
2024 Spring — Geometric Representation Theory (1)

HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

Homework 2 (Due on April 1)

2. 1Problem 2.1 (Lecture 4, Exercise 2.2). Let g = sl2 and e, h, f be the standard basis. Consider

Ω := ef + fe + 1
2h2 ∈ U(sl2).

Calculate its image in Sym(t) = k[h] under the k-linear surjection U(g) ↠ Sym(t) (see equation
(2.1) of Lecture 4).

Solution. Using PBW theorem, the prescribed map can be reinterpreted as

U(g) ∼−→ U(n−) ⊗k U(t) ⊗k U(n) −→ U(t) ∼−→ Sym(t) = k[h].

Recall that the elements of the standard PBW basis of U(n−) ⊗k U(t) ⊗k U(n) are of form
fa ⊗ hb ⊗ ec with a, b, c ∈ Z0, which is the image of fahbec ∈ U(g) along the first isomorphism
above. Motivated by this, we write

Ω = ef + fe + 1
2h2 = [e, f ] + 2fe + 1

2h2 = 2fe + h + 1
2h2.

On the other hand, note that f ⊗ 1 ⊗ e and 1 ⊗ h ⊗ 1 are respectively sent to 0 and h in Sym(t).
Thus,

U(sl2) Sym(t) k[h]
ef 0
h h.

=

It follows that the image of Ω is h + 1
2 h2. □

Problem 2.2 (Lecture 4, Exercise 2.7). Let κ : g × g → k be any nondegenerate symmetric
invariant bilinear form on g. For any basis x1, . . . , xn of g and its dual basis x∗

1, . . . , x∗
n with

respect to the form κ1, consider the Casimir element

Ωκ =
n

i=1
xi · x∗

i ∈ U(g).

(1) Prove: the Casimir element Ωκ does not depend on the choice of the basis, and is
contained in the center Z(g).

(2) For g = sl2, κ = Kil, and the canonical basis e, h, f , find ΩKil and prove it is not contained
in Sym(t) ⊂ U(g).

Solution. (1) Note that the nondegenerate symmetric pairing κ is specialized from the map
g ⊗ g → k, and it uniquely corresponds to an isomorphism φ : g → g∗, whose inverse is written
as φ−1 : g∗ → g. Since φ−1 is again an isomorphism, there is a unique nondegenerate symmetric
pairing κ∨ : k → g ⊗ g determined by φ−1. Consider its composite with the natural embedding
map g ⊗ g → U(g); we claim that

1By definition, this means κ(xi, x∗
j )i,j is the unit matrix.
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k g ⊗ g U(g)
1 Ωκ,

κ∨

i.e. the Casimir element is the image of 1 ∈ k. Indeed, as x1, . . . , xn is a basis of g, its dual basis
of g∗ with respect to κ is given by x∗

1, . . . , x∗
n with x∗

i = φ(xi). So the image of 1 ∈ k in U(g)
is given by that of (


i xi) ⊗


i φ−1(x∗

i )

. With the isomorphism φ−1 we are able to identify

φ−1(x∗
i ) with x∗

i by abuse of notation, and hence the image is the same as


i xi ⊗ x∗
i , which

further maps to


i xi · x∗
i = Ωκ ∈ U(g). This proves the claim. To conclude, we see Ωκ is only

determined by 1 ∈ k and the choice of κ∨, so it is independent of the choice of x1, . . . , xn.
We then check Ωκ ∈ Z(g). For any V ∈ g-mod, there is a g-mod structure on V ∗ given by

(x · f)(v) = f(−x · v)2 for f ∈ V ∗ and x ∈ g. With this g-action on V = g and V ∗ = g∗,
all prescribed maps φ, φ−1, κ, κ∨ are g-linear. It follows that the preimage of Ωκ in g ⊗ g is
already g-invariant with respect to the diagonal g-action. By definition, this diagonal action is
x · (u ⊗ v) = [x, u] ⊗ v + u ⊗ [x, v], and its image in U(g) is xuv − uxv + uxv − uvx = xuv − uvx.
Hence any g-invariant element in g ⊗ g is sent to Z(g), which implies Ωκ ∈ Z(g). (Formally,
the argument above means the tensor g-module structure of T (g) =


n0 g

⊗n is g-linearly
compatible with the adjoint g-module stucture of U(g). So the g-invariant elements of g ⊗ g is
mapped to the g-invariant elements of U(g), namely Z(g).)

