HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

Homework 2 (Due on April 1)

Problem 2.1 (Lecture 4, Exercise 2.2). Let $\mathfrak{g}=\mathfrak{s l}_{2}$ and e, h, f be the standard basis. Consider

$$
\Omega:=e f+f e+\frac{1}{2} h^{2} \in U\left(\mathfrak{s l}_{2}\right) .
$$

Calculate its image in $\operatorname{Sym}(\mathfrak{t})=k[h]$ under the k-linear surjection $U(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{t})$ (see equation (2.1) of Lecture 4).

Solution. Using PBW theorem, the prescribed map can be reinterpreted as

$$
U(\mathfrak{g}) \xrightarrow{\sim} U\left(\mathfrak{n}^{-}\right) \otimes_{k} U(\mathfrak{t}) \otimes_{k} U(\mathfrak{n}) \longrightarrow U(\mathfrak{t}) \xrightarrow{\sim} \operatorname{Sym}(\mathfrak{t})=k[h] .
$$

Recall that the elements of the standard PBW basis of $U\left(\mathfrak{n}^{-}\right) \otimes_{k} U(\mathfrak{t}) \otimes_{k} U(\mathfrak{n})$ are of form $f^{a} \otimes h^{b} \otimes e^{c}$ with $a, b, c \in \mathbb{Z}_{\geqslant 0}$, which is the image of $f^{a} h^{b} e^{c} \in U(\mathfrak{g})$ along the first isomorphism above. Motivated by this, we write

$$
\Omega=e f+f e+\frac{1}{2} h^{2}=[e, f]+2 f e+\frac{1}{2} h^{2}=2 f e+h+\frac{1}{2} h^{2} .
$$

On the other hand, note that $f \otimes 1 \otimes e$ and $1 \otimes h \otimes 1$ are respectively sent to 0 and h in $\operatorname{Sym}(\mathfrak{t})$. Thus,

$$
\begin{gathered}
U\left(\mathfrak{s l}_{2}\right) \longrightarrow \operatorname{Sym}(\mathfrak{t})=k[h] \\
e f \longmapsto 0 \\
h \longmapsto h .
\end{gathered}
$$

It follows that the image of Ω is $h+\frac{1}{2} h^{2}$.
Problem 2.2 (Lecture 4, Exercise 2.7). Let $\kappa: \mathfrak{g} \times \mathfrak{g} \rightarrow k$ be any nondegenerate symmetric invariant bilinear form on \mathfrak{g}. For any basis x_{1}, \ldots, x_{n} of \mathfrak{g} and its dual basis $x_{1}^{*}, \ldots, x_{n}^{*}$ with respect to the form κ^{1}, consider the Casimir element

$$
\Omega_{\kappa}=\sum_{i=1}^{n} x_{i} \cdot x_{i}^{*} \in U(\mathfrak{g})
$$

(1) Prove: the Casimir element Ω_{κ} does not depend on the choice of the basis, and is contained in the center $Z(\mathfrak{g})$.
(2) For $\mathfrak{g}=\mathfrak{s l}_{2}, \kappa=$ Kil, and the canonical basis e, h, f, find $\Omega_{\text {Kil }}$ and prove it is not contained in $\operatorname{Sym}(\mathfrak{t}) \subset U(\mathfrak{g})$.

Solution. (1) Note that the nondegenerate symmetric pairing κ is specialized from the map $\mathfrak{g} \otimes \mathfrak{g} \rightarrow k$, and it uniquely corresponds to an isomorphism $\phi: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$, whose inverse is written as $\phi^{-1}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$. Since ϕ^{-1} is again an isomorphism, there is a unique nondegenerate symmetric pairing $\kappa^{\vee}: k \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ determined by ϕ^{-1}. Consider its composite with the natural embedding map $\mathfrak{g} \otimes \mathfrak{g} \rightarrow U(\mathfrak{g})$; we claim that

