
LECTURE 6

In this lecture, we define ∞-(co)limits, i.e., (co)limits in an ∞-category.

1. Idea of the definition

1.1. In classical category, we have the following characterization of limits:

A diagram u ∶K⊲ → C is a limit diagram iff it corresponds to a final object
in the slice category C/u, where u ∶K → C.

We will define ∞-limits in exactly the same way, once the following are accom-
plished:

(1) Define final and initial objects in an ∞-category;
(2) Define slice and coslice ∞-categories.

2. Final and initial objects

2.1. Recall an ∞-groupoid is contractible if it is equivalent to [0].
Definition 2.2. Let C be an ∞-category and x ∈ C be an object.

● We say x ∈ C is final if for any object y ∈ C, the ∞-groupoid MapsC(y, x)
is contractible.
● We say x ∈ C is initial if for any object y ∈ C, the ∞-groupoid MapsC(x, y)
is contractible.

2.3. Note that x ∈ C is initial iff the corresponding object in Cop is final. Hence in
below, we focus on final objects.

Exercise 2.4. Being final is invariant under equivalences:

(1) If x→ y is an isomorphism in C, then x is final iff y is so.
(2) If F ∶ C → C′ is an equivalence between ∞-categories, then x ∈ C is final iff

F (x) in C′ is so.

Exercise 2.5. The apex of C⊳ is final.

Example 2.6. The empty category is initial in Cat∞. The singleton [0] is final in
Cat∞.

Proposition 2.7. The full sub-∞-category consisting of final objects in an ∞-
category C is either empty or a contractible ∞-groupoid. In other words, final
objects in an ∞-category C are essentially unique if exist.

Proof. We can replace C by the full sub-∞-category consisting of final objects, and
assume any object in C is final. We need to show C is either empty or a contractible
∞-groupoid. Indeed, if C is not empty, then the functor C → [0] is fully faithful
and essentially surjective. □

Exercise 2.8. Let C be an ∞-category and x be an object. If x is final, then its
image under C→ hC is final. The converse is ture if C has a final object.
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2 LECTURE 6

Warning 2.9. In general, the functor C → hC cannot detect final objects. For
example, the following lemma implies a non-contractible ∞-groupoid C has no final
objects, but hC ≃ [0] when C is simply-connected.

Proposition 2.10. An ∞-groupoid C contains a final object x iff C is contractible.

Sketch 1. For pointed space X, πn(ΩX) ≃ πn+1(X).

Sketch 2. The functor [0] xÐ→ C is fully faithful and essentially surjective. □

2.11. In fact, we have the following result, which will be proved in §4.

Proposition 2.12. If an ∞-category C contains a final object x, then it is weakly
contractible1.

3. Slice and coslice: general case

3.1. In [Lecture 4, §8], for a quasi-category C and an object x ∈ C, we defined
the slice and coslice quasi-categories C/x and Cx/. In this section, we generalize
this construction to a general diagram u ∶ K → C in an ∞-category C to define
∞-categories C/u and Cu/.

3.2. We first define them via quasi-categories.

Definition 3.3. Let u ∶K →X be a morphism in Set∆. The slice simplicial set
of X over u is the simplicial set X/u defined by2

Hom(Y,X/u) ≃ Hom(Y ⋆K,X) ×
Hom(K,X)

{u}.

Dually, the coslice simplicial set of X under f is the simplicial set Xu/ defined
by

Hom(Y,Xu/) ≃ Hom(K ⋆ Y,X) ×
Hom(K,X)

{u}.

3.4. Note that (Xu/)op ≃ (Xop)/uop . Hence in below, we focus on the slice con-
struction.

Proposition 3.5 (Ker.018F). Let u ∶K → C be a morphism in Set∆ such that C is
a quasi-category. Then C/u is a quasi-category.

Proposition 3.6 (Ker.02GL, 02NC, 02NR). The slice construction is invariant
under equivalences:

(1) If F ∶ C → C′ is an equivalence between quasi-categories, then for any dia-
gram u ∶K → C, the induced functor C/u → C′/F○u is an equivalence.

(2) If v ∶ K ′ → K is a categorical equivalence between simplicial sets, then
for any diagram u ∶ K → C in a quasi-category C, the restriction functor
C/u → C/u○v is an equivalence.

1In other words, C becomes a contractible ∞-groupoid after formally inverting all morphisms.

