
LECTURE 9

In this lecture, we introduce Kan extensions for ∞-categories, and use them to
obtain several useful tools for computing (co)limits.

1. Definition of Kan extensions

1.1. Let δ ∶ K0 → K be a morphism in Set∆. For an ∞-category D, consider the
functor

Fun(K,C) −○δÐÐ→ Fun(K0,C).

We say F ∶ K → D is a left (resp. right) Kan extension of F0 ∶ K0 → D if it is
the image of F0 under the partially defined left (resp. right) adjoint of the above
functor. More precisely, we make the following definition.

Definition 1.2. Let δ ∶K0 →K be a morphism in Set∆ and F0 ∶K0 → C be a dia-
gram in an ∞-category C. For a diagram F ∶K → C, and a natural transformation
β ∶ F0 → F ○ δ,

K

F

��
K0

F0

//

δ

>>

β

KS

C

we say β exhibits F as a left Kan extension of F0 along δ if for any diagram
F ′ ∶K → C

MapsFun(K,C)(F,F ′) →MapsFun(K0,C)(F ○ δ,F
′ ○ δ) →MapsFun(K0,C)(F0, F

′ ○ δ)

is an equivalence between ∞-groupoids.

Dually, we say a natural transformation β ∶ F ○ δ → F0,

K

F

��
β

��K0
F0

//

δ

>>

C

exhibits F as a right Kan extension of F0 along δ if for any functor F ′ ∶K → C,

(1.1) MapsFun(K,C)(F ′, F ) →MapsFun(K0,C)(F
′○δ,F ○δ) →MapsFun(K0,C)(F

′○δ,F0)

is an equivalence between ∞-groupoids.
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2 LECTURE 9

1.3. One can show β exhibits F as a right Kan extension of F0 along δ iff the pair

(1.2) (F,β) ∈ Fun(K,C) ×
Fun(K0,C)

Fun(K0,C)/F0

is a final object1. In particular, such pairs (F,β) are essentially unique. Hence we
can talk about the right/left Kan extension of F0 along δ, as long as we incorporate
the natural transformation β as part of the data in its definition. We denote the
corresponding diagrams to be

RKEδF0, LKEδF0.

When writing RKEδF0, we always view it as an object in Fun(K,C) equipped with
a canonical lifting to the fiber product (1.2).

1.4. Note that

(LKEδF0)op ≃ RKEδopF
op
0 .

Hence in below, we focus on right Kan extensions.

1.5. As in the classical category theory, one can show taking adjoint functors is
compatible with compositions. Therefore we have the following result:

Proposition 1.6. Let K0
δÐ→ K1

θÐ→ K2 be morphisms in Set∆ and F0 ∶ K0 → C be
a diagram in an ∞-category C. Suppose RKEδF0 exsits. Then we have a canonical
equivalence

RKEθ(RKEδF0)
≃Ð→ RKEθ○δF0,

where the source exists iff the target does.

Remark 1.7. The precise meaning of the above equivalence the following. Suppose
β ∶ F1○δ → F0 exhibits F1 as a right Kan extension of F0 along δ, and γ ∶ F2○θ → F1

exhibits F2 as a right Kan extension of F1 along θ, then

F2 ○ θ ○ δ
γ(δ)ÐÐ→ F1 ○ δ

βÐ→ F0

exhibits F2 as a right Kan extension of F0 along θ ○ δ.

Theorem 1.8. Let δ ∶ K0 → K be a morphism in Set∆ and F0 ∶ K0 → C be a
diagram in an ∞-category C. Suppose that

● K is a quasi-category;
● For any object x ∈ K, the limit of the diagram2

K0 ×
K
Kx/

pxÐ→K0
F0Ð→ C

exists.

Then RKEδF0 exists, and we have a canonical isomorphism

(1.3) (RKEδF0)(x) ≃ lim
K0×KKx/

(F0 ○ px).