[^0]\[

$$
\begin{aligned}
& k \xrightarrow{\kappa^{\vee}} \mathfrak{g} \otimes \mathfrak{g} \longrightarrow U(\mathfrak{g}) \\
& 1 \longmapsto \Omega_{\kappa},
\end{aligned}
$$
\]

i.e. the Casimir element is the image of $1 \in k$. Indeed, as x_{1}, \ldots, x_{n} is a basis of \mathfrak{g}, its dual basis of \mathfrak{g}^{*} with respect to κ is given by $x_{1}^{*}, \ldots, x_{n}^{*}$ with $x_{i}^{*}=\phi\left(x_{i}\right)$. So the image of $1 \in k$ in $U(\mathfrak{g})$ is given by that of $\left(\sum_{i} x_{i}\right) \otimes\left(\sum_{i} \phi^{-1}\left(x_{i}^{*}\right)\right)$. With the isomorphism ϕ^{-1} we are able to identify $\phi^{-1}\left(x_{i}^{*}\right)$ with x_{i}^{*} by abuse of notation, and hence the image is the same as $\sum_{i} x_{i} \otimes x_{i}^{*}$, which further maps to $\sum_{i} x_{i} \cdot x_{i}^{*}=\Omega_{\kappa} \in U(\mathfrak{g})$. This proves the claim. To conclude, we see Ω_{κ} is only determined by $1 \in k$ and the choice of κ^{\vee}, so it is independent of the choice of x_{1}, \ldots, x_{n}.

We then check $\Omega_{\kappa} \in Z(\mathfrak{g})$. For any $V \in \mathfrak{g}$-mod, there is a \mathfrak{g}-mod structure on V^{*} given by $(x \cdot f)(v)=f(-x \cdot v)^{2}$ for $f \in V^{*}$ and $x \in \mathfrak{g}$. With this \mathfrak{g}-action on $V=\mathfrak{g}$ and $V^{*}=\mathfrak{g}^{*}$, all prescribed maps $\phi, \phi^{-1}, \kappa, \kappa^{\vee}$ are \mathfrak{g}-linear. It follows that the preimage of Ω_{κ} in $\mathfrak{g} \otimes \mathfrak{g}$ is already \mathfrak{g}-invariant with respect to the diagonal \mathfrak{g}-action. By definition, this diagonal action is $x \cdot(u \otimes v)=[x, u] \otimes v+u \otimes[x, v]$, and its image in $U(\mathfrak{g})$ is $x u v-u x v+u x v-u v x=x u v-u v x$. Hence any \mathfrak{g}-invariant element in $\mathfrak{g} \otimes \mathfrak{g}$ is sent to $Z(\mathfrak{g})$, which implies $\Omega_{\kappa} \in Z(\mathfrak{g})$. (Formally, the argument above means the tensor \mathfrak{g}-module structure of $T(\mathfrak{g})=\bigoplus_{n \geqslant 0} \mathfrak{g}^{\otimes n}$ is \mathfrak{g}-linearly compatible with the adjoint \mathfrak{g}-module stucture of $U(\mathfrak{g})$. So the \mathfrak{g}-invariant elements of $\mathfrak{g} \otimes \mathfrak{g}$ is mapped to the \mathfrak{g}-invariant elements of $U(\mathfrak{g})$, namely $Z(\mathfrak{g})$.)
(2) Using the relations $[e, f]=h,[h, e]=2 e$, and $[h, f]=-2 f$, we compute the matrices of $\operatorname{ad}_{e}, \operatorname{ad}_{f}$, and ad_{h} under the ordered basis $\mathrm{B}=\{e, f, h\}$ as

$$
\left[\operatorname{ad}_{e}\right]_{\mathrm{B}}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left[\operatorname{ad}_{f}\right]_{\mathrm{B}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2 \\
-1 & 0 & 0
\end{array}\right), \quad\left[\operatorname{ad}_{h}\right]_{\mathrm{B}}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

From the definition,

$$
\operatorname{Kil}(x, y)=\operatorname{tr}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{y}\right)=\operatorname{tr}\left(\left[\operatorname{ad}_{x}\right]_{\mathrm{B}}\left[\operatorname{ad}_{y}\right]_{\mathrm{B}}\right)
$$

So we deduce

$$
\operatorname{Kil}(e, f)=\operatorname{Kil}(f, e)=4, \quad \operatorname{Kil}(h, h)=8
$$

Then, with respect to the Killing form, the ordered dual basis of B is given by

$$
\mathrm{B}^{*}=\left\{e^{*}=\frac{f}{4}, f^{*}=\frac{e}{4}, h^{*}=\frac{h}{8}\right\}
$$

Therefore,

$$
\Omega_{\mathrm{Kil}}=\frac{1}{4} e f+\frac{1}{4} f e+\frac{1}{8} h^{2}=\frac{1}{2} f e+\frac{1}{4} h+\frac{1}{8} h^{2} .
$$

Here the right-hand side is written as a linear combination of elements in standard PBW basis. Note that $f e \notin k[h]$, and hence $\Omega_{\text {Kil }} \notin \operatorname{Sym}(\mathfrak{t})=k[h]$.

