes, we can enrich the ordinary cateogry QCat over
Set∆, and obtain a simplicial (enriched) category QCat. The homotopy hypothesis
suggests QCat is already a model for Cat∞.

1.3. To translate this into rigorous mathematics, we will construct a Quillen equiv-
alence between model categories

C ∶ SetJoyal∆
ÐÐ→
←ÐÐ Cat∆ ∶N●

between the Joyal model category of simplicial sets and the standard model category
of small simplicial categories. The simplicial category QCat is a fibrant object in1

Cat∆ because it is enriched over fibrant objects in Set∆. The Joyal model structure
is designed such that (bi)fibrant objects are exactly quasi-categories. Therefore

QCat
def
== N●(QCat)

is a fibrant object in SetJoyal∆ , i.e., a quasi-category.

2. Homotopy category of quasi-categories

2.1. The homotopy category of the desired quasi-category QCat, in the sense of
[Lecture 4, Definition 4.2], can be easily defined. It will also be the homotopy

category of the desired model category SetJoyal∆ , in the sense of [Lecture 2, Definition
2.19]. It models the homotopy category hCat∞ of the desired ∞-category Cat∞.

Definition 2.2. Let F1, F2 ∶ C → D be functors between quasi-categories. We call a
morphism α ∶ F1 → F2 in the quasi-category Fun(C,D) a natural transformation
from F1 to F2.

We say α is invertible, or is an equivalence, if it is an isomorphism in
Fun(C,D).

Date: Sep. 27, 2024.
1Strictly speaking, QCat is not an object in Cat∆ because it is not small. Hence we need

to replace the large model category Cat∆ of small simplicial categories by the very large model

category C̃at∆ of large simplicial categories, and similarly replace SetJoyal∆ by the very large Joyal

model category S̃et
Joyal
∆ of large simplicial sets. Here one can use Grothendieck universes to give

precise meanings to the above size conditions. We will ignore these set-theoretic issues until we
encounter really problems about them.
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2 LECTURE 5

Theorem 2.3 (Ker.01DK). Let F1, F2 ∶ C → D be functors between quasi-categories.
A natural transformation α ∶ F1 → F2 is invertible iff its value at any object x ∈ C

is an isomorphism, i.e. α(x) ∶ F1(x)
≃
Ð→ F2(x).

Exercise 2.4. Show that the following construction defines an ordinary category
hQCat:

● Objects of hQCat are small quasi-categories;
● Morphisms hQCat are equivalence classes of functors between quasi-
categories:

HomhQCat(C,D)
def
== π0(Fun(C,D)

≃
)

● Composition is given by [G] ○ [F ]
def
== [G ○ F ].

3. Equivalences between quasi-categories

3.1. Note that we have a functor QCat→ hQCat. Similar to [Lecture 4, Definition
5.1], we make the following definition.

Definition 3.2. Let F ∶ C → D be a functor between quasi-categories, i.e. a mor-
phism in QCat. We say F is an equivalence if its image [F ] in hQCat is an
isomorphism.

Remark 3.3. In other words, F ∶ C → D is an equivalence iff there exists a functor
G ∶ D → X such that G ○ F is equivalent to IdC and F ○G is equivalent to IdD.

Theorem 3.4 (Ker.01JX). Let F ∶ C → D be a functor between quasi-categories.
Then F is an equivalence iff

(1) F is fully faithful: for any objects x, y ∈ C, the functor MapsC(x, y) →
MapsD(Fx,Fy) is an equivalence between ∞-groupoids.

(2) F is essentially surjective: the map π0(C
≃
) → π0(D

≃
) is surjective. In

other words, for any object d ∈ D, there exist c ∈ C and an isomorphism

F (c)
≃
Ð→ d.

Exercise 3.5. Being essentially surjective can be checked on the level of homotopy
categories. Namely, F ∶ C → D is essentially surjective iff hF ∶ hC → hD is so.

Exercise 3.6. Being fully faithful cannot be checked on the level of homotopy
categories.

