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0. Introduction: why schemes?

0.1. Algebraic sets. Before scheme theory, algebraic geometry focused on alge-
braic sets.

Definition 0.1.1. Let k be an algebraically closed field.

● The Zariski topology on the affine space An
k is the topology with a base

consisting of all the subsets that are equal to the non-vanishing locus U(f)
of some polynomial f ∈ k[x1,⋯, xn].
● An embedded affine algebraic set1 in An

k is a closed subspace for the
Zariski topology.
● An embedded quasi-affine algebraic set is a Zariski open subset of an
embedded affine algebraic set.

Example 0.1.2. Any finite subset of An
k is an embedded affine algebraic set.

Example 0.1.3. Z is not an embedded affine algebraic set in A1
C.

Similarly one can define embedded (quasi)-projective algebraic set using homoge-
neous polynomials and the projective space Pn

k .

There are tons of shortcomings in the above definition. An obvious one is that
the notions of embedded algebraic sets are not intrinsic.

Example 0.1.4. The embedded affine algebraic sets A1
k ⊆ A1

k and A1
k ⊆ A2

k should
be viewed as the same algebraic sets.

Notation 0.1.5. To remedy this, we need some notations.

● For an ideal I ⊆ k[x1,⋯, xn], let Z(I) ⊆ An
k be the locus of common zeros

of polynomials in I.
● For a Zariski closed subset X ⊆ An

k , let I(X) ⊆ k[x1,⋯, xn] be the ideal of
all polynomials vanishing on X.

Recall an ideal I is called radical if I =
√
I.

Theorem 0.1.6 (Hilbert Nullstellensatz). We have a bijection:

{radical ideals of k[x1,⋯, xn]} ←→ {Zariski closed subsets of An
k}

I Ð→ Z(I)
I(X) ←Ð X.

Part of the theorem says the set of points of An
k is in bijection with the set of

maximal ideals of k[x1,⋯, xn]. As a corollary, Z(I) is in bijection with the set
of maximal ideals containing I. The latter can be further identified with maximal
ideals of R ∶= k[x1,⋯, xn]/I.

Note that I is radical iff R is reduced, i.e., contains no nilpotent elements. This
justifies the following definition.

Definition 0.1.7. An affine algebraic k-set is amaximal spectrum SpmR (= sets
of maximal ideals) of a finitely generated (commutative unital) reduced k-algebra
R. We equip it with the Zariski topology with a base of open subsets given by

U(f) ∶= {m ∈ SpmR ∣ f ∉ m}, f ∈ R.

1Some people use the word variety, while some people reserve it for irreducible algebraic sets.
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Example 0.1.8. Spmk[x] ≃ A1
k.

We have the following duality between algebra and geometry.

Algbera Geometry
finitely generated reduced k-algebra R affine algebraic k-set X

maximal ideals m ⊆ R points x ∈X
elements f ∈ R functions ϕ ∶X → A1

k

radical ideals I ⊆ R Zariski closed subsets Z ⊆X
Here an element f ∈ R corresponds to the function

ϕ ∶ SpmR → k, m↦ f

sending a maximal ideal m to the image f of f in the residue field of m, which is

canonically identified with the underlying set of A1
k via the composition k → R →

R/m.

The word duality means the correspondence R ↔ X is contravariant. Indeed,
given a homomorphism f ∶ R′ → R, we obtain a continuous map

SpmR → SpmR′, m↦ f−1(m).
Note however that not all continuous maps SpmR → SpmR′ are obtained in this
way, nor is R determined by the topological space SpmR.

Exercise 0.1.9. Show that any bijection A1
k → A1

k is continuous for the Zariski
topology. Find those bijections coming from a homomorphism k[x] → k[x].

This motivates the following definition.

Definition 0.1.10. A morphism from SpmR to SpmR′ is a continuous map
coming from a homomorphism R′ → R.

Then one can define general algebraic k-sets by gluing affine algebraic k-sets
using morphisms, just like how people define structured manifolds as glued from
structured Euclidean spaces using maps preserving the addiontal structrues.

0.2. Shortcomings. The theory of algebraic k-sets provides a bridge between al-
gebra and geometry. In particular, one can use topological/geometric methods, in-
cluding various cohomology theories, to study finitely generated reduced k-algebras.
However, these adjectives are non-necessary restrictions to this bridge.

First, number theory studies number fields and their rings of integers, such as Q
and Z. It is desirable to have geometric objects corresponding to them. Hence we
would like to consider general commutative rings rather than k-algebras. Then one
immediately realizes the maximal spectra Spm are not enough.

Example 0.2.1. The map Z → Q does not induce a map from SpmQ to SpmZ.
Namely, the inverse image of (0) ⊆ Q in Z is a non-maximal prime ideal.

This suggests for general algebra R, we should consider its prime spectrum,
denoted by SpecR, rather than just its maximal spectrum.

Second, even in the study of finitely generated algebras, one naturally encounters
non-finitely generated ones.

Example 0.2.2. Let p ⊆ R be a prime ideal of a finitely generated algebra. The
localization Rp and its completion R̂p are in general not finitely generated.
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Of course, one can restrict their attentions to Noetherian rings (and live a happy
life). But let me object the false feeling that all natural rings one care are Noether-
ian.

Example 0.2.3. Noetherian rings are not stable under tensor products: Q⊗Q Q is
not Noetherian.

Example 0.2.4. The ring of adeles of Q is not Noetherian.

Example 0.2.5. Natural moduli problems about Noetherian objects can fail to be
Noetherian. My favorite ones includes: the space of formal connections, the space
(stack) of formal group laws...

In short, there are important applications of non-Noetherian rings, and this
course will deal with the latter.

Finally, we want to remove the restriction about reducedness.

Example 0.2.6. Reduced rings are not stable under tensor products: k[x] ⊗k[x,y]
k[x, y]/(y − x2) is not reduced. Geometrically, this means Z(y) and Z(y − x2) do
not intersect transversally inside A2

k.

One may notice that without reducedness, we should accordingly consider all
ideals rather than just radical ideals, but then the construction I ↦ Z(I) would
not be bijective. Indeed, ideals with the same nilpotent radical would give the same
topological subspace of SpecR.

