PROBLEM SET 5

Due: Dec 17, noon

100 credits + 50 bonus

Problem 1 (10 credits). Let $i: Y \to X$ be a quasi-compact locally closed immersion and \overline{Y} be the scheme theoretic closure of Y in X. Show that the canonical morphism $j: Y \to \overline{Y}$ has a dense image.

Problem 2 (10 credits). The original problem is false.

Problem 3 (10 credits). Let $f: X \to Y$ be a morphism between schemes. Suppose X is reduced. Show that f uniquely factors through Y_{red} .

Problem 4 (15 bonus credits). Show that a morphism $f: X \to Y$ of schemes is quasi-compact (resp. separated, quasi-separated) iff f_{red} is so.

Problem 5 (10 credits). Let X be a scheme and $f \in \mathcal{O}_X(X)$. Consider the canonical morphism $\phi: X \to \operatorname{Spec}(\mathcal{O}_X(X))$. Show that $\phi^{-1}(U(f)) = X_f$.

Problem 6 (10 bonus credits). Let k be a field and

$$A = k[x_1, x_2, \cdots][\frac{x_1}{x_2}, \frac{x_1}{x_2^2}, \cdots][\frac{x_2}{x_3}, \frac{x_2}{x_3^2}, \cdots] \cdots$$

be the sub-k-algebra of $k[x_1, x_2^{\pm}, x_3^{\pm}, \cdots]$ generated by $(x_i/x_{i+1}^m)_{i\geq 1, m\geq 0}$. Let $\mathfrak{m}\subseteq A$ be the kernel of the homomorphism $A\to k,\ x_i\mapsto 0$. Consider $X:=\operatorname{Spec}(A_{\mathfrak{m}})$ and consider the unique closed point $x\in X$. Show that $U:=X\smallsetminus x$ is a scheme with no closed points.

Problem 7 (10 credits). Let $f: X \to Y$ be an affine morphism between quasi-affine schemes. Let \overline{X} and \overline{Y} respectively be the affine closure of X and Y. Show that the canonical commutative diagram

$$X \xrightarrow{j_X} \overline{X}$$

$$\downarrow^f \qquad \qquad \downarrow^{\overline{f}}$$

$$Y \xrightarrow{j_Y} \overline{Y}.$$

is Cartesian. Hint: show that $\overline{X} \simeq \operatorname{Spec}_{\overline{Y}}(j_{Y,*} \circ f_*(\mathcal{O}_X))$.

Problem 8 (10 credits). Let X be a scheme and $x \in X$ is a point. The following conditions are equivalent:

- There is a unique irreducible component of X that contains x.
- The nilpotent radical of $\mathcal{O}_{X,x}$ is a prime ideal.

Problem 9 (10 credits). Let X be a scheme. The following conditions are equivalent:

(1) The scheme X is integral.

1

- (2) The scheme X is nonempty and for any open subscheme $U \subseteq X$, the ring $\mathcal{O}_X(U)$ is an integral domain.
- (3) The scheme X is nonempty and for any affine open subscheme $U \subseteq X$, the ring $\mathcal{O}_X(U)$ is an integral domain.

Problem 10 (10 credits). Let X be a locally Noetherian scheme and $x \in X$ be a point such that $\mathsf{Spec}(\mathcal{O}_{X,x})$ is irreducible. Show that there exists an open neighborhood U of x such that U is irreducible.

Problem 11 (20 bonus credits). Let P be a property on morphisms in CRing such that:

- (i) For any $A \to B$ and $a \in A$, we have $P(A \to B) \Rightarrow P(A_a \to B_a)$;
- (ii) For any $A, B \in \mathsf{CRing}$, $a \in A$, $b \in B$ and $A_a \to B$, we have $P(A_a \to B) \Rightarrow P(A \to B_b)$;
- (iii) For any $A \to B$ and $b_1, \dots, b_n \in B$ such that $(b_1, \dots, b_n) = B$, we have $\bigcap_i P(A \to B_{b_i}) \Rightarrow P(A \to B)$.

Then for a morphism $f: X \to Y$ between schemes, the following conditions are equivalent:

- (1) For any affine open scheme $U \subseteq X$ and $V \subseteq Y$ with $f(U) \subseteq V$, we have $P(\mathcal{O}_Y(V) \to \mathcal{O}_X(U))$.
- (2) For any point $x \in X$, there exists an affine open neighborhood U of x and an affine open subscheme $V \subseteq Y$ with $f(U) \subseteq V$ such that $P(\mathcal{O}_Y(V) \to \mathcal{O}_X(U))$.

Problem 12 (20+10 credits). Let (X, \mathcal{O}_X) be a ringed space and $0 \to \mathcal{F}_1 \xrightarrow{\alpha} \mathcal{F}_2 \xrightarrow{\beta} \mathcal{F}_3 \to 0$ be a short exact sequence of \mathcal{O}_X -modules.

- (1) (10 credits) If \mathcal{F}_1 is of finite type and \mathcal{F}_2 is of finite presentation, then \mathcal{F}_3 is of finite presentation.
- (2) (10 bonus credits) If \mathcal{F}_1 and \mathcal{F}_3 are of finite presentation, so is \mathcal{F}_2 .
- (3) (10 credits) If \mathcal{F}_2 is of finite type and \mathcal{F}_3 is of finite presentation, then \mathcal{F}_1 is of finite type.