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HOMEWORK PROBLEMS
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Homework 1 (Due on March 18)

1. 1Problem 1.1 (Lecture 2, Exercise 2.6). Prove the following.
(1) The map

U(n−) ⊗k U(b) mult−−−−→ U(g)

is an isomorphism between (U(n−), U(b))-bimodules.
(2) As an n−-module, Mλ is freely generated by vλ, i.e.,

U(n−) −→ Mλ, x 󰀁−→ x · vλ

is an isomorphism.

Solution. (1) It is clear from the construction that mult is a homomorphism of left U(n−)-
modules and right U(b)-modules. Note that the target U(g) is regarded as a (U(n−), U(b))-
bimodule via restricting the U(g)-action on itself to U(b) and U(n−), respectively. It remains
to show that mult is an isomorphism of vector spaces by PBW theorem [Lecture 2, Theorem
1.5]. For this, according to the context of [Lecture 2, Corollary 1.6], pick {x1, . . . , xn} as a basis
of n− and {y1, . . . , ym} as a basis of b. Then the bases of k-vector spaces U(n−), U(b), U(g)
are {xk1

1 · · · xkn
n }ki󰃍0, {yl1

1 · · · ylm
m }lj󰃍0, {xk1

1 · · · xkn
n yl1

1 · · · ylm
m }ki,lj󰃍0, respectively; it follows that

U(n−) ⊗k U(b) has a basis {xk1
1 · · · xkn

n ⊗ yl1
1 · · · ylm

m }ki,lj󰃍0. Moreover,

mult : xk1
1 · · · xkn

n ⊗ yl1
1 · · · ylm

m 󰀁−→ xk1
1 · · · xkn

n yl1
1 · · · ylm

m .

This completes the proof that mult is an isomorphism between (U(n−), U(b))-bimodules.
(2) Using (1), we have that

U(n−) ⊗k U(b) ⊗U(b) kλ
∼= U(g) ⊗U(b) kλ = Mλ.

Here note that each x · vλ ∈ Mλ can be identified with x ⊗ vλ ∈ U(g) ⊗U(b) kλ. On the other
hand, the left-hand side is isomorphic to U(n−) ⊗k kλ, which is further isomorphic to U(n−).
This completes the proof. □

Problem 1.2 (Lecture 2, Exercise 2.17). In the case g = sl2, show the Verma module Ml is
irreducible unless l ∈ Z󰃍0. In the latter case, show there is a non-split short exact sequence

0 −→ M−l−2 −→ Ml −→ Ll −→ 0

such that Ll is a finite-dimensional irreducible sl2-module with highest weight l.

Solution. Suppose Ml is not irreducible. Then there is a nonzero proper submodule N ⊂ Ml of
highest weight l′; denote by vl′ the highest weight vector. In this case l′ is also regarded as a
weight of Ml. Recall that for g = sl2, any weight of Ml is of form l − 2n with n 󰃍 0. So we may
assume l′ = l − 2n. Since vl′ generates N via g-action, the hypothesis N ⊊ Ml implies l′ ∕= l

(otherwise Ml = N), or equivalently n > 0. Let e, f, g ∈ sl2 be the standard generators. The
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weight of e · vl′ is either 0 or l′ + 2. Since l is the highest weight of Ml, we must be in the former
case that e · vl = 0. Thus, we obtain from [e, f ] = h and h · f j − f j · h = −2jf j that1

e · fn · vl =
󰁛

1󰃑i󰃑n

fn−i · [e, f ] · f i−1 · vl + fn · e · vl

=
󰁛

1󰃑i󰃑n

fn−i · h · f i−1 · vl + fn · e · vl

=
󰁛

1󰃑i󰃑n

(l − 2(i − 1)) · fn−1 · vl

= n(l − (n − 1)) · fn−1 · vl.

Since the above is 0 whereas fn−1 · vl ∕= 0, it implies that l = n − 1 󰃍 0. This shows the
irreducibility of Ml for l < 0.

If l = n − 1 for n > 0, the same computation shows that e · fn · vl = e · vl−2n = 0, with
l − 2n = −l − 2, i.e. the vector vl−2n ∈ Ml generates a submodule of Ml that is isomorphic
to M−l−2. By fixing an isomorphism Ll ≃ Ml/M−l−2, we get a quotient module Ll of Ml as
well as the desired short exact sequence 0 → M−l−2 → Ml → Ll → 0. Such Ll is clearly
finite-dimensional of highest weight l. If the sequence splits, then there is a nonzero section map
Ml → M−l−2, and hence a nonzero vector in M−l−2 of weight l, which is impossible. So the
sequence is non-split.

It remains to show the irreducibility of Ll. For this, note that whenever l = n − 1 the highest
weight of a proper submodule N of Ml must be −l − 2, so there is no proper submodule of Ml

containing M−l−2. Correspondingly, the quotient Ll must be irreducible. □

Problem 1.3 (Lecture 2, Exercise 3.9). Recall for any V1, V2 ∈ g-mod, the tensor product
V1⊗V2 of the underlying vector spaces has a natural g-module structure defined by x·(v1⊗v2) :=
(x · v1) ⊗ v2 + v1 ⊗ (x · v2).