But this is a feature rather than a bug. In Example 0.2.6, the ideal (y, y − x2) =
(x2, y) is not radical, and it carries geometric meanings that cannot be seen from
its nilpotent radical (x, y). Namely, f ∈ (x, y) iff f(0,0) = 0, while f ∈ (x2, y) iff
f(0,0) = ∂xf(0,0) = 0. Roughly speaking, this suggests that (y, y − x2) remembers
that the curves Z(y) and Z(y−x2) are tangent to each other at the point (0,0) ∈ A2

k,
and the tangent vector is ∂x∣(0,0). Also note that the length of k[x, y]/(y, y − x2)
is equal to 2, which is the number of intersection points predicted by the Bézout’s
theorem.

In summary, on the algebra side, we should consider all commutative rings. On
the geometric side, the corresponding notion is called affine schemes. Our first task
in this course is to develop the following duality:

Algbera Geometry
commutative rings R affine schemes X
prime ideals p ⊆ R points x ∈X
elements f ∈ R functions X → A1

Z
ideals I ⊆ R closed subschemes Z ⊆X.

0.3. Schemes as structured spaces. In theory, one can define a morphism be-
tween affine schemes to be a continuous map coming from a ring homomorphism.
Then one can define general schemes by gluing affine schemes using such mor-
phisms. This mimics the definition of differentiable manifold in the sense that a
scheme would be a topological space equipped with a maximal affine atlas.

In practice, the above approach is awkward to work with. We prefer a more
efficient way to encode the additional structure on the topological space underlying
a scheme. One extremely simple but powerful way to achieve this, maybe discovered
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by Serre and popularized by Grothendieck, is the notion of sheaves on topological
spaces. Roughtly speaking, a sheaf F on X is an contravariant assignment

U ↦ F(U)
sending open subsets U ⊆ X to certain structures (e.g. sets, groups, rings) F(U),
such that a certain gluing condition is satisfied. Here contravariancy means that
for U ⊆ V , we should provide a map F(V ) → F(U) preserving the prescribed
structures.

Example 0.3.1. Let X be any topological space. The assignment

U ↦ C(U,R)
sending U ⊆ X to the ring of continuous functions on U would be a sheaf of com-
mutative rings on X.

Similarly, for a smooth manifold X, U ↦ C∞(U,R) would be a sheaf of commu-
tative rings on X. This motivates us to define:

Pre-Definition 0.3.2. A scheme is a topological space X equipped with a sheaf
of commutative rings OX such that locally it is isomorphic to an affine scheme.

Here for an open subset U ⊆X, OX(U) should be the ring of algebraic functions
on U , but we have not defined the latter notion yet. Nevertheless, for an affine
scheme X ≃ SpecR, the previous discussion suggests we should have OX(X) ≃ R.
As we shall see in future lectures, we can bootstrap from this to get the definition
of the entire sheaf OX .

The goal of this course is to define schemes and study their basic properties.
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Part I. (Pre)sheaves

1. Definition of (pre)sheaves

1.1. Presheaves.

Definition 1.1.1. Let X be a topological space and (U(X),⊆) be the partially
ordered set of open subsets of X. We define the category U(X) of open subsets
in X to be the category associated to the partially ordered set (U(X),⊆).

The category U(X) can be explicitly described as follows:

● An object in U(X) is an open subset U ⊆X.
● If U ⊆ V , then HomU(X)(U,V ) is a singleton; otherwise HomU(X)(U,V ) is
empty.
● The identify morphisms and composition laws are defined in the unique
way.

Definition 1.1.2. Let X be a topological space and C be a category.

● A C-valued presheaf on X is a functor F ∶ U(X)op → C.
● A morphism F → F ′ between C-valued presheaves is a natural transfor-
mation between these functors.

Let Set be the category of sets. By definition, a presheaf F of sets, i.e., a
Set-valued presheaf, on X consists of the following data:

● For any open subset U ⊆X, we have a set F(U), which is called the set of
sections of F on U .
● For U ⊆ V , we have a map

F(V ) → F(U), s↦ s∣U
which is called the restriction map.

These data should satisfy the following condition:

● For any open subset U ⊆ X, the restriction map F(U) → F(U) is the
identity map.
● For U ⊆ V ⊆W , the restriction maps make the following diagram commute

F(V )

$$
F(U)

;;

// F(W ).

Let F adn F ′ be presheaves of sets on X. By definition, a morphism ϕ ∶ F → F ′
consists of the following data:

● For any open subset U ⊆X, we have a map ϕU ∶ F(U) → F(U)′.
These data should satisfy the following condition:

● For U ⊆ V , the following diagram commute

F(V ) ϕV //

��

F ′(V )

��
F(U) ϕU // F ′(U),

where the vertical maps are restriction maps.
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Similarly one can explicitly describe the notion of presheaves of abelian groups
(k-vector spaces, commutative algebras) and morphisms between them.

Example 1.1.3. Let X be a topological space and C be a category. For any object
A ∈ C, the constant functor

U(X)op → C, U ↦ A, f ↦ idA

defines a C-valued presheaf on X, which is called the constant presheaf associ-
ated to A. It is often denoted by A.

Example 1.1.4. Let X be a topological space and E → X be a topological space
over it. We define a presheaf SectE of sets as follows.

● For any U ⊆X,
SectE(U) ∶= HomX(U,E)

is the set of countinuous maps U → E defined over X, a.k.a. sections of E
over U .
● For U ⊆ V , the restriction map SectE(V ) → SectE(U) sends a section
s ∶ V → E to its restriction s∣U ∶ U → E.

We call it the presheaf of sections for E →X.

Example 1.1.5. If E →X is a real vector bundle, we can naturally upgrade SectE
to be a presheaf of real vector spaces on X.

Example 1.1.6. Consider the constant real line bundle R ×X on X. Note that
SectR×X(U) can be identified with the set of continuous functions on U . It follows
that we can upgrade SectR×X to be a presheaf of R-algebra on X.

1.2. Sheaves of sets. Roughly speaking, a sheaf is a presheaf whose sections on
small open subsets can be uniquely glued to sections on larger ones.

Definition 1.2.1. Let F be a presheaf of sets on a topological space X. We say
F is a sheaf if it satisfies the following condition:

(*) For any open covering U = ⋃i∈I Ui and any collection of sections si ∈ F(Ui),
i ∈ I such that

si∣Ui∩Uj = sj ∣Ui∩Uj for any i, j ∈ I,
there is a unique section s ∈ F(U) such that

si = s∣U for any i ∈ I.
Remark 1.2.2. Using the language of category theory, the sheaf condition is equiv-
alent to the following condition:

● For any open covering U = ⋃i∈I Ui, the diagram

F(U) →∏
i∈I
F(Ui) ⇉ ∏

(i,j)∈I2

F(Ui ∩Uj)

is an equalizer diagram. Here the first map is

s↦ (s∣Ui)i∈I
the other two maps are

(si)i∈I ↦ (si∣Ui∩Uj)(i,j)∈I2

and
(si)i∈I ↦ (sj ∣Ui∩Uj)(i,j)∈I2 .
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In particular, the map F(U) → ∏i∈I F(Ui) is an injection.