Alternative Solution. (1) Let y_{1}, \ldots, y_{n} be another basis of \mathfrak{g} and $y_{1}^{*}, \ldots, y_{n}^{*}$ be its dual basis. Then there are invertible matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathrm{M}_{n}(k)$ such that

$$
x_{i}=\sum_{j=1}^{n} a_{i j} y_{j}, \quad x_{i}^{*}=\sum_{j=1}^{n} b_{i j} y_{j}^{*} .
$$

Since κ is a bilinear form, $\kappa\left(x_{i}, x_{j}^{*}\right)=\kappa\left(\sum_{k} a_{i k} y_{k}, \sum_{l} b_{j l} y_{l}^{*}\right)=\sum_{k, l} a_{i k} b_{j l} \cdot \kappa\left(y_{k}, y_{l}^{*}\right)$. On the other hand, by definition we have $\kappa\left(x_{i}, x_{j}^{*}\right)=\kappa\left(y_{i}, y_{j}^{*}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker symbol.

[^1]It follows that $\delta_{i j}=\sum_{k, l} a_{i k} b_{j l} \cdot \delta_{k l}=\sum_{k} a_{i k} b_{j k}$. Changing the indices of the sum, this is equivalent to

$$
\delta_{k l}=\sum_{i=1}^{n} a_{i k} b_{i l}
$$

Therefore, to show the independence of the choice of basis, we have

$$
\sum_{i=1}^{n} x_{i} \cdot x_{i}^{*}=\sum_{1 \leqslant i, k, l \leqslant n} a_{i k} y_{k} \cdot b_{i l} y_{l}^{*}=\sum_{1 \leqslant k, l \leqslant n} \delta_{k l}\left(y_{k} \cdot y_{l}^{*}\right)=\sum_{k=1}^{n} y_{k} \cdot y_{k}^{*}
$$

Now it remains to check $\Omega_{\kappa} \in Z(\mathfrak{g})$, and it suffices to show Ω_{κ} commutes with any element in $U(\mathfrak{g})$. By definition of the universal enveloping algebra, it further suffices to show Ω_{κ} commutes with any $y \in \mathfrak{g}$. For this, as x_{1}, \ldots, x_{n} is a chosen basis of \mathfrak{g}, we may assume $y=x_{i}$ and compute

$$
\begin{aligned}
x_{i} \Omega_{\kappa}-\Omega_{\kappa} x_{i} & =\sum_{j=1}^{n} x_{i}\left(x_{j} \cdot x_{j}^{*}\right)-\left(x_{j} \cdot x_{j}^{*}\right) x_{i} \\
& =\sum_{j=1}^{n}\left[x_{i}, x_{j}\right] \cdot x_{j}^{*}+x_{j} \cdot\left[x_{i}, x_{j}^{*}\right] .
\end{aligned}
$$

For this to be 0 , from the assumption on κ we have that $\kappa\left(\left[x_{i}, x_{j}\right], x_{i}^{*}\right)+\kappa\left(x_{j},\left[x_{i}, x_{j}^{*}\right]\right)=0$. So the desired result follows.
(2) The same as in the first solution.

Problem 2.3 (Lecture 4, Exercise 4.6). Let $\mathfrak{g}=\mathfrak{s l}_{2}$. Prove $Z\left(\mathfrak{s l}_{2}\right) \simeq k\left[\Omega_{\text {Kil }}\right]$ where $\Omega_{\text {Kil }}$ is the Casimir element. (You can use [Lecture 4, Theorem 4.1] for this exercise.)

Solution. In Problem 2.2(2) we have proved that $\Omega_{\text {Kil }} \notin \operatorname{Sym}(\mathfrak{t})$. However, in this problem $\Omega_{\text {Kil }}$ denotes (by abuse of notation) the image of $\Omega_{\text {Kil }} \in Z\left(\mathfrak{s l}_{2}\right)$ in Problem 2.2(2) along the map $U\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{Sym}(\mathfrak{t})$ in Problem 2.1 restricted to $Z\left(\mathfrak{s l}_{2}\right)$. Thus, combining the results before we deduce $k\left[\Omega_{\mathrm{Kil}}\right]=k\left[\left(h+h^{2} / 2\right) / 4\right]=k\left[2 h+h^{2}\right]$. Also recall the Harish-Chandra isomorphism