Remark 3.7. Let F ∶ C → D be a functor between quasi-categories. So far we have
at least four equivalence-like conditions on F :

(a) F is an isomorphism in Set∆.
(b) F is an equivalence between quasi-categories.
(c) F is a weak homotopy equivalence in the Kan–Quillen model category

SetKQ∆ .
(d) F induces an equivalence between ordinary categorie: hF ∶ hC → hD.

The relations between these notions are

(a) +3 (b) +3

��

(c)

(d).

https://kerodon.net/tag/01DK
https://kerodon.net/tag/01JX
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Exercise 3.8. The above implications are not inverible.

(1) N●({● ÐÐ→←ÐÐ ●}) →∆0 satisfies (b) but not (a).
(2) ∆1

→∆0 satisfies (c) but not (b) or (d).
(3) Sing(S2

) →∆0 satisfies (d) but not (b) or (c).

Remark 3.9. Let F ∶ C → D be the functor between ∞-categories modeled by F ∶
C → D. The above conditions tranlate into:

(a) This condition does not make sense because it is evil.
(b) F is an equivalence between ∞-categories.
(c) F becomes an equivalence beween ∞-groupoids after formally inverting all

morphisms in C and D.
(d) F becomes an equivalence between ordinary categories after formally forcing

all non-invertible higher morphisms in C and D to be identities.

Remark 3.10. Let C be an ∞-category. We denote C♯ the ∞-groupoid obtained
from C by formally inverting all morphisms. Note that this is not the core ∞-
groupoid C≃, which is obtained by discarding all non-invertible morphisms (see
[Lecture 4, Exercise 5.3]). We have

C≃ → C→ C♯.

4. Joyal model structure

4.1. Morphisms in the class (W) of SetJoyal∆ will be called categorical equivalences2

between simplicial sets. When restricted to bifibrant objects, i.e. quasi-categories,
they are supposed to model equivalences between the underlying ∞-categories. In
other words:

Categorical equivalences between quasi-categories should be equivalences, in
the sense of Definition 3.2.

Hence the main task is to define categorical equivalences between general sim-
plicial sets.

4.2. Recall when defining the classical model structure on Set∆ (see [Lecture 3,
Theorem-Definition 6.2]), we declare weak homotopy equivalences between sim-
plicial sets to be maps f ∶ X → Y such that ∣f ∣ ∶ ∣X ∣ → ∣Y ∣ are weak homotopy
equivalences in Top.

It is possible to define categorical equivalences in SetJoyal∆ in a similar manner.
Namely, we can first define weak equivalences in Cat∆ and then transfer them via
the functor C ∶ Set∆ → Cat∆

3. However, I find the construction of the functor
C not intuitive enough to provide actual feelings about categorical equivalences.
Therefore we will follow Joyal’s definition.

2Joyal called them weak categorical equivalences. We follow Lurie’s terminology.
3This was the approach adopted in Lurie’s HTT.2.2.5, which differs from that in Joyal’s works

(see [Joy08]). See HTT.2.2.5.9 and HTT.2.2.5.10 for more information.
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4.3. Joyal’s definition is motivated by the following observation:

Exercise 4.4. Let C be a model category such that any object is cofibrant. Then a
morphism f ∶X → Y belongs to (W) iff for any fibrant object Z, the map

(HomC(Y,Z)/ ∼) → (HomC(X,Z)/ ∼)

is bijective. Here “∼” stands for the homotopy relation between morphisms, see
[Lecture 2, Proposition-Definition 2.18].

Hint: Yoneda lemma; the functor C → C[W −1
] detects all weak equivalences.

Proposition-Definition 4.5. Let f ∶X → Y be a morphism in Set∆. The follow-
ing conditions are equivalent:

(1) For any quasi-category Z, the map

π0(Fun(Y,Z)
≃
) → π0(Fun(X,Z)≃)

is a bijection between sets.
(2) For any quasi-category Z, the functor

Fun(Y,Z)≃ → Fun(X,Z)≃

is a weak equivalence between Kan complexes.
(3) For any quasi-category Z, the functor

Fun(Y,Z) → Fun(X,Z)

is an equivalence between quasi-categories.