Remark 1.2.3. For U = ∅ and I = ∅, the sheaf condition says there is a unique
section s ∈ F(∅) subject to no property. In other words, the above definition forces
F(∅) to be a singleton.

Example 1.2.4. Let X be a topological space. The constant presheaf A associated
to a set A is in general not a sheaf. Indeed, A(∅) is A rather than a singleton.

We provide another reason for readers uncomfortable with the above. For a sheaf
F and disjoint open subsets U1 and U2, the sheaf condition implies

F(U1 ⊔U2) ≃ F(U1) × F(U2).
But in general A and A ×A are not isomorphic.

Example 1.2.5. Let E →X be a continuous map between topological spaces. The
presheaf SectE of sections on X is a sheaf. Indeed, this follows from the fact that
continuous maps can be glued.

Example 1.2.6. Let {∗} be a 1-point space. Then a sheaf F of sets on {∗} is
uniquely determined by the set F({∗}) of global sectoins. We often abuse the
notations and use a set A to denote the sheaf on {∗} whose set of global sections
is A.

Exercise 1.2.7. Let X be a topological space and B be a base of open subsets of
X.

(1) Let F and F ′ be sheaves on X and α ∶ F∣B → F ′∣B be a natural trans-
formation between their restrictions on the full subcategory Bop ⊆ U(X)op.
Show that α can be uniquely extended to a morphism ϕ ∶ F → F ′.

(2) Show that for presheaves, similar claims about existence and uniqueness
are both false in general.

The above exercise says sheaves are determined by their restrictions on a topolog-
ical base. A natural question is, given a functor Bop → Set, under what conditions
can we extend it to a sheaf U(X) → Set? This question is relevant to us because
the Zariski topology of SpecR is defined using a base consisting of open subsets
that can be easily described:

U(f) ∶= {p ∈ SpecR ∣ f ∉ p} ≃ SpecRf .

It would be convenient if we can recover a sheaf F on SpecR from its values on
these open subsets. For instance, we wonder whether the contravariant functor

U(f) ↦ Rf

can be extended to a sheaf of commutative rings. If yes, we would obtain the sheaf
OX of algebraic functions desired in the introduction. The following construction
gives a positive answer to this question.

Construction 1.2.8. LetX be a topological space andB be a base of open subsets
of X. For a functor F ∶Bop → Set and U ∈ U(X), define

F ′(U) ∶= lim
V ∈Bop, V ⊆U

F(V ).

In other words, an element in s′ ∈ F ′(U) is a collection of elements sV ∈ F(V ) for
all open subsets V ⊆ U contained in B such that for V1 ⊆ V2 ⊆ U with V1, V2 ∈ B,
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the map F(V2) → F(V1) sends sV2 to sV1 . This construction is clearly functorial in
U , i.e., for U1 ⊆ U2, we have a natural map F ′(U2) → F ′(U1). One can check this
defines a functor

F ′ ∶ U(X)op → Set

equipped with a canonical isomorphism F ′∣Bop ≃ F . In other words, we have ex-
tended F to a presheaf F ′ of sets on X.

Remark 1.2.9. Using the language in category theory, the functor F ′ is the right
Kan extension of F along the embedding Bop → U(X)op.

Proposition 1.2.10. In above, F ′ is a sheaf iff F satisfies the following condition:

(**) For any open covering U = ⋃i∈I Ui in B, and any collection of elements
si ∈ F(Ui), i ∈ I such that

si∣V = sj ∣V for any i, j ∈ I and V ⊆ Ui ∩Uj , V ∈B,

there is a unique section s ∈ F(U) such that

si = s∣Ui for any i ∈ I.

Proof. The “only if” statement follows from the sheaf condition on F ′ and the
isomorphism F ′∣Bop ≃ F .

For the “if” statement, we verify the sheaf condition on F ′ directly. Let U =
⋃i∈I Ui be an open covering, and s′i ∈ F ′(Ui) be a collection of sections such that

s′i∣Ui∩Uj = s′j ∣Ui∩Uj for any i, j ∈ I.
By Construction 1.2.8, each s′i corresponds to a collection si,V ∈ F(V ) for V ⊆ Ui,
V ∈B that is compatible with restrictions.

We need to show there is a unique section s′ ∈ F ′(U) such that s′∣Ui = s′i.
We first deal with the existence. For any V ⊆ U with V ∈ B, since B is a base,

we can choose an open covering V = ⋃j∈J Vj in B such that each Vj is contained in
some Ui. In other words, we can choose a map f ∶ J → I such that Vj ⊆ Ui.

Consider the collection of sections

(1.1) tj,V ∶= sf(j),Vj
∈ F(Vj), j ∈ J.

One can check it does not depend on the choice of f and they satisfy the assumption
in (**). Hence there is a unique section s′V ∈ F(V ) such that s′V ∣Vj = sf(j),Vj

.

One can check the obtained section s′V does not depend on the open covering
V = ⋃j∈J Vj and the collections (s′V ), V ⊆ U , V ∈B is compatible with restrictions.
Hence by Construction 1.2.8, it corresponds to an element s′ ∈ F ′(U). One can
check that s′∣Ui = s′i. This proves the claim about uniqueness.

It remains to prove the statement about uniqueness. Suppose there are two such
sections s′, s′′ such that

(1.2) s′∣Ui = s′′∣Ui = s′i
By Construction 1.2.8, they correspond to two collections s′V , s

′′
V ∈ F(V ) for V ⊆ U ,

V ∈B. We only need to show s′V = s′′V .
Note that if V is contained in some Ui, then (1.2) implies

(1.3) s′V = s′′V = si,V .
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Now for general open subset V ⊆ U , V ∈ B, as before, we can choose an open
covering V = ⋃j∈J Vj in B such that each Vj is contained in some Ui. Consider the
collection of sections (1.1). By (1.3) (applied to each Vj), we have

s′V ∣Vj = s′′V ∣Vj = tj,V .
Hence by (**), we must have s′V = s′′V as desired.

□

1.3. C-valued sheaves.

Definition 1.3.1. Let C be a category and F be a C-valued presheaf on a topo-
logical space X. We say F is a C-valued sheaf if for any testing object c ∈ C, the
functor

U(X)op FÐ→ C HomC(c,−)ÐÐÐÐÐÐ→ Set

is a sheaf of sets.