1Sketch: the mapping space from (F ′, β′) to (F,β) is equivalent to the homotopy fiber of (1.1)
at β′. A morphism between Kan complexes is a weak homotopy equivalence iff each homotopy
fiber of this morphism is weakly contractible.

2The fiber product K0 ×K Kx/ is taken in the ordinary category Set∆. It also calculates the

homotopy fiber product in SetJoyal∆ because Kx/ → K is a categorical fibration. In particular, when
K0 is also a quasi-category, we can view the above fiber product as taking in the quasi-category

QCat. As a consequence, we can state the proposition purely using the language of ∞-categories.
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Definition 1.9. We say RKEδF0 is pointwise3 if δ and F0 satisfy the assumptions
in Theorem 1.8.

Remark 1.10. Note that the construction x ↦ K0 ×K Kx/ is (contravariantly)
functorial while the naive one x↦K ×C {x} is not functorial.

Remark 1.11. The isomorphism (1.3) can be informally obtained as follows. Let
F ∶ K → C be a fixed functor and β ∶ F ○ δ → F0 be any natural transformation. For
an object (y, f) ∈ K0 ×K Kx/, where y ∈ K0 and f ∶ x → δ(y) is a morphism in C,
consider the composition

(1.4) F (x) F (f)ÐÐÐ→ F ○ δ(y) β(y)ÐÐ→ F0(y).
This construction is functorial in (y, f) and therefore corresponds to a morphism

(1.5) F (x) → lim
(y,f)∈K0×KKx/

F0(y)

as long as the target exists. Now the proposition claims (1.5) is invertible for any x
iff β exhibits F as a right Kan extension of F0 along δ. In other words, the natural
transformation β is completely encoded in the morphisms (1.4) and their higher
functorialities.

Remark 1.12. To translate the above construction into homotopy coherent lan-
guage, we first notice that there is an obvious natural transformation from the con-
stant functor x ∶ Kx/ → K to the forgetful functor oblv. Precomposing with the
projection functor K ×KKx/ → Kx/, we obtain the left natural transformation in the
following diagram:

K0 ×K Kx/
x //

px $$ ��

K
F

��
β

��K0
F0

//

δ

??

C.

Composing with β, we obtain a natural transformation F (x) → F0 ○ px, which by

definition corresponds to a lifting of F (x) along

C/F0○px → C,

where the source C/F0○px is the alternative slice category in [Lecture 6, §5]. Now
the proposition claims that the above lifting is a final object (which is assumed to
exist) for any x ∈ K iff β exhibits F as the right Kan extension of F0 along δ.

Exercise 1.13. For π ∶K →∆0, show that RKEπu exists iff limu exists. Moreover,
we have

(RKEπu)(∗) ≃ limu.

How to find the canonical lifting of (RKEπu)(∗) in C/u?

3Not all right Kan extensions are pointwise. Also, Lurie defined (see Ker.02Y9) a right Kan

extension as

x↦ lim
K0×KKx/

(F0 ○ px)

and proved (see Ker.0309) it satisfies the universal property in Definition 1.2. Therefore Lurie’s

right Kan extensions should be pointwise right Kan extensions in these notes.

https://kerodon.net/tag/02Y9
https://kerodon.net/tag/0309
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Warning 1.14. Note that the fiber product K0×KKx/ also appears in the statement
of Quillen’s Theorem A, which claims the following two conditions are equivalent

(i) The morphism K0 → K is final.
(ii) The fiber product K0 ×K Kx/ is weakly contractible for any x ∈ K.

Note however that (i) is related to colimits and therefore left Kan extensions, while
Theorem 1.8 is related to right Kan extensions. I do not know how to relate these
two results.

Exercise 1.15. Show that a right Kan extension RKEδF0 is pointwise iff it is
preserved by any represetable functor MapsC(c,−) ∶ C→ Grpd∞.

