
LECTURE 8

In this lecture, we use model categories to compute limits and colimits.

1. ∞-limits as homotopy limits

1.1. Recall we have a Quillen equivalence

C ∶ SetJoyal∆
ÐÐ→←ÐÐ Cat∆ ∶N●.

In this section, we will expain the following result:

Theorem 1.2 (HTT.4.2.4.1). Let C be a combinatorial simplicial model category.
Then for a small fibrant simplicial category J, a diagram

J
⊲ → C

○

is a homotopy limit diagram in C iff the corresponding diagram

N●(J)⊲ →N●(C○)
is a limit diagram in the quasi-category N●(C○).
Variant 1.3. Dually, a diagram J

⊳ → C
○ is a homotopy colimit diagram iff

N●(J)⊳ →N●(C○) is a limit diagram.

1.4. We will soon give the precise definitions of the undefined notions in Theorem
1.2. For now, let us be satisfied by the following informal words.

A simplicial model category is a model category C equipped with a compatible
simplicial enrichment. Here the compatibility condition guarantees

(1) There is a canonical equivalence

hC ≃ π0C,

where hC is the homotopy category of the model category C (see [Lecture
2, Definition 2.20]), while π0C is the homotopy category of the simplicial
category C (see [Lecture 5, Definition 5.3]).

(2) For bifibrant objects x, y ∈ C, the simplicial set HomC(x, y) is a Kan com-
plex. In other words, C○ is a fibrant object in Cat∆.

For a model category, being combinatorial is a technical set-theoretical size condi-
tion, which can be ignored for now.

For a simplicial model category C, the homotopy limit of a diagram u ∶ J→ C is
the value of the right derived functor of the naive limit functor. In other words,

holimu ∶= Rlim(u),
where the functor lim is the right adjoint in a Quillen adjunction

const ∶ CÐÐ→←ÐÐ Fun(J,C) ∶ lim.

Here Fun(J,C) is the category of simplicial enriched functors from J to C, equipped
with a suitable model structure induced by the model structure on C.
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2 LECTURE 8

Dually, the homotopy colimit of a diagram u ∶ J → C is the value of the left
derived functor of the naive colimit functor, i.e.,

hocolimu ∶= Lcolim(u),

1.5. Recall that Set∆ is Cartesian closed and therefore has a natural simplicial en-
richment given by Fun(−,−). This enrichment is compatible with the Kan–Quillen

model structure. We denote the obtained simplicial model category by Set
KQ
∆ . In

Theorem 1.2, we can take C ∶= SetKQ∆ . Note that C○ = Kan is the simplicial category
defined in [Lecture 5, §7]. We obtain:

Corollary 1.6. Let J be a small fibrant simplicial category. Then the homotopy
(co)limit of a J-indexed diagram in

Kan ⊂ SetKQ∆
calculates the (co)limit of the corresponding N●(J)-indexed diagram in the quasi-
categories

Kan ∶=N●(Kan).

Remark 1.7. Note that the latter models (co)limits in the ∞-category Grpd∞,
which essentially control (co)limits in any ∞-category ([Lecture 7, Theorem 2.11]).

Remark 1.8. The above corollary provides a model-categorical algorithm to calcu-
late small (co)limits of ∞-groupoids. Let us take the second case as an example.
Let u ∶K → Grpd∞ be a small diagram with K ∈ Set∆.

(i) Choose a weak equivalence C(K) → J in Cat∆.
(ii) Find a functor w ∶ J→ Kan such that the composition

K →N●(J) →N●(Kan) =∶ Kan

represents u. By HTT.4.2.4.4, such w always exists.
(iii) View w as an object in the model category Fun(J,SetKQ∆ ). Calculate the

derived (co)limits

Rlim(w), Lcolim(w) ∈ SetKQ∆ [W −1]

by finding a (co)fibrant replacement of w.

By Corollary 1.6, the obtained objects in SetKQ∆ [W −1] ≃ hGrpd∞ are canonically
isomorphic to limu and colimu.

Exercise 1.9. Prove the functor w in Step (ii) exists in the case when C(K) → J

is a cofibration.