$$
Z(\mathfrak{g}) \simeq \operatorname{Sym}(\mathfrak{t})^{W} \bullet
$$

It together with the fact that $\operatorname{Sym}(\mathfrak{t})=k[h]$ for $\mathfrak{g}=\mathfrak{S l}_{2}$ reduces the proof to showing the set-theoretical equality

$$
k\left[2 h+h^{2}\right]=k[h]^{W \bullet} .
$$

We know the W_{\bullet}-action on $k[h]$ is given by $h \mapsto-h-2$. It follows for $f(h) \in k[h]$ that if $f(h) \in k[h]^{W \cdot}$ then $f(h)=f(-h-2)$, and in particular $f(0)=f(-2)$, implying that f is generated by a polynomial in h that simultaneously vanishes at 0 and -2 , namely $2 h+h^{2}$; therefore, $k[h]^{W \bullet} \subset k\left[2 h+h^{2}\right]$. Finally, the converse inclusion $k[h]^{W} \bullet \supset\left[2 h+h^{2}\right]$ is clear because $2 h+h^{2}=2(-h-2)+(-h-2)^{2}$. This completes the proof.

Problem 2.4 (Lecture 5, Exercise 3.3). Prove: the adjoint \mathfrak{g}-action on $U(\mathfrak{g})$, i.e.,

$$
\mathfrak{g} \times U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}), \quad(x, u) \longmapsto \operatorname{ad}_{x}(u)=[x, u]
$$

preserves each $\mathrm{F}^{\leqslant n} U(\mathfrak{g})$, and the induced \mathfrak{g}-action on $\operatorname{gr} \bullet(U(\mathfrak{g})) \simeq \operatorname{Sym}(\mathfrak{g})$ is the adjoint action in [Lecture 5, Construction 3.1].

Solution. Since $U(\mathfrak{g})$ is the quotient of $\bigoplus_{n \geqslant 0} \mathfrak{g}^{\otimes n}$, each $\mathrm{F} \leqslant n U(\mathfrak{g})$ contains elements generated by elements in \mathfrak{g} of degree at most n; namely, each $u \in \mathrm{~F}^{\leqslant n} U(\mathfrak{g})$ is of form $u=\sum_{i} a_{i} \cdot u_{i 1} \cdots u_{i n_{i}}$ for some $1 \leqslant n_{i} \leqslant n$. Without loss of generality we may assume $u=u_{1} \cdots u_{m} \in \mathrm{~F} \leqslant n U(\mathfrak{g})$ for
some $1 \leqslant m \leqslant n$ with $u_{i} \in \mathfrak{g}$. Then for $x \in \mathfrak{g}$,

$$
\begin{aligned}
\operatorname{ad}_{x}(u) & =x \cdot u-\sum_{i=1}^{m-1} u_{1} \cdots u_{i} \cdot x \cdot u_{i+1} \cdots u_{m}+\sum_{i=1}^{m-1} u_{1} \cdots u_{i} \cdot x \cdot u_{i+1} \cdots u_{m}-u \cdot x \\
& =\sum_{i=1}^{m} u_{1} \cdots u_{i-1} \cdot\left[x, u_{i}\right] \cdot u_{i+1} \cdots u_{m}
\end{aligned}
$$

Given this, note that for $u_{i} \in \mathfrak{g}$ we have $\left[x, u_{i}\right] \in \mathfrak{g}$; it then follows that $\operatorname{ad}_{x}(u) \in \mathrm{F}^{\leqslant n} U(\mathfrak{g})$. Thus the filtration of $U(\mathfrak{g})$ is preserved by the adjoint \mathfrak{g}-action.

By PBW theorem the image of $u_{1} \cdots u_{m} \in U(\mathfrak{g})$ in $\operatorname{gr}{ }^{\bullet} U(\mathfrak{g})$ is $u_{1} \otimes \cdots \otimes u_{m}$. From the formula of $\operatorname{ad}_{x}(u)$ above, we see under the induced \mathfrak{g}-action by $x \in \mathfrak{g}$ on $\operatorname{Sym}(\mathfrak{g})$, we have

$$
\left(x, u_{1} \otimes \cdots \otimes u_{m}\right) \longmapsto \sum_{i=1}^{m} u_{1} \otimes \cdots \otimes u_{i-1} \otimes\left(x \cdot u_{i}\right) \otimes u_{i+1} \otimes \cdots u_{m}
$$