(2) Using the relations [e, f ] = h, [h, e] = 2e, and [h, f ] = −2f , we compute the matrices of
ade, adf , and adh under the ordered basis B = {e, f, h} as

[ade]B =




0 0 −2
0 0 0
0 1 0



 , [adf ]B =




0 0 0
0 0 2

−1 0 0



 , [adh]B =




2 0 0
0 −2 0
0 0 0



 .

From the definition,
Kil(x, y) = tr(adx ◦ ady) = tr([adx]B[ady]B).

So we deduce
Kil(e, f) = Kil(f, e) = 4, Kil(h, h) = 8.

Then, with respect to the Killing form, the ordered dual basis of B is given by

B∗ =


e∗ = f

4 , f∗ = e

4 , h∗ = h

8


.

Therefore,

ΩKil = 1
4ef + 1

4fe + 1
8h2 = 1

2fe + 1
4h + 1

8h2.

Here the right-hand side is written as a linear combination of elements in standard PBW basis.
Note that fe /∈ k[h], and hence ΩKil /∈ Sym(t) = k[h]. □

Alternative Solution. (1) Let y1, . . . , yn be another basis of g and y∗
1 , . . . , y∗

n be its dual basis.
Then there are invertible matrices A = (aij), B = (bij) ∈ Mn(k) such that

xi =
n

j=1
aijyj , x∗

i =
n

j=1
bijy∗

j .

Since κ is a bilinear form, κ(xi, x∗
j ) = κ (


k aikyk,


l bjly

∗
l ) =


k,l aikbjl · κ(yk, y∗

l ). On the
other hand, by definition we have κ(xi, x∗

j ) = κ(yi, y∗
j ) = δij , where δij is the Kronecker symbol.

2Here the negative sign has various explanation: from the point of view of lie algebra, exp(−x) = exp(x)−1;
from the isomorphism gl(V ) = gl(V ∗)op; it is the unique action such that k → V ⊗ V ∗ and V ⊗ V ∗ → k are
g-linear, where k is the trivial g-module.
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It follows that δij =


k,l aikbjl · δkl =


k aikbjk. Changing the indices of the sum, this is
equivalent to

δkl =
n

i=1
aikbil.

Therefore, to show the independence of the choice of basis, we have
n

i=1
xi · x∗

i =


1i,k,ln

aikyk · bily
∗
l =



1k,ln

δkl(yk · y∗
l ) =

n

k=1
yk · y∗

k.

Now it remains to check Ωκ ∈ Z(g), and it suffices to show Ωκ commutes with any element in
U(g). By definition of the universal enveloping algebra, it further suffices to show Ωκ commutes
with any y ∈ g. For this, as x1, . . . , xn is a chosen basis of g, we may assume y = xi and compute

xiΩκ − Ωκxi =
n

j=1
xi(xj · x∗

j ) − (xj · x∗
j )xi

=
n

j=1
[xi, xj ] · x∗

j + xj · [xi, x∗
j ].

For this to be 0, from the assumption on κ we have that κ([xi, xj ], x∗
i ) + κ(xj , [xi, x∗

j ]) = 0. So
the desired result follows.

(2) The same as in the first solution. □

Problem 2.3 (Lecture 4, Exercise 4.6). Let g = sl2. Prove Z(sl2) ≃ k[ΩKil] where ΩKil is the
Casimir element. (You can use [Lecture 4, Theorem 4.1] for this exercise.)

Solution. In Problem 2.2(2) we have proved that ΩKil /∈ Sym(t). However, in this problem ΩKil
denotes (by abuse of notation) the image of ΩKil ∈ Z(sl2) in Problem 2.2(2) along the map
U(sl2) ↠ Sym(t) in Problem 2.1 restricted to Z(sl2). Thus, combining the results before we
deduce k[ΩKil] = k[(h + h2/2)/4] = k[2h + h2]. Also recall the Harish-Chandra isomorphism

Z(g) ≃ Sym(t)W• .

It together with the fact that Sym(t) = k[h] for g = sl2 reduces the proof to showing the
set-theoretical equality

k[2h + h2] = k[h]W• .