Remark 1.10. In Remark 1.8, when K = N●(J) is the nerve of an ordinary cate-
gory, we can take J ∶= J, viewed as a simplicial category with discrete enrichment.
Then Fun(J,SetKQ∆ ) is just the category of functors between the ordinary categories
J→ Set∆, and the underived functor lim is the limit functor for ordinary categories.

In fact, the above essentially covers all the cases because for any simplicial set
K, there exists an initial morphism N●(J) →K such that J is an ordinary category
or even a partially ordered set. See HTT.4.2.3.14.
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Remark 1.11. In Remark 1.8, the obtained objects are contained in the homotopy
category hGrpd∞ rather than in Grpd∞. In other words, the above algorithm only
calculates limu up to homotopy. In particular, it cannot produce the entire limit
diagram, nor the canonical lifting of limu in (Grpd∞)/u.

To remedy this, one can try to find an extended diagram w ∶ J⊲ → Kan that
exhibits w(∗) as the homotopy limit of w (see Definition 2.18 below). Then
Theorem 1.2 says the corresponding diagram

N●(J)⊲ →N(Kan) =∶ Kan

is also a limit diagram. Now restriction along the categorical equivalence K⊲ →
N●(J)⊲ produces a limit diagram extending v ∶K → Kan.

For general w, the above extension w may not exsit1. Nevertheless, we can
replace w by any fibrant replacement of it because they represent the same diagram
in Grpd∞. Under this additional assumption, such extension w exists and is unique
up to unique equivalence, because it has to be the limit diagram extending w.

Remark 1.12. In future lectures, we will see that any presentable ∞-category can
be realized as N●(C○) for some combinatorial simplicial model category C. This pro-
vides a model-categorical algorithm to calculate small (co)limits in any presentable
∞-category.

2. Definition of homotopy limits

2.1. In this section, we give the precise definitions for the notions used in Theorem
1.2.

Definition 2.2. Let C be a simplicial category.

(1) We say C is tensored over Set∆ if for any S ∈ Set∆ and X ∈ C, the functor

Fun(S,HomC(X,−)) ∶ C→ Set∆

is represented by an object in C, which we denote by S ⊗X.
(2) We say C is cotensored over Set∆ if for any S ∈ Set∆ and Y ∈ C, the

functor

Fun(S,HomC(−, Y )) ∶ Cop → Set∆

is represented by an object in C, which we denote by Fun(S,Y ).

Proposition-Definition 2.3 (HTT.A.3.1.5, A.3.1.6). Let C be a model category
equipped with a simplicial enrichment such that it is both tensored and cotensored
over Set∆. Then the following conditions are equivalent:

(i) Given any cofibration j ∶ X → X ′ and any fibration k ∶ Y → Y ′ in C, the
morphism

HomC(X ′, Y ) → HomC(X ′, Y ′) ×
HomC(X,Y ′)

HomC(X,Y )

is a fibration in SetKQ∆ , which is a weak equivalence if either j or k is so.

1For example, consider Sing
●
({0} → [0,1] ← {1}).
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(ii) Given any cofibrations i ∶ S → S′ and j ∶ X → X ′ respectively in SetKQ∆ and
C, the morphism

(S′ ⊗X) ⊔
S⊗X
(S ⊗X ′) → S′ ⊗X ′

is a cofibration in C, which is a weak equivalence if either i or j is so.

(iii) Given any cofibration i ∶ S → S′ in SetKQ∆ and any fibration k ∶ Y → Y ′ in
C, the morphism

Fun(S′, Y ) → Fun(S′, Y ′) ×
Fun(S,Y ′)

Fun(S,Y )

is a fibration in C, which is a weak equivalence if either i or k is so.

We say C is a simplicial model category if the above conditions are satisfied.

Exercise 2.4. Let C be a simplicial model category. Show that HomC(X,Y ) is a
Kan complex if X is cofibrant and Y is fibrant.

Exercise 2.5. Can you make SetJoyal∆ into a simplicial model category?

Exercise 2.6. Let C be a simplicial model category. Construct a canonical equiv-
alence hC ≃ π0C.