Proposition 1.16. Let ι ∶ K0 → K be a fully faithful functor between ∞-categories,
and F0 ∶ K0 → C be any functor. Suppose the pointwise RKEιF0 exists4, then the
canonical natural transformation

(RKEιF0) ○ ι→ F0

is invertible.

Sketch. We only need to show for any x0 ∈ K0 and x ∶= ι(x0), the evaluation
morphism

lim
K0×KKx/

(F0 ○ px) → F0(x0)

is invertible. We only need to show (x0, x
=Ð→ ι(x0)) ∈ K0 ×K Kx/ is initial. But this

follows from the obvious equivalence (K0)x0/ → K0 ×K Kx/. □

Exercise 1.17. For an ∞-category K, consider the obvious embedding ι ∶ K → K⊲.
Show that the pointwise right Kan extension RKEιu exists iff the limit of u ∶ K→ C
exists. Moreover, RKEιu is a limit diagram extending u.

Exercise 1.18. Show that pointwise right Kan extension of any functor along
K⊲ →∆0 always exists, and is given by evaluating the functor at the apex ∗ ∈K⊲.

2. Limits commute with limits

2.1. From now on, u ∶ K1 × K2 → C is a functor between ∞-categories5. Let
pri ∶ K1 ×K2 → Ki and πi ∶ Ki → [0] be the projections.

Exercise 2.2. The pointwise right Kan extension RKEpr1u exists iff for any x ∈ K1,
limK2 u(x,−) exists. Moreover, for any x, there is a canonical isomorphism

(RKEpr1u)(x) ≃ limK2

u(x,−).

2.3. As a consequence, we obtain a construction of

K1 → C, x↦ lim
K2

u(x,−)

promised in the previous lectures. Combining with Proposition 1.6, we obtain the
distribution law of limits.

4This means the right Kan extension exists and is pointwise
5In fact, these results can be generalized to the case when K1 and K2 are simplicial sets.

However, one needs to slightly modify the constructions and statements. See HTT.5.5.2.3 for an

example.
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Corollary 2.4. Suppose for any x ∈ K1, limK2 u(x,−) exists. Then there is a
canonical isomorphism

lim
K1×K2

u
≃Ð→ lim

x∈K1

lim
K2

u(x,−).

Here the source exists iff the target does.

Remark 2.5. In future lectures, we will generalize the above result by replacing
K1 ×K2 → K1 by any Cartesian fibration between ∞-categories.

Corollary 2.6. Suppose:

● For any x ∈ K1, limK2 u(x,−) exists.
● For any y ∈ K2, limK1 u(−, y) exists.

Then there is a canonical isomorphism

lim
x∈K1

lim
K2

u(x,−) ≃ lim
y∈K2

lim
K1

u(−, y).

Here the LHS exists iff the RHS does.

2.7. As an application, we obtain the following result about limits of∞-categories.

Theorem 2.8. Let u ∶K → Cat∞, i↦ Ci, be a diagram of ∞-categories. Consider
the evaluation functors

evi ∶ lim
i∈K

Ci → Ci.

Then there is a canonical equivalence

(2.1) Mapslimi∈K Ci
(x, y) ≃Ð→ lim

i∈K
MapsCi

(evi(x), evi(y))

between ∞-groupoids.

Sketch. By definition,

MapsC(x, y) ≃ {x} ×
Fun({0},C)

Fun(∆1,C) ×
Fun({1},C)

{y}

can be written as a limit. Now the theorem follows from Corollary 2.6 and the fact
that Fun(J,−) preserves limits. □

Remark 2.9. Note that we also have

(2.2) (lim
i∈K

Ci)≃
≃Ð→ lim

i∈K
C≃i .

because taking cores is a right adjoint. In practice, most results, if not all, about
limi∈K Ci are proven using (2.1) and (2.2).

3. How to commute limits with colimits?

3.1. For simplicity, we assume C admits K1-indexed limits and K2-indexed colimits.
In particular, Exercise 2.2 and its dual imply all the LKE and RKE in below exist.