Remark 1.3.2. By Yoneda’s lemma and Remark 1.2.2, F is a C-valued sheaf iff
for any open covering U = ⋃i∈I Ui, the canonical diagram

F(U) →∏
i∈I
F(Ui) ⇉ ∏

(i,j)∈I2

F(Ui ∩Uj)

is an equalizer diagram in C. Here the first morphism is given by restrictions along
Ui ⊆ U , while the other two morphisms are given respectively by restrictions along
Ui ∩Uj ⊆ Ui and Ui ∩Uj ⊆ Uj . In particular, the morphism

F(U) →∏
i∈I
F(Ui)

is a monomorphism2.

As a corollary of the remark, we obtain:

Corollary 1.3.3. Let F be a presheaf of abelian groups. Then F is a sheaf of

abelian groups iff its underlying presheaf of sets U(X)op FÐ→ Ab → Set is a sheaf of
sets. Here the functor Ab→ Set sends an abelian group to its underlying set.

Exercise 1.3.4. Let F be a presheaf of abelian groups. Show that F is a sheaf of
abelian groups iff for any open covering U = ⋃i∈I Ui, the sequence

0→ F(U) →∏
i∈I
F(Ui) → ∏

(i,j)∈I2

F(Ui ∩Uj)

is exact. Here the second map is

s↦ (s∣Ui)i∈I ,
and the third map is

(si)i∈I ↦ (sj ∣Ui∩Uj − si∣Ui∩Uj)(i,j)∈I2 .

Now suppose F is a sheaf, can you further extend this exact sequence to the right?

Remark 1.3.5. Let C be a category that admits small limits. Then Construc-
tion 1.2.8 and Proposition 1.2.10 can be generalized to C-valued (pre)sheaves with
condition (**) replaced by

2This means for any testing object c ∈ C, the functor HomC(c,−) sends this morphism to an
injection between sets.
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● For any open covering U = ⋃i∈I Ui in B, any object c ∈ C, and any collection
of elements si ∈ HomC(c,F(Ui)), i ∈ I such that

si∣V = sj ∣V for any i, j ∈ I and V ⊆ Ui ∩Uj , V ∈B,

there is a unique element s ∈ HomC(c,F(U)) such that

si = s∣Ui for any i ∈ I.

In above s∣V means the post-composition of s ∈ HomC(c,F(U)) with the restriction
morphism F(U) → F(V ).

Note however for C = Ab, we can keep condition (**) as it is, because the forgetful
functor Ab→ Set detects limits.

2. Stalks

2.1. Definition.

Definition 2.1.1. Let X be a topological space and F be a presheaf of sets on X.
For a point x ∈X, let U(X,x) ⊆ U(X) be the full subcategory of open neighborhoods
of x inside X. The stalk of F at x is

(2.1) Fx ∶= colim
U∈U(X,x)op

F(U).

For a given section s ∈ F(U), the germ of s at x, denoted by sx, is the image of
s under the canonical map F(U) → Fx.

Note that U(X,x)op is the category associated to the direct set3 (U(X,x),⊆) of
open neighborboods of x inside X. Hence the above colimit is a direct colimit4. It
follows that Fx can be explicitly described as the quotient

(2.2) ( ∐
U∈U(X,x)

F(U))/ ∼,

of the disjoint union of all F(U), U ∈ U(X,x) by an equivalence relation ∼. Here
two sections s ∈ F(U) and s′ ∈ F(U ′) are equivalent iff there exists V ⊆ U ∩U ′ such
that s∣V = s′∣V . Using this description, the germ sx of a section s ∈ F(U) is just
the equivalence class to which it belongs.

Remark 2.1.2. In general, let C be a category that admits direct colimits and F
be a C-valued presheaf. We can define the stalk of F at x using the same formula
(2.1). Note that this construction is functorial in F .

In particular, for a presheaf F of abelian groups, we can define its stalk Fx,
which is an abelian group. It is easy to see the underlying set Fx is given by (2.2)
and the group structure is given by the formula

sx + s′x = (s∣V + s′∣V )x, s ∈ F(U), s′ ∈ F(U ′), V ⊆ U ∩U ′.

3A direct set is a partially ordered set (I,≤) such that any finite subset of I admits an upper

bound in I.
4Some people use the word direct limit. I strongly object this terminology.
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2.2. Sheaves and stalks. The following result says a section of a sheaf is deter-
mined by its germs.

Lemma 2.2.1. Let F be a sheaf of sets on a topological space X. Then for any
open subset U ⊆X, the map

(2.3) F(U) → ∏
x∈U
Fx, s↦ (sx)x∈U

is injective. Moreover, a collection of elements s(x) ∈ Fx, x ∈ U is contained in the
image of this map iff it satisfies the following condition

(***) For any x ∈ U , there exists a neighborhood V of x inside U and a section
sV ∈ F(V ) such that for any y ∈ V , we have s(y) = (sV )y.

Proof. We first show the map (2.3) is injective. Let s, s′ ∈ F(U) such that all
their germs are equal. By definition, for any x ∈ U , there exists V ⊆ U such that
s∣V = s′∣V . In particular, we can find an open covering U = ⋃i∈I Ui such that
s∣Ui
= s′∣Ui . But this implies s = s′ because the sheaf condition implies

F(U) →∏
i∈I
F(Ui)

is injective.

It is obvious that any element in the image of (2.3) satisfies condition (***).
To prove the converse, let s(x) ∈ Fx, x ∈ U be a collection of elements satisfying
condition (***). By assumption, we can find an open covering U = ⋃i∈I Ui and
sections si ∈ F(Ui) such that for any x ∈ Ui, we have

(2.4) t(x) = (si)x.

In particular, the germs of si∣Ui∩Uj and sj ∣Ui∩Uj are equal. Applying the injectivity
of (2.3) to Ui ∩Uj , we obtain

si∣Ui∩Uj = sj ∣Ui∩Uj .

Hence by the sheaf condition, we can find a unique s ∈ F(U) such that s∣Ui = si.
For any x ∈ U , pick i ∈ I such that x ∈ Ui, we have

sx = (si)x = t(x),

where the first equality is due to the definition of stalks, while the second one is
(2.4). In particular, s(x) ∈ Fx, x ∈ U is the image of s under the map (2.3).

□

Remark 2.2.2. Similar claim for presheaves is false in general. Namely, for U =
X = ∅, the empty product ∏x∈∅Fx is a singleton, while F(∅) can be any set.