2.7. We also need the following technical size conditions.

Definition 2.8 (HTT.A.2.6.1). Let C be a model category. We say A is combi-
natorial if the following conditions are satisfied:

(a) The category C is presentable.
(b) As a weakly saturated class of morphisms, (C) is generated by a set.
(c) As a weakly saturated class of morphisms, (C ∩W ) is generated by a set.

Example 2.9. The model category SetKQ∆ equipped with the simplicial enrichment
Fun(−,−) is a combinatorial simplicial model category.

Proposition-Definition 2.10 (HTT.A.3.3.2). Let C be a combinatorial simpli-
cial model category and J be a small simplicial category. Then there exists two
combinatorial model structures on Fun(J,C):

(1) The projective model structure, denoted by Fun(J,C)proj, where
(W) A weak equivalence is a natural transformation that is a pointwise

weak equivalence.
(F) A projective fibration is a natural transformation that is a pointwise

fibration.
(C) The collection of projective cofibrations is determined by (C ∩W ).

(2) The injective model structure, denoted by Fun(J,C)inj, where
(W) A weak equivalence is a natural transformation that is a pointwise

weak equivalence.
(C) A injective cofibration is a natural transformation that is a point-

wise cofibration.
(F) The collection of injective cofibrations is determined by (F ∩W ).

Example 2.11. When J = [0] is the singleton, both model structures coincide with
the given model structure on C.
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Proposition 2.12 (HTT.A.3.3.6). Let

F ∶ AÐÐ→←ÐÐ B ∶ G
be a Quillen adjunction between combinatorial simplicial model categories. Then
for any small simplcial category J, it induces Quillen adjunctions

F ○ − ∶ Fun(J,A)? ÐÐ→←ÐÐ Fun(J,B)? ∶ G ○ −,
where ? can be either proj or inj. They are Quillen equivalences if F ∶ A ÐÐ→←ÐÐ B ∶ G
is so.

Proposition 2.13 (HTT.A.3.3.7, A.3.3.8). Let ι ∶ J → J
′ be a functor between

small simplicial enriched categories. For a combinatorial simplicial model category
C, we have Quillen adjunctions

LKEι ∶ Fun(J,C)proj ÐÐ→←ÐÐ Fun(J′,C)proj ∶ ι ○ −;

ι ○ − ∶ Fun(J′,C)inj ÐÐ→←ÐÐ Fun(J,C)inj ∶ RKEι;

which are Quillen equivalences if ι ∶ J → J
′ is a weak equivalence in the model

category Cat∆ (see [Lecture 5, Definition 5.4]).

Definition 2.14. We call the right derived functor of

RKEι ∶ Fun(J,C)inj → Fun(J′,C)inj
the homotopy right Kan extension functor, and denote it by

hoRKEι ∶ Fun(J,C)[W −1] → Fun(J′,C)[W −1].
When J

′ = [0] is the singleton, we obtain homotopy limit functor

holim ∶ Fun(J,C)[W −1] → C[W −1],
which is the right derived functor of

lim ∶ Fun(J,C)inj → C.

Dually, we define the homotopy left Kan extension functor and the homo-
topy colimit functor.

Warning 2.15. Note that

Fun(J,C)[W −1] ≠ Fun(J,C[W −1]).
Hence homotopy limit is not a functorial construction about diagrams in C[W −1].

Remark 2.16. In fact, Theorem 1.2 implies the theory of∞-limits serves as a rem-
edy for the non-functoriality of the classical theory of homotopy limits. Namely,
instead of considering diagrams into the ordinary homotopy category C[W −1],
one should consider diagrams into the ∞-category modelled by the quasi-category
N●(C○). In fact, the latter can be canonically identified with the quasi-categorical
localization N●(C)[W −1]. See [Lecture 5, A.5] for more information.

Construction 2.17. Let w ∶ J⊲ → C be a functor and w ∶ J → C be its restriction.
There is an obvious morphism in Fun(J,C) from the constant functor w(∗) to w.

By adjunction, we obtain a canonical morphism

w(∗) → limw.
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Definition 2.18. Let w ∶ J⊲ → C be a functor and w ∶ J → C be its restriction.
We say w exhibits w(∗) as the homotopy limit of w if for any/all fibrant
replacement w → w′, the composition

w(∗) → limw → limw′

is an isomorphism.

