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HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

Homework 3 (Due on April 15)

3. 3Problem 3.1 (Lecture 6, Exercise 1.18). Let g = sln and let σi ∈ Fun(t)W be the basic
symmetric polynomial of degree i (so that

n
j=1(x + xj) = xn + σ1xn−1 + · · · + σn). Consider

the homomorphisms (c.f. [Lecture 6, (1.2)–(1.3)])

(1.2) Fun(n) ⊗ Fun(g)g ⊗ Fun(n−) −→ Fun(g),

(1.3) Fun(n) ⊗ Fun(t)W ⊗ Fun(n−) −→ Fun(g),

which are induced by the decomposition g = n− ⊕ t ⊕ n.
(1) For each 1 < i  n, find the unique element σ̃i ∈ Fun(g)g corresponding to σi via the

Chevalley isomorphism Fun(g)g ∼−→ Fun(t)W . In other words, find the unique extension
of σi to an adjoint invariant polynomial function on g.

(2) For g = sl2, prove that (1.2) and (1.3) are both injective and have the same image.
(3) For g = sl3, prove that σ̃3 is contained in the image of (1.2) but not in the image of

(1.3).

Solution. (1) We need to construct (σ̃i : g → k) ∈ Fun(g)g. For this, given X ∈ g, the construc-
tion is given by its characteristic polynomial

det(λ · id − X) = λn +
n

i=1
(−1)iσ̃i(X) · λn−i ∈ k[λ].

It is clear that coefficients σ̃i ∈ Fun(g), and σ̃i|t = σi : t → k. Then it remains to check the
g-adjoint invariance. But note that the g-invariance is the same as G-invariance; then this can
be proved by noticing that the characteristic polynomial is invariant under adjoint action, i.e.
det(λ · id − UXU−1) = det(λ · id − X) for U ∈ g, and so also is σ̃i(X).

(2) Fix an isomorphism g ≃ g∗ that induces t ≃ t∗. For g = sl2 with the standard basis
e, f, h, recall from [Lecture 6, Example 1.16] that

Fun(g)g ≃ Sym(g)g = k[Ω], Fun(t)W ≃ Sym(t)W = k[h2].

Here Ω = h2 + 4ef is the image of the Casimir element. Then we can respectively identify (1.2)
and (1.3) with

k[e] ⊗ k[Ω] ⊗ k[f ] −→ k[e, f, h], f1(e) ⊗ f2(Ω) ⊗ f3(f) −→ f1(e)f2(Ω)f3(f)

and
k[e] ⊗ k[h2] ⊗ k[f ] −→ k[e, f, h], f1(e) ⊗ f2(h2) ⊗ f3(f) −→ f1(e)f2(Ω)f3(f).

Then using the property of tensor product both maps are clearly injective. Moreover, the images
are respectively given by k[e, Ω, f ] and k[e, h2, f ], which are the same in k[e, f, h].

(3) We know from part (1) that σ̃3 ∈ Fun(g)g, and is thus contained in the image of (1.2). If
we write X = (xij) ∈ sl3 as a 3 × 3-matrix then σ̃3(X) is a polynomial in all entries xij . If σ̃3
lies in the image of (1.3) then σ̃3(X) = det(X) must be a symmetric polynomial in x11, x22, x33
(with regarding other xij with i ∕= j as constant coefficients), which is impossible by elementary
computation of det(λI − X). □
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Problem 3.2 (Lecture 6, Exercise 3.1). Consider g = sl3 and its standard Borel b and Cartan
subalgebras t. Let α1 and α2 be the two simple positive roots.

(1) Prove: the elements in W · 0 are given by
0 s1 · 0 s2 · 0 s1s2 · 0 s2s1 · 0 w0 · 0
0 −α1 −α2 −2α1 − α2 −α1 − 2α2 −2α1 − 2α2

Here w0 = s1s2s1 = s2s1s2 is the longest element in W .
(2) Prove: M−2α1−2α2 is irreducible.
(3) Prove: M−α1−2α2 contains M−2α1−2α2 as a submodule1 and the quotient is irreducible2.

