PROBLEM SET 1

Due: Oct 29, noon

100 credits + 50 bonus

Problem 1 (10 credits). Let k be an algebraically closed field. Describe the underlying topological space of Spec(k[x,y]/(xy)).

Problem 2 (10 bonus credits). Give an example of $R, R' \in \mathsf{CRing}$ such that there exists a morphism $\mathsf{Spec}(R') \to \mathsf{Spec}(R)$ between *ringed spaces* which is not a morphism between *locally ringed spaces*.

Problem 3 (10 credits). Let X be a scheme over $Spec(\mathbb{F}_q)$.

- (1) (5 credits) For any open subset $U \subseteq X$, show that the map $\beta_U : \mathcal{O}_X(U) \to \mathcal{O}_X(U)$, $f \mapsto f^q$ is a homomorphism, and these maps give an endomorphism $\beta : \mathcal{O}_X \to \mathcal{O}_X$ of the structure sheaf.
- (2) (5 credits) Show that $\operatorname{Frob}_{X,q} := (\operatorname{id}_X, \beta)$ is an endomorphism of the scheme X defined over $\operatorname{Spec}(\mathbb{F}_q)$.

Problem 4 (20+10 credits). Let X be a topological space. For any open subset $U \subseteq X$, let $\mathcal{C}_X(U)$ be the commutative ring of \mathbb{R} -valued¹ continuous functions on U. Note that $U \mapsto \mathcal{C}_X(U)$ defines a sheaf of commutative rings on X.

- (1) (10 credits) Show that (X, \mathcal{C}_X) is a locally ringed space.
- (2) (10 credits) Show that a continuous map $X \to X'$ induces a morphism $(X, \mathcal{C}_X) \to (X', \mathcal{C}_{X'})$ between locally ringed spaces.
- (3) (10 bonus credits) Show that $(\mathbb{R}, \mathcal{C}_{\mathbb{R}})$ is not a scheme.

Problem 5 (10 credits). Let k be a field and R = k[x, y]. Consider the point $(0,0) \in \operatorname{Spec}(R)$ corresponding to the maximal ideal (x,y). Let $U := \operatorname{Spec}(R) \setminus \{(0,0)\}$ be the complementary open subset.

- (1) (5 credits) Find the commutative ring $\mathcal{O}(U)$.
- (2) (5 credits) Show that U is not an affine scheme.

Problem 6 (20 bonus credits). Let k be a field of characteristic 0 and $R := k[x,y]/(y^2-x^3)$. Consider the point $(1,1) \in \operatorname{Spec}(R)$ corresponding to the maximal ideal (x-1,y-1). $U := \operatorname{Spec}(R) \setminus \{(1,1)\}$ be the complementary open subset.

- (1) (10 bonus credits) Show that U is not a standard open subset of Spec(R).
- (2) (10 bonus credits) Show that U is an affine scheme.

Problem 7 (20 points). Let R be a commutative ring and k be an algebraically closed field.

- (1) (10 points) Find $\mathcal{O}_{\mathbb{P}_{p}^{n}}(\mathbb{P}_{R}^{n})$. Deduce that \mathbb{P}_{R}^{n} is not affine for $n \geq 1$.
- (2) (10 points) Show that the closed points of \mathbb{P}^n_k can be canonically identified with elements in $(k^{n+1} \setminus 0)/k^{\times}$, where k^{\times} acts on the vector space k^{n+1} via scaler multiplication.

¹We equip \mathbb{R} with the usual topology.

Problem 8 (10 points). Let R be any commutative ring and $I = \{1, 2\}$. Let

$$X_1 = X_2 \coloneqq \mathbb{A}^1_R \coloneqq \operatorname{Spec}(R[t])$$

and

$$U_{12} = U_{21} \coloneqq U(t), \, U_{11} \coloneqq X_1, \, U_{22} \coloneqq X_2.$$

Let ϕ_{ij} be the identity morphisms. Consider the scheme X glued from the above gluing data. Show that X is not affine.

Problem 9 (10 bonus points). Show that the embedding functor $Aff \rightarrow Sch$ does not admit a right adjoint.

Problem 10 (10 points). Show that the functor $\mathsf{CRing} \to \mathsf{Set}$ that sends R to the set $\mathsf{GL}_n(R)$ of $n \times n$ invertible matrices over R is represented by an affine scheme.

Problem 11 (10 points). Let I be a set.

- (1) (5 points) Show that the constant functor $\mathsf{CRing} \to \mathsf{Set}, \ R \mapsto I$ is not represented by a scheme unless $I \simeq \{*\}.$
- (2) (5 points) What is the functor represented by the disjoint union $\bigsqcup_{i \in I} \operatorname{Spec}(\mathbb{Z})$?