3. Examples of homotopy (co)limits

3.1. Throughout this section, C is a combinatorial simplicial model category.

Exercise 3.2. Let J be a set. Show that:

(1) A functor w ∶ J→ C is fibrant in Fun(J,C)inj iff w(j) ∈ C is fibrant for any
j ∈ J.

(2) A functor w ∶ J→ C is cofibrant in Fun(J,C)proj iff w(j) ∈ C is cofibrant for
any j ∈ J.

Deduce that the homotopy (co)products of (co)fibrant objects can be calculated by
the naive (co)products.

Exercise 3.3. Let J ∶= {a0
f0Ð→ b

f1←Ð a1} be the index category of pullbacks. Show
that a functor w ∶ J → C is fibrant in Fun(J,C)inj iff w(b) ∈ C is fibrant and w(fi)
are fibrations. Deduce a sufficient condition for a homotopy pullback diagram in C.

Remark 3.4. Note that the above condition is stronger than those in [Lecture 1,
Exercise A.1]. The reason is: the latter conditions are obtained by using another
model structure on Fun(J,C), known as the Reedy model structure. For more
information, see HTT.A.2.9.

Exercise 3.5. Let J ∶= {a ⇉ b} be the index category of equalizers. Show that a
functor w ∶ J→ C is fibrant in Fun(J,C)inj iff w(b) ∈ C is fibrant and w(a) → w(b×b)
is a fibration. Deduce a sufficient condition for a homotopy equalizer diagram in C.

Exercise 3.6. Let J ∶= {⋯ < −2 < −1 < 0} be the index category of sequencial limits.
Show that a functor w ∶ J → C is fibrant in Fun(J,C)inj iff w(0) ∈ C is fibrant and
w(−n) → w(−n + 1) is a fibration. Deduce a sufficient condition for a homotopy
sequencial limit diagram in C.

Exercise 3.7. Can you find a weaker necessary condition for a homotopy sequencial
limit diagram in C?

Exercise 3.8. Let J be a fibrant object in Cat∆ and X ∶ J→ C a constant functor
with value X. Use the results in [Lecture 7, Appendix B] to show that

holimX ≃ Fun(N●(J),X),
hocolimX ≃N●(J) ⊗X.

Appendix A. Marked simplicial sets

Definition A.1. Let Set+∆ be the ordinary category defined by:

● Objects are pairs (X,E), where X is a simplicial set and E ⊂X1 is a subset
of 1-simplexes in X, called the set of marked 1-simplexes.
● A morphism from (X,E) to (X ′,E′) is a morphism X →X ′ in Set+∆ such
that E is sent into E′.
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We call it the category of marked simplicial set.

Construction A.2. There is a functor

(−)♭ ∶ Set∆ → Set+∆
such that the marked 1-simplexes in X♭ are given by degenerate 1-simplexes in X.

There is a functor
(−)♯ ∶ Set∆ → Set+∆

such that any 1-simplex in X is a marked 1-simplex in X♯.

There is a functor
(−)♮ ∶ QCat→ Set+∆

such that the marked 1-simplexes in X♮ are given by isomorphisms in X.

Exercise A.3. Let X and Y be objects in Set+∆. Show that the functor

HomSet+
∆
((−)♭ ×X,Y) ∶ Setop∆ → Set

is represented by an object in Set∆, which we denote by Fun♭(X,Y).
Similarly, show that the functor

HomSet+
∆
((−)♯ ×X,Y) ∶ Setop∆ → Set

is represented by an object in Set∆, which we denote by Fun♯(X,Y).
Exercise A.4. Construct a canonical model structure on Set+∆ such that

● Any morphism is a cofibration;
● Bifibrant objects are given by X♮ for X ∈ QCat;
● Weak equivalence between bifibrant objects are given by categorical equiva-
lences between quasi-categories;
● The model structure is compatible with the simplicial enrichment given by
Fun♯(−,−).

A.5. Suggested readings. HTT.3.1.
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