Deduce length(M−α1−2α2) = 2 and

[M−α1−2α2 : L−α1−2α2 ] = [M−α1−2α2 : L−2α1−2α2 ] = 1.

Solution. (1) Since the positive roots of sl3 are exactly α1, α2, α1 + α2, we have the half-sum
ρ = 1

2 (α1 + α2 + (α1 + α2)) = α1 + α2. Recall that the W -dotted action is given by

w · λ = w(λ + ρ) − ρ, w ∈ W.

Thus to compute w · 0 we first notice that
s1(α1) = −α1, s1(α2) = α1 + α2,

s2(α1) = α1 + α2, s2(α2) = −α2.

Using these we immediately get s1 · 0 = −α1 and s2 · 0 = −α2. Also, s1s2 · 0 = s1(s2(ρ)) − ρ =
s1(α1) − (α1 + α2) = −2α1 − α2, and s2s1 · 0 = α1 − 2α2 by a similar computation. It then
follows that w0 · 0 = s2(s1s2(ρ)) − ρ = s2(−2α1 − α2) − (α1 + α2) = −2α1 − 2α2.

(2) Recall from [Lecture 6, Corollary 2.3] that if M−2α1−2α2 contains an irreducible submodule
of form Lµ, then

µ = w · (−2α1 − 2α2) ≼ −2α1 − 2α2.

Note that this implies µ ∈ W ·0. On the other hand, since part (1) has given all elements in W ·0,
we deduce µ = −2α1 − 2α2 and thus M−2α1−2α2 = L−2α1−2α2 , which proves the irreducibility.

(3) From the proof of part (1) we see −2α1 − 2α2 = s1(−α1 − 2α2), and s1 is defined by
the simple root α1 ∈ ∆. Also, it is clear that 〈(−α1 − 2α2) + ρ, α̌1〉 = 〈−α2, α1〉 ∈ Z0. Then
M−α1−2α2 contains M−2α1−2α2 as a submodule by [Lecture 5, Lemma 1.3].

To show the irreducibility of M−α1−2α2/M−2α1−2α2 , suppose N is a proper submodule of
M−α1−2α2 containing M−2α1−2α2 . We claim that

dim Mwt=−2α1−2α2
−α1−2α2

= 1.

Indeed, if we write f1, f2, f3 ∈ n− for the root vectors corresponding to α1, α2, α1 + α2, respec-
tively, then they generate a PBW basis of U(n−). Also, if vµ is a weight vector of weight µ,
then fi · vµ = vµ−αi for i = 1, 2. Known this, we see as in our case there is no more weights
between −α1 − 2α2 and −2α1 − 2α2 with respect to the order ≼, the vectors in M−α1−2α2 of
weight −2α1 − 2α2 can appear exactly at once in M−2α1−2α2 through the action of f1 ∈ U(n−).
As M−2α1−2α2 is free of rank one over U(n−), we have proved claim. Granting the claim, note
that the highest weight of N is at least −2α1 − 2α2, which by our assumption on N implies
N = M−2α1−2α2 . Therefore, we conclude that

M−α1−2α2/M−2α1−2α2 ≃ L−α1−2α2

is irreducible.
Combining this with part (2), we see M−α1−2α2 contains an irreducible submodule whose

quotient is also irreducible, and hence length(M−α1−2α2) = 2; here both [M−α1−2α2 : L−α1−2α2 ]
and [M−α1−2α2 : L−2α1−2α2 ] are forced to be 1. □

1Hint: [Lecture 5, Lemma 1.3].
2Hint: Count the dimension of the (−2α1 − 2α2)-weight subspace of M−α1−2α2 .
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Problem 3.3 (Lecture 6, Exercise 3.3). We continue with the case g = sl3.
(1) Prove: M0 contains M−α1 and M−α2 as submodules and [M0 : L−α1 ] = [M0 : L−α2 ] = 1.
(2) Prove: M−α2 contains M−2α1−α2 as a submodule and [M−α2 : L−2α1−α2 ] = 1.
(3) Prove: there exists a (unique) dotted arrow making the following diagram commutes3

M−α1 M0

M−2α1−α2 M−α2 .