Corollary 2.2.3. If α,β ∶ F → F ′ are morphisms between sheaves of sets such that
αx = βx for any x ∈X, then α = β.

Proposition 2.2.4. Let α ∶ F → F ′ be a morphism between sheaves of sets on a
topological space. Then α is an isomorphism iff for any x ∈ X, αx ∶ Fx → F ′x is a
bijection.
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Proof. The “only if” statement is obvious. For the “if” statement, suppose αx is a
bijection for any x ∈X. Note that we have a commutative diagram

F(U) //

αU

��

∏x∈U Fx

(αx)x∈X≃
��

F ′(U) // ∏x∈U F ′x.
By Lemma 2.2.1, the horizontal maps are injective, hence so is αU .

It remains to show αU is surjective. Let s′ ∈ F ′(U) be a section, we will construct
a section s ∈ F(U) mapping to it by αU .

For any point x ∈ U , since αx is bijective, we can find an open subset V ⊆ X
and a section t ∈ F(V ) such that αx(tx) = s′x. By definition, αx(tx) = αV (t)x.
Hence the germs of αV (t) and s′ at x are equal. By definition, there exists an open
neightborhood W of x inside U ∩ V such that αV (t)∣W = s′∣W . Note that we also
have αV (t)∣W = αW (t∣W ).

It follows that we can find an open covering U = ⋃i∈I Ui and sections si ∈ F(Ui)
such that αUi(si) = s∣Ui . In particular, we have

αUi∩Uj(si∣Ui∩Uj) = αUi∩Uj(sj ∣Ui∩Uj) = s∣Ui∩Uj .

Since we have already shown αUi∩Uj is injective, we obtain si∣Ui∩Uj = sj ∣Ui∩Uj .
Hence by the sheaf condition for F , there exists a unique section s ∈ F(U) such
that s∣Ui = si. Using the sheaf condition for F ′, it is easy to see αU(s) = s′ as
desired.

□
The above results imply that a morphism between sheaves are determined by

the induced maps between the stalks. However, a sheaf itself is not determined by
its stalks.

Exercise 2.2.5. Let X be a connected topological space and E → X and E′ → X
be two covering spaces of the same degree. Show that the sheaves SectE and SectE′
on X have isomorphic stalks for any point x ∈ X, but they are not isomorphic
unless there exists a homeomorphism E ≃ E′ defined over X.

Remark 2.2.6. Let C be a compactly generated category5. Lemma 2.2.1 and
Proposition 2.2.4 can be generalized to C-valued sheaves. In other words:

● For any C-valued sheaf F , the morphism F(U) → ∏x∈U Fx is a monomor-
phism.
● A morphism α ∶ F → F ′ between C-valued sheaves is an isomorphism iff
αx ∶ Fx → F ′x is an isomorphism for any x ∈X.

These statements can be deduced from the special case for Set with the help of the
following two observations:

● A morphism d → d′ in C is a monomorphism (resp. isomorphism) iff for
any compact object c ∈ C, the map HomC(c, d) → HomC(c, d′) is an injection
(resp. bijection).

5An object c in a (locally small) category C is compact iff HomC(c,−) preserves small filtered

colimits. We say C is compactly generated if it admits small colimits and any object in C is
isomorphic to a small filtered colimit of compact objects. It is known that compactly generated

categories also admit small limits.
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● For any C-valued sheaf F and any compact object c ∈ C, the stalk of the
Set-valued sheaf

U(X)op FÐ→ C HomC(c,−)ÐÐÐÐÐÐ→ Set

at x ∈X is canonically isomorphic to HomC(c,Fx).
The details are left to the curious readers.

2.3. Skyscrapers.

Definition 2.3.1. Let X be a topological space and x ∈X be a point. For any set
A, we can define a presheaf δx,A of sets as follows.

● For an open subset U ⊆X,
– if x ∈ U , define δx,A(U) ∶= A;
– if x ∉ U , define δx,A(U) ∶= {∗}.

● For open subsets U ⊆ V ,
– if x ∈ U (and therefore x ∈ V ), define the restriction map δx,A(U) to

be idA;
– if x ∉ U , define the restriction map to be the unique map δx,A(V ) →

δx,A(U) = {∗}.
One can check this indeed defines a presheaf δx,A. We call the the skyscraper
sheaf at x with value A.

Exercise 2.3.2. The presheaf δx,A is indeed a sheaf.

Lemma 2.3.3. Let X be a topological space, x ∈X be a point and A be a set. The
stalk of δx,A at a point y ∈X is canonically bijective to

● the set A if y is contained in {x}, the closure of {x} inside X;
● the singleton {∗} otherwise.

Proof. If y ∈ {x}, then any open neighborhood of y contains x. It follows that

(δx,A)y ∶= colim
U∈U(X,y)op

δx,A(U) ≃ colim
U∈U(X,y)op

A

is a direct colimit of the constant diagram with values A. This implies (δx,A)y ≃ A.

If y ∉ {x}, then there exists an open neighborhood V of y such that x ∉ V . Note
that U(V, y)op ⊆ U(X,y)op is (co)final. If follows that

(δx,A)y ∶= colim
U∈U(X,y)op

δx,A(U) ≃ (δx,A)y ≃ colim
U∈U(V,y)op

δx,A(U) ≃ colim
U∈U(V,y)op

{∗}

is a direct colimit of the constant diagram with values {∗}. This implies (δx,A)y ≃
{∗}.

□
Note that if A is equipped with the structure of an abelian group, the skyscraper

δx,A can be upgraded to a sheaf of abelian groups. Then the abelian group (δx,A)y
is either A or 0.

Proposition 2.3.4. Let X be a topological space, x ∈X be a point and A be a set.
For any presheaf F of sets on X, the composition

(2.5) HomPShv(X,Set)(F , δx,A)
(−)xÐÐ→ HomSet(Fx, (δx,A)x) ≃ HomSet(Fx,A)

is an bijection.
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Corollary 2.3.5. The stalk functor

PShv(X,Set) → Set, F ↦ Fx

admits a right adjoint

Set→ PShv(X,Set), A↦ δA,x.

Proof of Proposition 2.3.4. We first construct a map

(2.6) HomSet(Fx,A) → HomPShv(X,Set)(F , δx,A)
as follows. Given any map f ∶ Fx → A, for any open subset U ⊆X, we define a map
αU ∶ F(U) → δx,A(U) such that:

● If x ∈ U , αU is the composition F(U) → Fx
fÐ→ A;

● If x ∉ U , αU is the unique map F(U) → {∗}.
One can check these maps are compatible with restriction and therefore define a
morphism α ∶ F → δx,A. Now we define the map (2.6) to be f ↦ α.