Construction 3.2. We have an obvious commutative diagram

Fun(K1 ×K2,C) Fun(K1,C)
−○pr1oo

Fun(K2,C)

−○pr2

OO

Fun([0],C).−○π2

oo

−○π1

OO



6 LECTURE 9

As in classical category theory, we can pass to left adjoints along the horizontal
direction and obtain a natural transformation6

(3.1) Fun(K1 ×K2,C)
LKEpr1 //

$,

Fun(K1,C)

Fun(K2,C)
LKEπ2

//

−○pr2

OO

Fun([0],C).

−○π1

OO

Lemma 3.3. The natural transformation (3.1) is invertible.

Sketch. Let x ∈ K1 be an object and v ∈ Fun(K2,C) be a diagram. We need to show

LKEpr1(v ○ pr2)(x) → LKEπ2v(π1(x))
is invertible. This morphism can be identified with

colim
(K1)/x×K1(K1×K2)

v′ → colim
K2

v,

where v′ is the composition (K1)/x ×K1 (K1 ×K2) → K2
vÐ→ C. Hence we only need to

show the morphism (K1)/x ×K1 (K1 ×K2) → K2 is final, which follows from [Lecture
7, Proposition 3.15]. □

Construction 3.4. By the above lemma, we have a commutative diagram

Fun(K1 ×K2,C)
LKEpr1 // Fun(K1,C)

Fun(K2,C)
LKEπ2

//

−○pr2

OO

Fun([0],C).

−○π1

OO

We can then pass to right adjoints along the vertical direction and obtain a natural
transformation

(3.2) Fun(K1 ×K2,C)
LKEpr1 //

RKEpr2

��

Fun(K1,C)

RKEπ1

��
Fun(K2,C)

LKEπ2

//

α

2:

Fun([0],C).

In particular, for any u ∶ K1 ×K2 → C, we obtain a canonical morphism

colim
y∈K2

lim
K1

u(−, y) → lim
x∈K1

colim
K2

u(x,−).

Definition 3.5. We say K1-indexed limits commute with K2-indexed colimits in C
if (3.2) is invertible.

3.6. In the next lecture, we will explain the following results:

Theorem 3.7. In Grpd∞, filtered colimits commute with finite limits.

Remark 3.8. Once we have introduced compactly generated ∞-categories, it is
easy to deduce that the above theorem holds in any such ∞-category.

6We will explain this in details in future lectures.
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Warning 3.9. The definitions of filtered or finite index ∞-categories are subtle.
For example, finite ordinary category may fail to be finite as ∞-categories.

Theorem 3.10. In Grpd∞, sifted colimits commute with finite products.

Theorem 3.11. In Grpd∞, small colimits are preserved by base-changes.

Appendix A. Decomposition of diagrams

Exercise A.1. Let K be a simplicial set and K1,K2 ⊂ K be simplicial subsets of
K such that

K1 ⊔
K1∩K2

K2 →K

is an isomorphism. Let u ∶K → C be a diagram in an ∞-category. Show that there
is a canonical isomorphism

lim
K

u
≃Ð→ lim

K1

u ×
limK1∩K2

u
lim
K2

u.

Here the source exists if the target does.

Exercise A.2. Show that the equalizer of x⇉ y is isomorphic to x ×x×y x.
Exercise A.3. Let K be a simplicial set and Sub(K) be the partially ordered set of
simplicial subsets of K, viewed as an ordinary category. Let I → Sub(K), i ↦ Ki

be a functor between ordinary categories. Find a sufficient condition such that for
any diagram u ∶K → C, there is a canonical isomorphism

lim
K

u
≃Ð→ lim

i∈I
lim
Ki

u.

A.4. Suggested readings. HTT.4.2.3, Ker.03CY.

https://kerodon.net/tag/03CY
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