See [Lecture 5, §3.7-3.10].
2See [Lecture 4, Definition 8.5] for the definition of the join Y ⋆K.

https://kerodon.net/tag/018F
https://kerodon.net/tag/02GL
https://kerodon.net/tag/02NC
https://kerodon.net/tag/02NR
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3.7. By the philosophy in [Lecture 5, §9], for a diagram u ∶K → C in an∞-category
C, there are well-defined ∞-categories C/u and Cu/. Moreover, the same is true if
K is replaced by an ∞-category K.

We call them the slice/coslice ∞-category of C over F .

Exercise 3.8. Let u ∶ K → C be a diagram in an ∞-category C, and v ∶ J → C/u
be a diagram in C/u. Show that (C/u)/v ≃ C/w, where w ∶ J ⋆K → C is the diagram
corresponding to v.

Construction 3.9. Let u ∶K →X be a morphism in Set∆. By the Yoneda lemma,
the morphisms Y → Y ⋆K induce a morphism X/u → X, which is called the for-
getful morphism from X/u to X.

Let u ∶ K → C be a diagram in an ∞-category C. The above construction gives
the forgetful functor C/u → C.

3.10. We will prove the following result in §5.

Proposition 3.11. For any diagram u ∶ K → C in an ∞-category C, the forgetful
functor C/u → C is conservative3.

Proposition 3.12 (Ker.018F, Ker.00TE). Let u ∶ K → C be a diagram in an ∞-
category C. For a morphism f ∶ x → y in C and a lifting ỹ ∈ C/u of y, there is an
essentially unique morphism x̃→ ỹ that lifts f .

Remark 3.13. The precise meaning of the proposition is:

(1) The functor

Fun([1],C/u)→ Fun({1},C/u) ×
Fun({1},C)

Fun([1],C)

is an equivalence between ∞-categories.

Here the fiber product is calculated inside the∞-category Cat∞, which will be defined
in the next section.

Alternatively, we can realize C as a quasi-category C, then the proposition says4:

(2) The functor

Fun(∆1,C/u)→ Fun({1},C/u) ×
Fun({1},C)

Fun(∆1,C)

is an acyclic Kan fibration.

3This means a morphism in C/u is an isomorphism iff its image in C is so.
4 For the purpose of these notes, we translate results in Lurie’s books into model-independent

language as often as we can. Therefore, the statements stated in these notes are not exactly the
same as those in the cited references. To compare them, one often needs additional knowledge

about the model category SetJoyal∆ .

For instance, to deduce (1) from (2), one needs to know the fiber product in (1) can be realized
as that in (2). By HTT.4.2.4.1 (which will be discussed in future lectures), the former can be

calculated as the corresponding homotopy fiber product in the simplicial model category SetJoyal∆ .
By (the dual of) HTT.A.2.4.4, this homotopy fiber product coincides with the naive fiber product
because Fun(∆1,C)→ Fun({1},C) is a categorical fibration (HTT.2.4.6.5), and all the three terms

are fibrant in SetJoyal∆ .

https://kerodon.net/tag/018F
https://kerodon.net/tag/00TE
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Here the fiber product is calculated inside the ordinary category QCat.

Functors D→ C satisfying the lifting property in Proposition 3.12 (such as C/u →
C) are called right fibrations5. Dually, Cu/ → C is a left fibration. We will
systematically study these fibrations in future lectures.

3.14. Now we discuss functoriality of the slice construction in u.

Proposition-Construction 3.15. Let K be a simplicial set and C be an ∞-
category. Let u0 → u1 be a morphism in Fun(K,C), and u ∶ K ×∆1 → C be the
corresponding diagram. Consider the functors

C/u0
← C/u → C/u1

.

obtained by restricting along K ⇉K ×∆1.

(1) The functor C/u0
← C/u is an equivalence.

(2) The functor C/u → C/u1
is an equivalence if u0 → u1 is an isomorphism in

Fun(K,C).
By inverting the equivalence C/u0

← C/u, we obtain a canonical functor C/u0
→ C/u1

compatible with the forgetful functors to C.

Proof. (1) is left as an exercise for the next lecture. To prove (2), consider the
quasi-category I ∶= N●(I), where I is the ordinary category such that:

● There are two objects in I;
● For x, y ∈ Ob(I), there is a unique morphism x→ y.

Since u0 → u1 is an isomorphism, we can find morphism v making the following
diagram commute:

K ×∆1 u //

⊂

��

C

K × I.
v

;;

Hence we have the following commutative diagram

C/v
q′

""

p′

}}
r

��
C/u0

C/up
oo

q
// C/u1

.