One can check that (2.5) and (2.6) are inverse to each other. Hence both are
bijections.

□

Remark 2.3.6. In general, for any category C admitting a final object6 and any
object A ∈ C, one can define a C-valued sheaf δx,A. If C admits direct colimits, the
stalks of δx,A are either A or the final object of C, and the functor A↦ δA,x is right
adjoint to F ↦ Fx.

6An object ∗ ∈ C is a final object iff for any c ∈ C, there is a unique morphism c→ ∗.
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3. Category of (pre)sheaves

Let X be a topological space and C be a category. Note that C-valued presheaves
on X form a category

PShv(X,C) ∶= Fun(U(X)op,C),
and C-valued sheaves form a full subcategory

Shv(X,C) ⊆ PShv(X,C).
In this section, we study the basic properties of these categories.

3.1. Sheafification.

Definition 3.1.1. Let F ∈ PShv(X,Set). The sheafification of F is a sheaf
F ♯ ∈ Shv(X,Set) equipped with a morphism θ ∶ F → F ♯ such that for any testing
sheaf G, pre-composing with θ induces an bijection:

HomShv(X,Set)(F ♯,G)
≃Ð→ HomPShv(X,Set)(F ,G), α ↦ α ○ θ.

Proposition 3.1.2. For any F ∈ PShv(X,Set), its sheafification (F ♯, θ) exists, and
is unique up to unique isomorphism. Moreover, the morphism θ ∶ F → F ♯ induces
bijections Fx → F ♯x between the stalks.

Proof. The statement about uniqueness follows from Yoneda’s lemma. To prove
the existence, we construct a sheafification as follows.

We first construct the desired sheaf F ♯. For any open subset U ⊆X, let

F ♯(U) ⊆ ∏
x∈U
Fx,

be the subset consisting of elements (sx)x∈U satisfying the following condition:

● For any x ∈ U , there exists a neighborhood V of x inside U and a section
sV ∈ F(V ) such that for any y ∈ V , we have s(y) = (sV )y.

For U ⊆ U ′, it is obvious that the projection map∏x∈U ′ Fx →∏x∈U Fx sends F ♯(U ′)
into F ♯(U). Moreover, one can check the obtained maps F ♯(U ′) → F ♯(U) upgrade
the assignment U ↦ F ♯(U) to an object in Shv(X,Set).

Now we construct the morphism θ ∶ F → F ♯. For any open subset U ⊆ X,
consider the map

F(U) → ∏
x∈U
Fx, s↦ (sx)x∈U .

It is obvious that the image of this map is contained in F ♯(U). Moreover, the
obtained maps F(U) → F ♯(U) is functorial in U , therefore give a morphism θ ∶
F → F ♯.

It remains to show θ ∶ F → F ♯ exhibits F ♯ as a sheafification of F . Let G be a
testing sheaf, we need to show

(3.1) HomShv(X,Set)(F ♯,G) → HomPShv(X,Set)(F ,G), α ↦ α ○ θ
is bijective. Let β ∶ F → G be a morphism. For any open subset U ⊆ X, recall
taking germs induces an injection

G(U) → ∏
x∈U
Gx
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and its image is desribed in Lemma 2.2.1. Using that description, it is clear that
there is a unique dotted map making the following diagram commute:

F ♯(U)

��

⊆ // ∏x∈U Fx

(βx)x∈U
��

G(U) // ∏x∈U Gx.

Moreover, the obtained map F ♯(U) → G(U) is functorial in U . Hence we obtain a
morphism β♯ ∶ F ♯ → G. Now one can check that the map

HomPShv(X,Set)(F ,G) → HomShv(X,Set)(F ♯,G), β ↦ β♯

and (3.1) are inverse to each other. In particular, they are both bijective as desired.
□

Corollary 3.1.3. The fully faithful embedding Shv(X,Set) → PShv(X,Set) admits
a left adjoint which sends F to its sheafification F ♯.

Example 3.1.4. Let A be a set. The sheafification A♯ of the constant presheaf A
is the sheaf

U(X)op → Set, U ↦ C(U,A)
that sends U to the set of continuous maps from U to A (equipped with the discrete
topology). We call it the constant sheaf associated to A.

Remark 3.1.5. Suppose F is a presheaf of abelian groups. Let F ♯ be the sheafifi-
cation of the underlying Set-valued presheaf of F as constructed in the proof of the
proposition. One can check that F ♯(U) is a subgroup of the abelian group∏x∈U Fx.
It follows that F ♯ can be upgraded to a sheaf of abelian groups. Moreover, for any
testing sheaf G of abelian groups, pre-composing with θ induces an bijection:

HomShv(X,Ab)(F ♯,G)
≃Ð→ HomPShv(X,Ab)(F ,G), α ↦ α ○ θ.

In other words, Shv(X,Ab) → PShv(X,Ab) admits a left adjoint which sends F to
F ♯.

Remark 3.1.6. In general, if C is a category admitting small limits and filtered
colimits, then any C-valued presheaf admits a sheafification that can be constructed
as follows.

For U ⊆X, we can define the category CovU of open coverings of U as follows:

● An object is an open covering U = ⋃i∈I Ui;
● A morphism from (Ui)i∈I to (Vj)j∈J is a map J → I such that Vj ⊆ Ui for
any j ∈ J .

One can show that CovU is filtered. Now for any F ∈ PShv(X,C), we have a functor

CovU → C
(Ui)i∈I ↦ lim[∏

i∈I
F(Ui) ⇉ ∏

(i,j)∈I2

F(Ui ∩Uj)].

sending a covering to the equalizer appeared in the sheaf condition. Note that the
identity covering {U} is sent to the object F(U). Now we define

F+(U) ∶= colim
[(Ui)i∈I]∈CovU

lim[∏
i∈I
F(Ui) ⇉ ∏

(i,j)∈I2

F(Ui ∩Uj)].
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By construction, there is a canonical morphism F(U) → F+(U). Moreover, the
above definition is contravariantly functorial in U , therefore we obtain an object
F+ ∈ PShv(X,C) equipped with a canonical morphism F → F+.

In general, F+ is note a C-valued sheaf. But one can check that for any open
covering U = ⋃i∈I Ui, the morphism

F+(U) →∏
i∈I
F+(Ui)

is a monomorphism. Using this property, one can show that (F+)+ is a sheaf and
the composition F → F+ → (F+)+ exhibits (F+)+ as a sheafification of F .
3.2. Direct images.

