

PROBLEM SET 6

Due: Dec 26, noon

100 credits + 50 bonus

Problem 1 (10 credits). Use the valuative criterion to show that $\mathbb{P}_{\mathbb{Z}}^n \rightarrow \text{Spec}(\mathbb{Z})$ is proper.

Problem 2 (10 bonus credits). Let k be a field. Show that the direct image functor along the closed immersion $0 \rightarrow \mathbb{A}_k^\infty$ does not preserve coherent modules.

Problem 3 (10 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring and $f \in S_+$ be a homogeneous element. Show that the composition

$$U_+(f) \subseteq U(f) \simeq \text{Spec}(S_f) \rightarrow \text{Spec}(S_{(f)})$$

is a homeomorphism.

Problem 4 (40 bonus credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring and

$$\text{Spec}(S)^\circ := \text{Spec}(S) \setminus \text{Spec}(S_0).$$

(1) (10 bonus credits) Show that the map

$$\pi : \text{Spec}(S)^\circ \rightarrow \text{Proj}(S), \mathfrak{p} \mapsto \bigoplus_{n \in \mathbb{Z}_{\geq 0}} (\mathfrak{p} \cap S_n)$$

is well-defined and continuous. Moreover, for any homogeneous $f \in S_+$,

$$\pi^{-1}(U_+(f)) = U(f).$$

(2) (10 bonus credits) Show that π is an epimorphism of schemes.

(3) (10 bonus credits) Show that $\text{Spec}(S)^\circ \xrightarrow{\cong} \text{Spec}(S) \rightarrow \text{Spec}(S_0)$ uniquely factors through $\text{Proj}(S)$.

(4) (10 bonus credits) Suppose S_+ is generated by S_1 . Show that for any \mathbb{Z} -graded S -module M ,

$$\pi^*(\widetilde{M}) \simeq \widetilde{M}|_{\text{Spec}(S)^\circ}$$

as objects in $\text{QCoh}(\text{Spec}(S)^\circ)$.

Problem 5 (10 credits). Let R be a commutative ring and $n \geq 0$. Let $S = R[x_0, \dots, x_n]$ be the $\mathbb{Z}_{\geq 0}$ -graded ring such that $S_0 = R$ and $x_i \in S_1$. Show that $\text{Proj}(S) \simeq \mathbb{P}_R^n$.

Problem 6 (20 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring and d be a positive integer.

(1) (10 credits) Let $S' = \bigoplus_{n \geq 0} S'_{nd}$ be the $\mathbb{Z}_{\geq 0}$ -graded ring such that $S'_{nd} := S_n$. Show that $\text{Proj}(S') \simeq \text{Proj}(S)$.

(2) (10 credits) Let $S'' \subseteq S$ be the subring generated by elements in S_{nd} , $n \geq 0$. Show that $\text{Proj}(S'') \simeq \text{Proj}(S)$.

Problem 7 (20 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that S_+ is generated by S_1 . Let M be a \mathbb{Z} -graded S -module that is of finite presentation. Show that

- (1) (10 credits) The \mathcal{O} -module \widetilde{M} is of finite presentation.
- (2) (10 credits) For any \mathbb{Z} -graded S -module N , we have

$$\underline{\text{Hom}}_{\mathcal{O}}(\widetilde{M}, \widetilde{N}) \simeq \widehat{\text{Hom}_S^{\text{gr}}(M, N)},$$

where $\widehat{\text{Hom}}_S^{\text{gr}}(M, N)$ is the \mathbb{Z} -graded S -module such that

$$\widehat{\text{Hom}}_S^{\text{gr}}(M, N)_d := \text{Hom}_{S-\text{mod}_{\text{gr}}}(M, N(d)).$$

Problem 8 (10 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that S_+ is generated by finitely many elements in S_1 . Let M be a \mathbb{Z} -graded S -module that is eventually of finite type. Show that $\widetilde{M} = 0$ iff M is eventually zero.

Problem 9 (10 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that S_+ is generated by S_1 . Show that for any $n \geq 0$, the $\mathcal{O}_{\text{Proj}(S)}$ -module $\mathcal{O}_{\text{Proj}(S)}(n)$ is generated by its global sections that belong to the image of the canonical map

$$S_n \rightarrow \Gamma(\text{Proj}(S), \mathcal{O}(n)).$$

Problem 10 (10 credits). Let S be a $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that S_+ is generated by S_1 . Let $I \subseteq S$ be a graded ideal and $i : \text{Proj}(S/I) \rightarrow \text{Proj}(S)$ be the corresponding closed immersion. Show that

$$i^*(\mathcal{O}_{\text{Proj}(S)}(n)) \simeq \mathcal{O}_{\text{Proj}(S/I)}(n).$$