We say f is a categorical equivalence if it satisfies the above conditions.

Proposition 4.6 ([Joy08, Corollary 2.29]). Any inner horn inclusion Λn
i → ∆n,

0 < i < n is a categorical equivalence.

Exercise 4.7. Convince yourself the above claim does not follow immediately from
the definition of quasi-categories.

Exercise 4.8. Categorical equivalences are weak homotopy equivalences. Hint:
[Lecture 3, §6.5].

Exercise 4.9 (Ker.01EG). Acyclic Kan fibrations are categorical equivalences.

Theorem-Definition 4.10 ([Joy08, Theorem 6.12]). There exists a model struc-
ture on Set∆ given by

(W) class of categorical equivalences;
(C) class of monomorphisms;
(F) class of morphisms satisfying the right lifting property against (C ∩W ).

We call it the Joyal model structure on Set∆. and denote this model category

by SetJoyal∆ .

Fibrant objects in this model category are exactly quasi-categories.

https://kerodon.net/tag/01EG
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4.11. The following result is tautological:

Exercise 4.12. The functor QCat → Set∆ induces an equivalence4 hQCat →
hSetJoyal∆ . In particular, SetJoyal∆ [W −1

] also models hCat∞.

Definition 4.13. Fibrations in SetJoyal∆ are called categorical fibrations.

Proposition 4.14. The identity functor gives a Quillen adjunction

SetJoyal∆
ÐÐ→
←ÐÐ SetKQ∆ .

Exercise 4.15. Let L ∶ SetJoyal∆ [W −1
] ÐÐ→←ÐÐ SetKQ∆ [W

−1
] ∶ R be the derived adjunction

of the above Quillen adjunction. Intepret it as an adjunction hCat∞ ÐÐ→←ÐÐ hGrpd∞.

Remark 4.16. By definition, categorical fibrations p ∶X → Y in SetJoyal∆ satisfy the
right lifting properties against all inner horn inclusions. Morphisms satisfy these
properties are called inner fibrations. Note that when Y = ∆0, inner fibrations
over Y are categorical fibrations. However, the inclusion

inner fibrations ⊂ categorical fibrations

is strict in general. For more information, see HTT.2.4.6.5.

5. Simplicial categories

5.1. In this section, we define a model structure on the category Cat∆ of small
simplicial categories.

5.2. Weak equivalences between simplicial categories are defined similarly as weak
equivalences between topological categories. See [Lecture 2, §3].

Definition 5.3. Let C be a simplicial category. Its homotopy category π0C is
defined by

Ob(π0C) ∶= Ob(C), Homπ0C(x, y) ∶= π0(∣HomC(x, y)∣).

Definition 5.4. Let F ∶ C → D be a functor between simplicial categories. We say
F is a weak equivalence if:

● It induces an equivalence π0F ∶ π0C → π0D.
● The morphism HomC(x, y) → HomD(Fx,Fy) is a weak equivalence in SetKQ∆
for any x, y ∈ Ob(C).

Theorem 5.5 (HTT.A.3.2). There exists a canonical model structure on Cat∆ such
that:

● Weak equivalences are as in Defintion 5.4.
● Fibrant objects are exactly simplicial categories C such that HomC(−,−) are
Kan complexes.

We call it the classical or Bergner model structure on Cat∆.

Remark 5.6. It is not easy to describe fibrations and cofibrant objects in Cat∆,
hence we will not do it. Note that [Lecture 2, Exercise 3.6] has a simplicial analogue,
which suggests many naturally defined simplicial categories are not cofibrant.

4In fact, it is an isomorphism
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6. Quasi-categories and simplicial categories

6.1. In this section, we construct the desired Quillen equivalence

C ∶ SetJoyal∆
ÐÐ→
←ÐÐ Cat∆ ∶N●.