Construction 3.2.1. Let f ∶ X → X ′ be a continuous map between topological
spaces. We have a functor

U(X ′)op → U(X)op, U ′ ↦ f−1(U ′).
For any category C, it induces a functor

Fun(U(X)op,C) → Fun(U(X ′)op,C).
By definition, this gives a functor

f∗ ∶ PShv(X,C) → PShv(X ′,C).
We call it the direct image functor (or pushforward functor) along f for
C-valued presheaves.

Note that for continuous maps X
fÐ→ Y

gÐ→ Z, we have a canonical natural iso-
morphism (g ○ f)∗ ≃ g∗ ○ f∗.

Explicitly, given a C-valued presheaf F on X, its direct image (or pushfor-
ward) along f is the presheaf f∗F defined by

f∗F(U ′) ∶= F(f−1(U ′)),
with restriction maps given by those maps for F .
Proposition 3.2.2. Let f ∶X →X ′ be a continuous map between topological spaces.
If F is a sheaf, then f∗F is a sheaf.

Proof. The sheaf condition for f∗F and an open covering U ′ = ⋃i∈I U
′
i is just the

sheaf condition for F and the open covering f−1(U ′) = ⋃i∈I f
−1(U ′i).

□

Example 3.2.3. Let x ∈ X be a point and write i ∶ {x} → X for the emebdding
map. Let C be a category admitting a final object ∗. For any object A ∈ C, we have

i∗(A) ≃ δx,A,
where we abuse notations and use A to denote the unique C-valued sheaf on {x}
whose object of global sections is A.

Example 3.2.4. Let p ∶ X → {∗} be the obvious projection map. For any sheaf
F , the direct image p∗F is uniquely determined by p∗F({∗}), which is F(X) by
definition. Hence in this case, we also call p∗ is taking global sections functor.

Warning 3.2.5. Direct image functors do not commute with sheafifications. In
other words f∗(F ♯) and (f∗F)♯ are in general not isomorphic. For a counterexam-
ple, take F to be a constant presheaf.
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3.3. Inverse images for presheaves.

Construction 3.3.1. Let f ∶ X → X ′ be a continuous map between topological
spaces. Let F ′ ∈ PShv(X ′,Set) be a presheaf. We define a presheaf f−1PShvF ′ ∈
PShv(X,Set) by the following formula

f−1PShvF ′(U) ∶= colim
V ∈U(X′,f(U))op

F ′(V ),

where U(X ′, f(U)) ⊆ U(X ′) is the full subcategory of open neighborhoods of f(U)
inside X ′, and the restriction maps for f−1PShvF ′ are induced by those for F ′.

The construction F ′ → f−1PShvF ′ can be obviously upgraded to a functor

f−1PShv ∶ PShv(X ′,Set) → PShv(X,Set).
We call it the inverse image functor (or pullback functor) along f for presheaves
of sets.

Note that U(X ′, f(U))op is the category associated to a direct set. Hence
f−1PShvF ′(U) can be calculated as a quotient of

⊔
V ∈U(X′,f(U))op

F ′(V ).

Example 3.3.2. Let X be a topological space and x be a point. Write i ∶ {x} →X
for the embedding. We have

(i−1PShv(F ′))({x}) ≃ F ′x.

Lemma 3.3.3. Let X be a topological space and U ⊆ X be an open subset. Write
j ∶ U →X for the embedding map. Then j−1PShv sends sheaves to sheaves.

Proof. For any F ∈ PShv(X,Set) and open subset V ⊆ U , unwinding the definitions,
we have

(j−1PShv(F))(V ) ≃ F(V ).
Hence the sheaf condition for j−1PShv(F) follows from that for F .

□

Warning 3.3.4. For general continuous map f ∶ X → X ′, the functor f−1PShv does
not send sheaves to sheaves. To see this, consider the projection map p ∶X → {∗}.

Remark 3.3.5. The functor f−1PShvF ′ ∶ U(X)op → Set is the left Kan extension of
F ′ ∶ U(X ′)op → Set along the pullback functor U(X ′)op → U(X)op.

Construction 3.3.6. Let f ∶ X → X ′ be a continuous map between topological
spaces and F ′ ∈ PShv(X ′,Set) be a presheaf. We construct a morphism

(3.2) F ′ → f∗ ○ f−1PShv(F ′)
as follows. For any open subest U ′ ⊆X ′, by definition,

(f∗ ○ f−1PShv(F ′))(U ′) ≃ (f−1PShv(F ′))(f−1(U ′)) ≃ colim
V ∈U(X′,f(f−1(U ′)))op

F ′(V ).

Note that U ′ is an object in U(X ′, f(f−1(U ′)))op. Hence we have a canonical map

F ′(U ′) → (f∗ ○ f−1PShv(F ′))(U ′).
One can check these maps are compatible with restrictions, and therefore gives a
morphism (3.2).
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Moreover, we can upgrade these morphisms to a natural transformation

(3.3) Id→ f∗ ○ f−1PShv.

Construction 3.3.7. Dually, let f ∶ X → X ′ be a continuous map between topo-
logical spaces and F ∈ PShv(X,Set) be a presheaf. We construct a morphism

(3.4) f−1PShv ○ f∗(F) → F .
as follows. For any open subest U ⊆X, by definition,

(f−1PShv ○ f∗(F))(U) ≃ colim
V ∈U(X′,f(U))op

(f∗(F))(V ) ≃ colim
V ∈U(X′,f(U))op

F(f−1(V )).

Note that for any V ∈ U(X ′, f(U))op, we have U ⊆ f−1(V ), which gives a restriction
map F(f−1(V )) → F(U). One can check these maps are functorial in V and give
a map

colim
V ∈U(X′,f(U))op

F(f−1(V )) → F(U).

Hence we obtain a map

(f−1PShv ○ f∗(F))(U) → F(U).
One can check these maps are compatible with restrictions, and therefore gives a
morphism (3.4).

Moreover, we can upgrade these morphisms to a natural transformation

(3.5) f−1PShv ○ f∗ → Id.

The following proposition follows from a boring diagram chasing. We omit the
details.