⊂

⊂

⊂

Solution. (1) The argument is the same as that in Problem 3.2(3). For the first assertion, the
result follows from −αi = si · 0 and 〈0 + ρ, α̌i〉 = 1 ∈ Z0 for i = 1, 2. Further, since there
is no more weights between 0 and −αi, the quotient M0/M−αi

≃ L0 is irreducible. Thus, for
the second assertion, as L−αi and L0 are distinct, we get [M0 : L−αi ] = [M−αi : L−αi ] = 1 for
i = 1, 2.

(2) As before, since s1 · (−α2) = −2α1 −α2 and 〈−α2 +ρ, α̌1〉 = 〈α1, α1〉 = 2 ∈ Z0, we know
that M−α2 contains M−2α1−α2 as a submodule. Similar to Problem 3.2(3), we have that

dim Mwt=−2α1−α2
−α1

= 1.

This proves [M−α2 : L−2α1−α2 ] = 1.
(3) For each λ ∈ W · 0, let vλ be the highest weight vector of Mλ. Following the hint, it

suffices to show f2
1 f2 · v0 = u · v−α1 = uf1 · v0 for some u ∈ U(n−). For this, notice that

f2
1 f2 = f1([f1, f2] + f2f1) = f1[f1, f2] + f1f2f1.

Also notice that both f1[f1, f2] · v0 and [f1, f2]f1 · v0 are highest weight vectors of M−2α1−α2 ,
because [f1, f2] sends a vector of weight vµ to that of weight µ − (α1 + α2). So there exists
λ ∈ k× such that f1[f1, f2] · v0 = λ[f1, f2]f1 · v0. It then leads to

f2
1 f2 · v0 = (λ[f1, f2]f1 + f1f2f1) · v0,

and taking u = λ[f1, f2] + f1f2 completes the proof.4 □

Problem 3.4 (Lecture 6, Exercise 3.4). We continue with the case g = sl3. Prove: for λ, µ ∈
W · 0, [Mλ : Lµ] ∕= 0 if and only if λ ≽ µ.

Solution. It is clear that [Mλ : Lµ] ∕= 0 implies λ ≽ µ. Conversely, we need to apply an
enumeration and use the known results in Problems 3.2 and 3.3. We need to show that each
map in the following diagram is an inclusion of modules, because these maps are exactly all
maps of the form Mµ → Mλ with µ ≼ λ.

M−2α1−α2 M−α1

M−2α1−2α2 M0

M−α1−2α2 M−α2

For this, it is known that
◦ M−αi

↩→ M0 for i = 1, 2 by Problem 3.3(1);

3Hint: Show f2
1 f2 ·v0 = u ·v−α1 for some u. Here v0 is the highest weight of M0, v−α1 = f1 ·v0 is the highest

weight of M−α1 , and fi ∈ n− is the root vector corresponding to αi.
4In fact, one can even deduce the formula of u in a more explicit sense. As in Problem 3.2(3), let f1, f2, f3 be

(standard) generators of PBW basis of U(n−) corresponding to simple roots α1, α2, α1 + α2, respectively. Then
there are relations turning out to be [f1, f2] = f3 and [f1, f3] = 0. Using these together with some elementary
computation, we get u = f1f2 + f3, and hence λ = 1 in the original proof.
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◦ M−2α1−α2 ↩→ M−α2 by Problem 3.3(2);
◦ M−2α1−α2 ↩→ M−α1 by Problem 3.3(3);
◦ M−2α1−2α2 ↩→ M−α1−2α2 by Problem 3.2(3).