We know the W•-action on k[h] is given by h → −h − 2. It follows for f(h) ∈ k[h] that if
f(h) ∈ k[h]W• then f(h) = f(−h − 2), and in particular f(0) = f(−2), implying that f is
generated by a polynomial in h that simultaneously vanishes at 0 and −2, namely 2h + h2;
therefore, k[h]W• ⊂ k[2h + h2]. Finally, the converse inclusion k[h]W• ⊃ k[2h + h2] is clear
because 2h + h2 = 2(−h − 2) + (−h − 2)2. This completes the proof. □

Problem 2.4 (Lecture 5, Exercise 3.3). Prove: the adjoint g-action on U(g), i.e.,

g × U(g) −→ U(g), (x, u) −→ adx(u) = [x, u],

preserves each FnU(g), and the induced g-action on gr•(U(g)) ≃ Sym(g) is the adjoint action
in [Lecture 5, Construction 3.1].

Solution. Since U(g) is the quotient of


n0 g
⊗n, each FnU(g) contains elements generated

by elements in g of degree at most n; namely, each u ∈ FnU(g) is of form u =


i ai ·ui1 · · · uini

for some 1  ni  n. Without loss of generality we may assume u = u1 · · · um ∈ FnU(g) for
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some 1  m  n with ui ∈ g. Then for x ∈ g,

adx(u) = x · u −
m−1

i=1
u1 · · · ui · x · ui+1 · · · um +

m−1

i=1
u1 · · · ui · x · ui+1 · · · um − u · x

=
m

i=1
u1 · · · ui−1 · [x, ui] · ui+1 · · · um.

Given this, note that for ui ∈ g we have [x, ui] ∈ g; it then follows that adx(u) ∈ FnU(g). Thus
the filtration of U(g) is preserved by the adjoint g-action.

By PBW theorem the image of u1 · · · um ∈ U(g) in gr•U(g) is u1 ⊗· · ·⊗um. From the formula
of adx(u) above, we see under the induced g-action by x ∈ g on Sym(g), we have

(x, u1 ⊗ · · · ⊗ um) −→
m

i=1
u1 ⊗ · · · ⊗ ui−1 ⊗ (x · ui) ⊗ ui+1 ⊗ · · · um.

This is the same as [Lecture 5, Construction 3.1]. □

Problem 2.5 (Lecture 5, Exercise 4.8). Let λ ∈ P + be a dominant integral weight and n  0.
Prove there exist scalars cλ′ ∈ k, λ′ ≺ λ, such that

φcl(aλ,n) = aλ,n|t = 1
#StabW (λ)bλ,n +



λ′≺λ

cλ′bλ′,n,

where StabW (λ) ⊂ W is the stabilizer of the W -action at λ.

Solution. Let Lλ be the unique finite-dimensional irreducible g-module with highest weight λ.
Denote by wt(Lλ) the set of all weights of Lλ. For any x ∈ t, from the definition we have

aλ,n(x) = tr(xn; Lλ) =


µ∈wt(Lλ)

dim(Lλ)µ · µn(x).

Consider the group action of W on wt(Lλ)3 with finitely many orbits Wλ0, Wλ1, . . . , Wλs,
where λ0 = λ. Since λ is dominant, each λ′ ∈ wt(Lλ) satisfies λ′ ≺ λ. Thus,

αλ,n(x) =


µ∈wt(Lλ)

dim(Lλ)µ · µn(x)

=
s

i=0



µ∈W λi

dim(Lλ)λi
· µn(x)

=
s

i=0

1
#StabW (λi)



w∈W

dim(Lλ)λi
· (wλi)n(x)

= 1
#StabW (λ)bλ,n(x) +



λ′≺λ

cλ′bλ′,n(x)

for some scalars cλ′ ∈ k. Here bλ,n :=


w∈W w(λn), and the last equality is because wλi ≺ λ

for λi ∕= λ and each λ′ ≺ λ has the form wλi for some w and some i > 0. □

3The action of W on wt(Lλ) can be realized as follows. As a g-module, L is Gsc-integrable as it is finite-
dimensional (in our case G = Gsc); this induces the action of NT (G) on L. On the other hand, corresponding to
the action of t, the action of T on L preserves all weight spaces, and in particular preserves the highest weight
space Lλ. It follows that W := NT (G)/T acts on wt(L), and thus on wt(Lλ).