As in the construction of

∣ − ∣ ∶ SetKQ∆ ÐÐ→
←ÐÐ Top ∶ Sing,

we only need to find the correct definition for the restriction C∣∆ ∶∆→ Cat∆ along

the Yoneda embedding ∆ → Set∆
def
== Fun(∆op,Set). The entire functor C will be

the unique (up to unique equivalence) colimit-preserving functor that extends C∣∆,
and the functor N● will be its right adjoint.

6.2. In other words, we need to construct simplicial categories C[∆n
] ∈ Cat∆

equipped with face and degeneracy operators. To motivate this construction, we
look at the following question:

Let C ∈ Cat∆ be a fibrant simplicial category. What is a functor C[∆n
] → C?

Since we expect the model category Cat∆ to model Cat∞, and since C[∆n
] is cofi-

brant (because C is expected to be a left Quillen functor), we obtain

A functor C[∆n
] → C should model a functor [n] → C between corresponding

∞-categories.

6.3. For instance, for n = 2, it should be an invertible 2-morphism witnessing the
following commutative diagram in C:

y
g

  
x

f
??

h
// z.

Note that in the siplicial category C, the composition is concrete: for 0-
simplexes f ∈ HomC(x, y)0 and g ∈ HomC(y, z)0, we have a well-defined simplex
g ○ f ∈ HomC(x, z)0. Hence the above invertible 2-morpihsm corresponds to a 1-
simplex g ○ f → h5 in HomC(x, z)1.

Therefore we should define C[∆2
] as

● It has three objects, labelled by 0,1 and 2.
● The morphism simplicial sets are

HomC[∆2](i, j)
def
==

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

∅ if i > j
∆1 if i = 0, j = 2
∆0 if otherwise

● The only non-obvious composition is

HomC[∆2](0,1) ×HomC[∆2](1,2) → HomC[∆2](0,2)

∆0
×∆0

→∆1,

which is given by the 0-simplex 0 ∈∆1.

5One may also use h→ g ○ f . Thanks to the fibrant assumption about HomC(x, z), the actual

data are the same. But the obtained functor C will differ by the involution Set∆ → Set∆,X ↦ Xop.
Here we follow the conventions in Kerodon (see Ker.00KN), which is the opposite to HTT (see

HTT.1.1.5.1.).

https://kerodon.net/tag/00KN
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6.4. The above research can be conducted for general n. Namely, for any ∞-
category, we know the correct meaning of a functor [n] → C, thanks to the fact that
[n] comes from a linearly ordered set6. For instance, 0-simplex in HomC[∆n](0, n)
should be a subset I ⊂ [n] containing 0 and n; and each chain I0 ⊃ ⋯ ⊃ Im corre-
sponds to a m-simplex.

In formula, we define:

Definition 6.5. Let J be any linearly ordered set. We define a simplicial category
C[∆J

] as follows:

● Objects are elements in J ;
●

HomC[∆J ](x, y)
def
== {

∅ if x > y
N●(Px,y) if x ≤ y

where Px,y ∶= {I ⊂ [x, y] ∣ x, y ∈ I} is equipped with the partial order ⊃, and
N●(Px,y) is the nerve of the corresponding category.
● Morphisms are induced by

(I ⊂ [x, y], I ′ ⊂ [y, z]) ↦ (I ∪ I ′ ⊂ [x, z])

6.6. The above construction is functorial in J and therefore we have a functor

∆→ Cat∆, [n] ↦ C[∆n
]
def
== C[∆[n]]

Note that C[∆n
] is not fibrant. This can already be seen when n = 2.

Let

C ∶ Set∆ → Cat∆

be the essentially unique colimit-preserving functor that extends the above functor.

Exercise 6.7. What is C[Λ2
1]?

Theorem-Definition 6.8 (HTT.2.2.5.1, HTT.2.2.5.8). The functor C ∶ Set∆ →
Cat∆ has a right adjoint, called the simplicial nerve functor

N● ∶ Cat∆ → Set∆.

The adjoint pair

C ∶ SetJoyal∆
ÐÐ→
←ÐÐ Cat∆ ∶N●

is a Quillen equivalence.