By (1), p is an equivalence. By Proposition 3.6(2), both p′ and q′ are equivalences.
It follows that r, and therefore q, is an equivalence. □

Exercise 3.16. Let K be a simplicial set and C be a quasi-category. Can you
construct a functor Fun(K,C)→ QCat, u↦ C/u? Here QCat is the ordinary category
of quasi-categories.

5More precisely, such functors are modelled by right fibrations between quasi-categories.
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4. Final objects and slice constructions

Proposition 4.1 (Ker.02J2). Let C be an ∞-category and f ∶ x→ y be a morphism.
Then the following are equivalent:

● f is an isomorphism;
● The object in Cx/ given by f is initial;
● The object in C/y given by f is final.

Proposition 4.2. Let C be an ∞-category. Then an object x is final iff the functor
C/x → C is an equivalence.

Sketch. The ⇐ direction of Proposition 4.2 follows immediately from Proposition
4.1. For the ⇒ direction, let C be a quasi-category with a final object x. Note
that the fiber of C/x → C at any object y ∈ C is HomR

C(y, x), which by assumption

is categorical equivalent to ∆0. In future lectures, we will deduce the claim in the
proposition from this and the fact that C/x → C is a right fibration. □

Proof of Proposition 2.12. By definition, we only need to show for any ∞-groupoid
D, the functor

− ○ π ∶ Fun([0],D)→ Fun(C,D)

is an equivalence, where π ∶ C→ [0] is the projection functor. Note that this functor
has an obvious left inverse

− ○ x ∶ Fun(C,D)→ Fun([0],D)

induced by the functor x ∶ [0] → C. Hence it remains to construct an invertible
natural transformation from

(4.1) Fun(C,D) IdÐ→ Fun(C,D),

to

(4.2) Fun(C,D) −○xÐÐ→ Fun([0],D) −○πÐÐ→ Fun(C,D).

We claim any such natural tranformation is automatically invertible. To prove
the claim, note that Fun(C,D) is an ∞-groupoid because D is so. Therefore

Fun(Fun(C,D),Fun(C,D))

is also an ∞-groupoid, which implies the claim.

It remains to construct a natural transformation from (4.1) to (4.2). For this
purpose, it is enough to construct a natural transformation from IdC to the compo-

sition C
πÐ→ [0] xÐ→ C. Consider the obvious functors

C← C/x → Fun([1],C).

By Proposition 4.2, the leftwards functor is an equivalence. Hence we can invert
it and obtain a functor C → Fun([1],C), which corresponds to a functor [1] →
Fun(C,C). Unwinding the definitions, this gives a natural transformation from IdC
to C

πÐ→ [0] xÐ→ C. □[Proposition 2.12]

https://kerodon.net/tag/02J2
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5. Blunt joins

5.1. To prove Proposition 3.11, we need the following equivalent construction of
slice ∞-categories.

Let u ∶ K → C be a diagram in a quasi-category C. As in [Lecture 4, §9.1], we
have a canonical functor

(5.1) C/u → C ×
Fun(K×{0},C)

Fun(K ×∆1,C) ×
Fun(K×{1},C)

{u}.

On the level of objects, this functor sends a diagram u ∶ K⊲ → C to the compo-
sition K ×∆1 → K⊲ → C, which corresponds to a natural transformation x → u,
where x ∶K → C is the constant functor with value x ∶= u(∗).

To simplify the notations, we make the following definition.

Definition 5.2. Let J and K be simplicial sets. Define the blunt join of J and
K as

J ◇K ∶= J ⊔
J×K×{0}

(J ×K ×∆1) ⊔
J×K×{1}

K.

Warning 5.3. The blunt join of quasi-categories might not be a quasi-category.

Exercise 5.4. Show that ∆0 ◇∆1 is not a quasi-category.

5.5. Using the above notation, the functor (5.1) can be rewritten as

(5.2) C/u → Fun(∆0 ◇K,C) ×
Fun(K,C)

{u} =∶ C →×
Fun(K,C)

{u} =∶ C/u.

Dually, we have a canonical functor

(5.3) Cu/ → {u} ×
Fun(K,C)

Fun(K ◇∆0,C) =∶ {u} →×
Fun(K,C)

C =∶ Cu/.

Exercise 5.6. There is a unique morphism J ◇K → J ⋆K making the following
diagram commute:

J ◇K

$$
J ⊔K

::

// J ⋆K.