So it remains to show M−α1−2α2 ↩→ M−α1 , M−α1−2α2 ↩→ M−α2 , and M−2α1−2α2 ↩→ M−2α1−α2 .
But these follow from similar arguments as in 3.3(2), 3.3(3), and 3.2(3), respectively. □

Problem 3.5 (Lecture 7, Exercise 4.20). For any weight λ ∈ t∗, let Oλ ⊂ O be the full
subcategory containing those objects M whose composition factors are of the form Lµ for µ ∈
W[λ] · λ. Prove:

(1) Each Oλ is indecomposable.
(2) For M ∈ O, suppose we have a decomposition M ≃ M1 ⊕ M2 as t-modules such that

the set wt(M1) − wt(M2) := {λ1 − λ2 | λi ∈ wt(Mi)} has empty intersection with Λr,
then this is also a decomposition of g-modules.

(3) For any central character χ of Z(g), we have a direct sum decomposition

Oχ ≃


λ∈ϖ−1(χ)
dot-antidominant

Oλ.

(4) Conclude that
O ≃



λ dot-antidominant
Oλ.

Solution. (1) The proof uses the same idea as [Lecture 7, Proposition 4.19]. We may assume λ is
dot-antidominant and suppose Oλ ≃ O1 ⊕ O2. Recall any Verma module Mµ is indecomposable
because it has a unique irreducible quotient Lµ. Moreover, if µ ∈ W[λ] · λ, then Mλ ⊂ Mµ as a
submodule by [Lecture 7, Corollary 4.15(2)]. Note that Mλ lies in either O1 or O2, so all Mµ

are simultaneously contained in one of O1 and O2, and thus either O1 ≃ 0 or O2 ≃ 0 holds.
(2) It suffices to show that M1 is a g-module, and the same argument applies to M2. For

this, taking v ∈ M1, we need that x · v ∈ M1 for all root vectors x ∈ g. If this is not true then
x0 · v ∈ M2 for some root vector x0 ∈ g and then

(weight of v) − (weight of x0 · v) ∈ (wt(M1) − wt(M2)) ∩ Λr,

which is impossible by assumption that (wt(M1) − wt(M2)) ∩ Λr = ∅. Thus both M1 and M2
can be regarded as g-modules.

(3) Considering W -dotted action on a fixed element µ ∈ ϖ−1(χ) ⊂ t∗, we have a decomposi-
tion

W · µ =


λ dot-antidominant
W[λ] · λ.

Recall that Oχ is the full subcategory of O supported on χ. Then for each object M ∈ Oχ, the
decomposition of W · µ above leads to a decomposition of t-modules

M =


λ∈ϖ−1(χ)
dot-antidominant

M[λ].

Notice that for two distinct dot-antidominant weights λ, λ′ ∈ ϖ−1(χ), we obtain (wt(M[λ]) −
wt(M[λ′]))∩Λr = ∅ by decomposition of W ·µ together with the definition of W[λ]; in particular,
wt(M[λ])∩wt(M[λ′]) = ∅ as 0 ∈ Λr. Then by part (2) the decomposition of M above upgrades to
a decomposition of g-modules, with the property that HomOχ(M[λ], M[λ′]) = 0. So the desired
decomposition of categories follows.

(4) From the block decomposition we have that

O ≃


χ∈Spec Z(g)

Oχ.
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Note that for each χ ∈ Spec Z(g) the set of dot-antidominant weights in ϖ−1(χ) is nonempty,
because ϖ : t∗ → Spec Z(g) ≃ t∗//W is surjective. So it makes sense to apply part (3) to deduce

O ≃


χ∈Spec Z(g)



λ∈ϖ−1(χ)
dot-antidominant

Oλ ≃


λ dot-antidominant
Oλ.

□