(1) Prove that if V1 and V2 are weight modules, so is V1 ⊗ V2. Determine the weights and
weight spaces of V1 ⊗ V2 in terms of those for V1 and V2.

(2) Consider the case g = sl2. Prove that the tensor product of two Verma modules is not
contained in O.

Solution. (1) If V1, V2 are weight modules, then we can respectively take V1,λ ⊂ V1 and V2,ν ⊂ V2
to be λ- and ν-eigenspaces, where λ, ν ∈ t∗. For all t ∈ t together with v1 ∈ V1,λ and v2 ∈ V2,ν ,
we have t · (v1 ⊗v2) = (t ·v1)⊗v2 +v1 ⊗ (t ·v2) = λ(t)v1 ⊗v2 +ν(t)v1 ⊗v2 = (λ(t)+ν(t)) ·v1 ⊗v2.
It follows that v1 ⊗ v2 ∈ V1 ⊗ V2 is of weight λ + ν. This proves that V1 ⊗ V2 is a weight module;
each weight space of V1 ⊗ V2 is of form

󰁏
λ+ν=µ V1,λ ⊗ V2,ν for some fixed µ ∈ t∗.

(2) Let Mλ, Mν be two Verma modules. We prove Mλ ⊗ Mν /∈ O by showing that it is
not finitely generated. Suppose for the sake of contradiction that Mλ ⊗ Mν is generated by
m1, . . . , mn for some n ∈ Z. Indeed, Mλ ⊗ Mν is isomorphic to a quotient module of an
extension of finitely many Verma modules. When g = sl2, the weight spaces of each of these
Verma modules are all 1-dimensional. (Note that this is not true for general g.) After taking
the quotient towards Mλ ⊗ Mν , it follows that the dimension of any weight space is at most n.
Also, since g = sl2, there turns out to be a weight space of Mλ ⊗ Mν of weight λ + ν − 2n and
dimension n + 1. This is impossible, and thus Mλ ⊗ Mν cannot be finitely generated. □

Problem 1.4 (Lecture 3, Exercise 5.6).
(1) Find all maps between k-schemes A1 → A1\0.
(2) Find all 1-dimensional representations of the additive group Ga.
(3) Find all maps between k-schemes A1\0 → A1\0.
(4) Find all 1-dimensional representations of the multiplicative group Gm.

1There is a typo in the proof of [Gai05, Proposition 1.9], c.f. the third line of the computation.
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Solution. (1) It suffices to recognize all homomorphisms k[x]x → k[x] between k-algebras; here
k[x]x is the localization of k[x] at the point with coordinate x. Since x is invertible in k[x]x, its
image in k[x] must be invertible as well, which implies that the image of x must be an element
of k×. It follows that all k[x]x → k[x] (with 1 󰀁→ 1 and x 󰀁→ t ∈ k×) are parameterized by k×.
Therefore, all maps between k-schemes A1 → A1\0 are exactly parametrized by k×, which are
constant maps sending all points on A1 to some point on A1\0.

(2) Any 1-dimensional representation of Ga is given by the map Ga → Gm of group schemes
over some (algebraically closed) field, say k. At the level of k-schemes, the data of Ga → Gm can
be specialized to the data of A1 → A1\0. But the result of (1) forces Ga → Gm to be a constant
map, which can only be the trivial representation of Ga. In other words, the 1-dimensional
representation of Ga can only be trivial.

(3) As in (1), we aim to figure out all homomorphisms k[x]x → k[x]x between k-algebras. It
suffices to determine the image of x. Note that all invertible elements of k[x]x are of form txn

with t ∈ k× and n ∈ Z. We thus conclude that each map A1\0 → A1\0 is parametrized by some
txn ∈ k×xZ, sending P ∈ A1\0 to tP n.

(4) As in (2), consider the map Gm → Gm of group schemes over k. Note that this is
determined by A1\0 → A1\0, which must be of form P 󰀁→ tP n by (3). Moreover, as a group
homomorphism, we must have 1 󰀁→ 1 where 1 is the identity element of Gm; it hence implies
t = 1 ∈ k×. Therefore, the desired 1-dimensional representation of Gm must be Gm → Gm, g 󰀁→
gk for some k ∈ Z. □

Problem 1.5 (Lecture 3, Exercise 6.6). Let G be any semisimple algebraic group with Lie
algebra g. Prove any Verma module of g is not G-integrable.

Solution. Suppose Mλ is a G-integrable Verma module of g, i.e. Mλ is a g-module coming from
a representation of G through the functor Rep(G) → g-mod. By [Lecture 3, Proposition 5.7], if
this is the case, then the G-action on Mλ is locally finite, i.e. Mλ is a union of finite-dimensional
subrepresentations.

Let vλ be the highest weight vector in Mλ. Note that vλ generates Mλ through the orbit of
g-action. Since Mλ is locally finite, there exists a finite-dimensional g-submodule containing vλ

that is also a G-invariant subspace; it must equal to Mλ for the prescribed reason. In particular,
in this case Mλ is finite-dimensional, which is a contradiction. □
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