Proposition 3.3.8. Let f ∶X →X ′ be a continuous map between topological spaces
and F ∈ PShv(X,Set), F ′ ∈ PShv(X ′,Set). The following compositions are inverse
to each other:

HomPShv(X,Set)(f−1PShv(F ′),F)
f∗Ð→ HomPShv(X′,Set)(f∗ ○ f−1PShv(F ′), f∗F)

−○(3.2)ÐÐÐÐ→ HomPShv(X′,Set)(F ′, f∗F)
and

HomPShv(X′,Set)(F ′, f∗F)
f−1PShvÐÐ→ HomPShv(X′,Set)(f−1PShv(F ′), f−1PShv ○ f∗(F))

(3.4)○−ÐÐÐÐ→ HomPShv(X,Set)(f−1PShv(F ′),F)

Corollary 3.3.9. Let f ∶ X → X ′ be a continuous map between topological spaces.
The functor

f−1PShv ∶ PShv(X ′,Set) → PShv(X,Set)
is canonically left adjoint to

f∗ ∶ PShv(X,Set) → PShv(X ′,Set).

Corollary 3.3.10. For continuous maps X
fÐ→ Y

gÐ→ Z, we have a canonical natural
isomorphism (g ○ f)−1PShv ≃ f−1PShv ○ g−1PShv.
Remark 3.3.11. Let C be a category admitting direct colimits. One can define
the functor f−1PShv for C-valued presheaves using the same formula, and f−1PShv is
canonically left adjoint to f∗.
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3.4. Inverse images for sheaves.

Construction 3.4.1. Let f ∶ X → X ′ be a continuous map between topological
spaces. Let F ∈ Shv(X ′,Set) be a sheaf. We define

f−1F ∶= (f−1PShvF ′)♯

to be the sheafification of the presheaf-theoretic inverse image of F .
The construction F ′ → f−1F ′ can be obviously upgraded to a functor

f−1 ∶ Shv(X ′,Set) → Shv(X,Set).
We call it the inverse image functor (or pullback functor) along f for sheaves
of sets.

Let f ∶ X → X ′ be a continuous map between topological spaces and F ∈
PShv(X,Set), F ′ ∈ PShv(X ′,Set). We have canonical bijections:

HomShv(X,Set)(f−1(F ′),F) ≃ HomPShv(X,Set)(f−1PShv(F ′),F)
≃ HomPShv(X′,Set)(F ′, f∗F) ≃ HomShv(X′,Set)(F ′, f∗F),

where

● the first bijection is due to the definition of sheafifications;
● the second bijection is that in Proposition 3.3.8;
● the last bijection is due to the fully faithful embedding Shv(X ′,Set) ⊆
PShv(X,Set).

Corollary 3.4.2. Let f ∶ X → X ′ be a continuous map between topological spaces.
The functor

f−1 ∶ Shv(X ′,Set) → Shv(X,Set)
is canonically left adjoint to

f∗ ∶ Shv(X,Set) → Shv(X ′,Set).

Exercise 3.4.3. The following diagram commutes:

PShv(X ′,Set)
f−1PShv //

(−)♯

��

PShv(X,Set)

(−)♯

��
Shv(X ′,Set) f−1 // Shv(X,Set).

Exercise 3.4.4. Show that f−1 sends a constant sheaf to the constant sheaf asso-
ciated to the same set.

Example 3.4.5. Let X be a topological space and x be a point. Write i ∶ {x} →X
for the embedding. For F ∈ Shv(X,Set), we have

i−1(F) ≃ Fx,

where in the RHS we abuse notations by identifying a sheaf on {x} with its set of
global sections (see Example 1.2.6).

Remark 3.4.6. Let C be a category admitting small limits and filtered colimits.
One can define the functor f−1 for C-valued sheaves using the same formula, and
f−1 is canonically left adjoint to f∗.
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3.5. Open base-change.

Construction 3.5.1. Given a commutative square of topological spaces

(3.6) X
f //

u

��

X ′

v

��
Y

g // Y ′,

consider the canonical natural isomorphism v∗ ○ f∗ ≃ g∗ ○u∗. Using the adjunctions
(g−1PShv, g∗) and (f−1PShv, f∗), we obtain natural transformations

g−1PShv ○ v∗ → g−1PShv ○ v∗ ○ f∗ ○ f−1PShv ≃ g−1PShv ○ g∗ ○ u∗ ○ f−1PShv → u∗ ○ f−1PShv,

where the first arrow is induced by Id → f∗ ○ f−1PShv (see (3.3)), while the last arrow
is induced by g−1PShv ○ g∗ → Id (see (3.5)).

We call the above composition the base-change natural transformation7 for
presheaves associated to the square (3.6).

Similarly, we have the base-change natural transformation for sheaves

g−1 ○ v∗ → u∗ ○ f−1.

Proposition 3.5.2. Let f ∶X →X ′ be a continuous map between topological spaces
and U ′ ⊆ X ′ be an open subset. Write U ∶= f−1(U ′) can consider the following
diagram

U
j //

g

��

X

f

��
U ′

j′ // X ′.

Then both

(j′)−1PShv ○ f∗ → g∗ ○ j−1PShv
and

(j′)−1 ○ f∗ → g∗ ○ j−1

are natural isomorphisms.

Proof. We will prove the claim for presheaves. That for sheaves follow from Lemma
3.3.3.

For any F ∈ PShv(X,Set) and open subset V ′ ⊆ U ′, unwinding the definitions,
we have

((j′)−1PShv ○ f∗(F))(V ′) ≃ (f∗(F))(V ′) ≃ F(f−1(V ′))
and

(g∗ ○ j−1PShv(F))(V ′) ≃ (j−1PShv(F))(g−1(V ′)) ≃ F(f−1(V ′)).
One can check that via these identifications, the value of (j′)−1PShv ○f∗ → g∗ ○j−1PShv at
F and V ′ is given by the identity map on F(f−1(V ′)). In particular, (j′)−1PShv ○f∗ →
g∗ ○ j−1PShv is a natural isomorphism.

□

Remark 3.5.3. Informally, we say: open pullbacks commute with pushforwards.

7Other name: Bech–Chevalley natural transformations.
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Warning 3.5.4. In the setting of Proposition 3.5.2, one can also consider the
natural transformations

f−1PShv ○ j′∗ → j∗ ○ g−1PShv
and

f−1 ○ j′∗ → j∗ ○ g−1.
However, they are not invertible in general.

Exercise 3.5.5. Let X ′ = {s, b} be the topological space with two points whose
open subsets are exactly given by ∅,{b} and X ′. Consider the following diagram

∅ j //

g

��

{s}

f

��
{b} j′ // X ′.

Show that f−1PShv ○ j′∗ → j∗ ○ g−1PShv and f−1 ○ j′∗ → j∗ ○ g−1 are not invertible.
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