6.9. Note that C[∆0
] ≃ {∗}. Hence we may

● identify X0 with Ob(C(X)) for any simplicial set X;
● identify Ob(C) with N●(C)0 for any simplicial category C.

From now on, we will abuse notations by viewing them as the same sets.

6On the other hand, homotopy coherent commutative diagrams discussed in [Lecture 1, Section
3] are beyond our reach, because they are not given by (partially) ordered set.
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6.10. To justify corresponding bifibrant objects in SetJoyal∆ and Cat∆ indeed model
the same ∞-category, we need the following results.

Theorem 6.11 (Ker.01LE). Let C ∈ Cat∆ be a fibrant simplicial category. Then
there is a canonical weak homotopy equivalence between Kan complexes

HomC(x, y)
≃
Ð→ HomL

N●(C)(x, y).

Corollary 6.12. Let C ∈ Cat∆ be a fibrant simplicial category. Then there is a

canonical equivalence hC
≃
Ð→ hN●(C)7.

7. The quasi-category of quasi-categories

7.1. This is a verbatim of §1.

Definition 7.2. Let QCat be the simplicial category defined by:

● Objects are quasi-categories;
● For quasi-categories C and D,

HomQCat(C,D) ∶= Fun(C,D)
≃.

● The composition

Fun(C,D) × Fun(D,E) → Fun(C,E)

is given by the unversal property of Fun(−,−).

Definition 7.3. The quasi-category of small quasi-categories is defined to be

QCat ∶=N●(QCat).

Let Cat∞ be the ∞-category modelled by it8. We call it the ∞-category of small
∞-categories.

Exercise 7.4. Let C and D be quasi-categories. There is a canonical weak homotopy
equivalence between Kan complexes

Fun(C,D)≃
≃
Ð→ HomL

QCat(C,D).

In other words, Fun(C,D)≃ models the ∞-groupoids MapsCat∞(C,D) as desired.

Variant 7.5. Similarly, we define the quasi-category of small Kan complexes

Kan ∶=N●(Kan),

where Kan ⊂ QCat is the full simplicial subcategory consisting of Kan complexes. As
before, the quasi-category Kan models the ∞-category Grpd∞ of small ∞-groupoids.

Exercise 7.6. Show that the homotopy category of QCat is indeed equivalent to
hQCat in Exercise 2.4.

8. Commutative diagrams in simplicial categories

8.1. By previous discussion, in infinite category theory, for any simplicial set S,
the correct notion of an S-indexed commutative diagram in a simplicial category C
is a functor C[S] → C. We call such diagrams an S-indexed homotopy coherent
commutative diagram in C.

7In fact, this result is much more elementary. See Ker.00M4
8In rigorous mathematical words, we should define ∞-categories to be quasi-categories. How-

ever, I do want the readers to view quasi-categories as models for ∞-categories.

https://kerodon.net/tag/01LE
https://kerodon.net/tag/00M4
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8.2. In most cases, the shape of the diagram is an ordinary category D, we also
abuse language and call a functor C[N●(D)] → C a D-indexed homotopy coherent
commutative diagram in C. This is the notion that behaves well under standard
infinite categorical constructions.

One can also ask for a diagram that commutes on the nose, which means
a functor D → C, where D is viewed as enriched over discrete simplicial sets. In
practice, it is hard to construct such diagrams, but most non-formal calculations
eventually lead people to this realm9.

One can also ask for a diagram that commutes up to homotopy, which means
a functor D → hC. This is essentially a notion in ordinary category theory.

8.3. We have:

on the nose ⇒ homotopy-coherently ⇒ up to homotopy .

Exercise 8.4. Apply the above discussion to C ∶= QCat and obtain three notions of
commutative diagram of quasi-categories.

9. What is an ∞-categories?

9.1. In these notes, we take the following perspective:

● An ∞-category is modelled by a quasi-category, and any equivalence be-
tween two quasi-categories supplies an identification of the ∞-categories
modelled by them.