Proposition 5.7 (Ker.01HU, 01HV, 01HW). The functors −⋆− and −◇− preserve
categorical equivalences in both factors, and the morphism J ◇ K → J ⋆ K is a
categorical equivalence.

Remark 5.8. As a result, we have a well-defined binary operator on ∞-categories
that can be modelled by − ⋆ −.
Exercise 5.9. Let C and D be ∞-categories. Characterize C ⋆ D by universal
properties.

Proposition 5.10 (Ker.01KU). The functors (5.2) and (5.3) are invertible.

Remark 5.11. One can show the fiber product in (5.2), which is taken in QCat,

also calculates the homotopy fiber product in SetJoyal∆ and therefore the fiber product
in QCat (see Footnote 4). Therefore, for a diagram u ∶ K → C in an ∞-category,
we have canonical equivalences

(5.4) C/u
≃Ð→ Fun(∆0 ◇K,C) ×

Fun(K,C)
{u} ≃←Ð Fun(∆0 ⋆K,C) ×

Fun(K,C)
{u}.

https://kerodon.net/tag/01HU
https://kerodon.net/tag/01HV
https://kerodon.net/tag/01HW
https://kerodon.net/tag/01KU
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Proof of Proposition 3.11. We only need to prove the similar claim for C/u. By
definition, a morphism in this quasi-category is a natural transformation α ∶ F1 → F2

between two functors F1, F2 ∶K ×∆1 → C such that

(0) α∣K×{0} is a constant natural transformation between two constant functors
x1, x2 ∶K → C;

(1) α∣K×{1} is the identity natural transformation at the functor u ∶K → C.
Note that the forgetful functor C/u → C sends α to the morphism x1 → x2 in (0).
By [Lecture 5, Theorem 2.3], α is invertible iff x1 → x2 is so.

□[Proposition 3.11]

Exercise 5.12. Let ũ ∶ J ×K → C be a diagram in a quasi-category C. Write u ∶
J → Fun(K,C) for the corresponding diagram in Fun(K,C). Construct a canonical
isomorphism

(5.5) C/ũ ≃Ð→ Fun(K,C)/u ×
Fun(K,C)

C.

6. Definition of limits and colimits

Definition 6.1. Let K be a simplicial set and C be an ∞-category. We say a
diagram u ∶K⊲ → C is a limit diagram if the corresponding object in C/u is final,
where u ∶= u∣K is the restriction of u on K. We also say u exhibits u(∗) as a
limit of the diagram u ∶K → C.

Dually, we say a diagram u ∶K⊳ → C is a colimit diagram if the corresponding
object in Cu/ is initial. We also say u exhibits u(∗) as a colimit of the diagram
u ∶K → C.

6.2. Note that a diagram u ∶K⊳ → C is a colimit diagram iff uop ∶ (Kop)⊲ → Cop is
a limit diagram. Hence in below, we focus on limit diagrams.

Remark 6.3. For a diagram u ∶ K⊲ → C, being a limit diagram is a property.
However, for an object x, being a limit of a given diagram u ∶K → C is a structure.

Exercise 6.4. The limit of an empty diagram is the final object.

6.5. Proposition 2.7 allows us to talk about the limit object of a diagram u ∶K → C,
as long as we incorporate the extended diagram u as part of the data in its definition.
There are various standard notations for the limit object:

limu, lim
K

u, lim
y∈K

u(y),⋯.

When using these notations, we always view it as an object in C equipped with a
canonical lifting along the forgetful functor C/u → C.

In particular, there are canonical morphisms,

evy ∶ limu→ u(y), y ∈K,

called the evaluating morphisms. Dually, we have the inserting morphisms

insy ∶ u(y)→ colimu, y ∈K
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Appendix A. Twisted arrows

Exercise A.1. Let C be an ordinary category. Construct a category Tw(C) such
that

● Objects in Tw(C) are morphisms x→ y in C.
● The assignment (x → y) ↦ x is contravariant, i.e., given by a functor
Tw(C)→ Cop.
● The assignment (x→ y)↦ y is covariant, i.e., given by a functor Tw(C)→
C.

We call it the category of twisted arrows in C.

Exercise A.2. Generalize the above construction to ∞-categories.

Exercise A.3. Construct a functor Tw(Cat∞) → Cat∞ sending a twisted arrow

K
uÐ→ C to C/u.

A.4. Suggested readings. Ker.03GB.

https://kerodon.net/tag/03GB
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