This is the same as [Lecture 5, Construction 3.1].
Problem 2.5 (Lecture 5, Exercise 4.8). Let $\lambda \in P^{+}$be a dominant integral weight and $n \geqslant 0$. Prove there exist scalars $c_{\lambda^{\prime}} \in k, \lambda^{\prime} \prec \lambda$, such that

$$
\phi_{\mathrm{cl}}\left(a_{\lambda, n}\right)=\left.a_{\lambda, n}\right|_{\mathfrak{t}}=\frac{1}{\# \operatorname{Stab}_{W}(\lambda)} b_{\lambda, n}+\sum_{\lambda^{\prime} \prec \lambda} c_{\lambda^{\prime}} b_{\lambda^{\prime}, n},
$$

where $\operatorname{Stab}_{W}(\lambda) \subset W$ is the stabilizer of the W-action at λ.
Solution. Let L_{λ} be the unique finite-dimensional irreducible \mathfrak{g}-module with highest weight λ. Denote by $\operatorname{wt}\left(L_{\lambda}\right)$ the set of all weights of L_{λ}. For any $x \in \mathfrak{t}$, from the definition we have

$$
a_{\lambda, n}(x)=\operatorname{tr}\left(x^{n} ; L_{\lambda}\right)=\sum_{\mu \in \mathrm{wt}\left(L_{\lambda}\right)} \operatorname{dim}\left(L_{\lambda}\right)_{\mu} \cdot \mu^{n}(x)
$$

Consider the group action of W on $\mathrm{wt}\left(L_{\lambda}\right)^{3}$ with finitely many orbits $W \lambda_{0}, W \lambda_{1}, \ldots, W \lambda_{s}$, where $\lambda_{0}=\lambda$. Since λ is dominant, each $\lambda^{\prime} \in \operatorname{wt}\left(L_{\lambda}\right)$ satisfies $\lambda^{\prime} \prec \lambda$. Thus,

$$
\begin{aligned}
\alpha_{\lambda, n}(x) & =\sum_{\mu \in \mathrm{wt}\left(L_{\lambda}\right)} \operatorname{dim}\left(L_{\lambda}\right)_{\mu} \cdot \mu^{n}(x) \\
& =\sum_{i=0}^{s} \sum_{\mu \in W \lambda_{i}} \operatorname{dim}\left(L_{\lambda}\right)_{\lambda_{i}} \cdot \mu^{n}(x) \\
& =\sum_{i=0}^{s} \frac{1}{\# \operatorname{Stab}_{W}\left(\lambda_{i}\right)} \sum_{w \in W} \operatorname{dim}\left(L_{\lambda}\right)_{\lambda_{i}} \cdot\left(w \lambda_{i}\right)^{n}(x) \\
& =\frac{1}{\# \operatorname{Stab}_{W}(\lambda)} b_{\lambda, n}(x)+\sum_{\lambda^{\prime} \prec \lambda} c_{\lambda^{\prime}} b_{\lambda^{\prime}, n}(x)
\end{aligned}
$$

for some scalars $c_{\lambda^{\prime}} \in k$. Here $b_{\lambda, n}:=\sum_{w \in W} w\left(\lambda^{n}\right)$, and the last equality is because $w \lambda_{i} \prec \lambda$ for $\lambda_{i} \neq \lambda$ and each $\lambda^{\prime} \prec \lambda$ has the form $w \lambda_{i}$ for some w and some $i>0$.

[^2]
[^0]: ${ }^{1}$ By definition, this means $\kappa\left(x_{i}, x_{j}^{*}\right)_{i, j}$ is the unit matrix.

[^1]: ${ }^{2}$ Here the negative sign has various explanation: from the point of view of lie algebra, $\exp (-x)=\exp (x)^{-1}$; from the isomorphism $\mathfrak{g l}(V)=\mathfrak{g l}\left(V^{*}\right)^{\mathrm{op}}$; it is the unique action such that $k \rightarrow V \otimes V^{*}$ and $V \otimes V^{*} \rightarrow k$ are \mathfrak{g}-linear, where k is the trivial \mathfrak{g}-module.

[^2]: ${ }^{3}$ The action of W on $\mathrm{wt}\left(L_{\lambda}\right)$ can be realized as follows. As a \mathfrak{g}-module, L is $G_{\text {sc }}$-integrable as it is finitedimensional (in our case $G=G_{\mathrm{sc}}$); this induces the action of $N_{T}(G)$ on L. On the other hand, corresponding to the action of \mathfrak{t}, the action of T on L preserves all weight spaces, and in particular preserves the highest weight space L_{λ}. It follows that $W:=N_{T}(G) / T$ acts on $\mathrm{wt}(L)$, and thus on $\mathrm{wt}\left(L_{\lambda}\right)$.