Note however that such identifications are not unique, and there can be identifica-
tions between identifications, etc..

In particular, we do not assign a specific quasi-category to an ∞-category10.
For instance, it makes no sense to talk about the set of objects in an ∞-category.
Rather, one can talk about the ∞-groupoid of objects (because ∞-groupoids are
defined under the same philosophy11), and therefore the set of equivalent classes of
objects.

9.2. To describe the above philosophy in more rigorous words, we make the fol-
lowing definition.

Definition 9.3. Let C be a quasi-category and W be a collection of morphisms in
C. We say a functor C → D exhibits D as a quasi-categorical localization of C
with respect to W if for any quasi-category E, the functor

Fun(D,E) → Fun(C,E)

is fully faithful and the essential image contains exactly functors C → E that send
morphisms in W to isomorphisms.

9My personal experience: genuine non-formal calculations are very few.
10Note however that in Lurie’s book, an ∞-category is just a quasi-category.
11See [Lecture 4, Remark 8.4].
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9.4. In futuer lectures, we will show quasi-categorical localizations are essentially
unique, i.e., unique up to a contractible space of choices. We will use C[W −1

] to
denote the quasi-categorical localization of C with respect to W .

By Theorem A.3, we have a canonical equivalence

N●(QCat)[W −1
]
≃
Ð→QCat,

where W is the collection of categorical equivalences.

9.5. Now we make the following definition:

● An ∞-category is an object in the quasi-categorical localization of
N●(QCat)[W −1

] with respect to categorical equivalences.
● For a quasi-category C ∈ QCat, the ∞-category modelled by C is its image
under N●(QCat) → N●(QCat)[W −1

].

In above, we do not make a specific choice for N●(QCat)[W −1
], and any statements

about ∞-categories in these notes will not depend on such a choice. In particular,
we do not view ∞-categories as 0-simplexes in QCat.

Modulo the problem in Footnote 1, N●(QCat)[W −1
] itself models an∞-category,

which is called the∞-category of (small)∞-categories, and is denoted by Cat∞.

9.6. In practice, the above philosophy results in the following principle. To make
definitions or constructions about ∞-categories, we can either:

(i) Make them via quasi-categories and show the results are invariant under
categorical equivalences.

(ii) Combine existing definitions or constructions about ∞-categories, without
mentioning quasi-categories.

When both methods are available, we prefer the second one because it allows us to
translate the definitions and constructions to other approaches to infinite category
theory.

Appendix A. QCat vs. QCat

Exercise A.1. Let C be an ordinary category. Construct an isomorphism N●(C) ≃
N●(C), where in the RHS we view C as enriched over discrete simplicial sets.

Exercise A.2. Construct a functor N●(QCat) → QCat that models QCat→ Cat∞.

Theorem A.3. The functor N●(QCat) → QCat exhibits QCat as the quasi-
categorical localization of N●(QCat) with respect to the class of categorical equiva-
lences.

A.4. Suggested readings. [DK80c], [DK80a], [DK80b] (original) and [Hin16]
(more recent).
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[Joy08] André Joyal. The theory of quasi-categories and its applications. 2008.


	1. Idea of the construction
	1.1. 
	1.2. 
	1.3. 

	2. Homotopy category of quasi-categories
	2.1. 

	3. Equivalences between quasi-categories
	3.1. 

	4. Joyal model structure
	4.1. 
	4.2. 
	4.3. 
	4.11. 

	5. Simplicial categories
	5.1. 
	5.2. 

	6. Quasi-categories and simplicial categories
	6.1. 
	6.2. 
	6.3. 
	6.4. 
	6.6. 
	6.9. 
	6.10. 

	7. The quasi-category of quasi-categories
	7.1. 

	8. Commutative diagrams in simplicial categories
	8.1. 
	8.2. 
	8.3. 

	9. What is an oo-categories?
	9.1. 
	9.2. 
	9.4. 
	9.5. 
	9.6. 

	Appendix A. category of quasi-categories vs. quasi-category of quasi-categories
	A.4. Suggested readings

	References

