
2024 Spring — Geometric Representation Theory (1)

HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

Homework 4 (Due on April 29)

4. 4Problem 4.1 (Lecture 8, Exercise 1.6). Prove the following.
(1) For w, w′ ∈ W such that ℓ(w) + ℓ(w′) = ℓ(ww′), we have

δwδw′ = δww′ .

(2) For w ∈ W and s ∈ S, we have

δwδs =
󰀫

δws if w < ws,

(v−1 − v)δw + δws if w > ws.

and

δsδw =
󰀫

δsw if w < sw,

(v−1 − v)δw + δsw if w > ws.

Solution. (1) Recall that if w = si1 · · · sik
with k = ℓ(w) is a reduced decomposition of w, then

δw = δsi1
· · · δsik

. Provided that ℓ(w) + ℓ(w′) = ℓ(ww′), we see a reduced decomposition of ww′

can be constructed by concatenating those of w and w′. Then

δwδw′ = δww′ .

(2) We first compute δwδs. Suppose w < ws then ℓ(ws) = ℓ(w) + 1 = ℓ(w) + ℓ(s). Then
by part (1) the result δwδs = δws follows. Whenever w > ws we may write w = w′s for some
w′ ∈ W ; note that if this is the case then ws = w′s2 = w′, and hence δw = δw′δs with δw′ = δws.
Recall the inverse formula

δ−1
s = δs + (v − v−1)

which is equivalent to δ2
s = (v−1 − v)δs + 1. Combining the ingredients above we obtain that

δwδs = δw′δ2
s = δw′((v−1 − v)δs + 1) = (v−1 − v)δw′δs + δw′ = (v−1 − v)δw + δws.

This proves the formula of δwδs, and the case of δsδw follows from a similar argument. □

Problem 4.2 (Lecture 8, Exercise 4.8). For any λ ∈ t∗, prove
(1) The surjection Pλ ↠ Lλ factors as Pλ → Mλ → Lλ.
(2) The obtained map Pλ → Mλ is surjective and exhibits Pλ as a projective cover of Mλ.

Solution. (1) By definition Pλ is a projective cover of Lλ; in particular, it is a projective module.
On the other hand, Mλ ↠ Lλ is the canonical projection in Verma module, so Pλ ↠ Lλ factors
through Mλ by the universal property of projective module Pλ.

(2) Recall that Mλ is generated by a highest weight vector vλ; so to show that Pλ → Mλ is
surjective, it boils down to figuring out the preimage of vλ in Pλ. Since Pλ ↠ Lλ is surjective,
if we write vλ for the image of vλ along Mλ ↠ Lλ, then there exists some wλ ∈ Pλ mapping to
vλ. Note that wλ is nonzero of weight λ, and hence mapped to a highest weight vector v′

λ ∈ Mλ;
on the other hand, the subspace in Mλ spanned by highest weight vector is 1-dimensional, so
v′

λ = c · vλ for some c ∈ k×, which deduces that vλ is the image of c−1wλ. Therefore, Pλ ↠ Mλ

is surjective.
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To exhibit Pλ as a projective cover of Mλ, notice that the surjectivity result above can be
reinterpreted as follows: Pλ surjects to Mλ if and only if it surjects to Lλ. We need to show that
any proper submodule of Pλ cannot be mapped to Mλ by any surjection. For this, if N ⊂ Pλ is
a proper submodule with N ↠ Mλ, then we also have N ↠ Lλ, which contradicts to the fact
Pλ is a projective cover of Lλ. □

Problem 4.3 (Lecture 8, Exercise 4.12). For λ ∈ t∗, let P ↠ Lλ be the surjection constructed
in the proof of [Lecture 8, Theorem 4.3], i.e., P represents the functor

Oχ −→ Vect, M 󰀁−→ Mwt=λ.

Prove:
(1) This map factors as P → Pλ ↠ Lλ. Moreover, P → Pλ is surjective.
(2) For g = sl2, the obtained map P → Pλ happens to be an isomorphism1.
(3) In general, P → Pλ is not an isomorphism2.

Solution. (1) Recall from proof of [Lecture 8, Theorem 4.3] that P is projective, so the factoriza-
tion follows from the universal property, provided that Pλ ↠ Lλ is a projective cover by Problem
4.2. Notice that the surjection P ↠ Lλ induces another surjection im(P → Pλ) ↠ Lλ, and then
Pλ = im(P → Pλ) because Pλ is essential as a projective cover. This shows P = im(P → Pλ),
namely P ↠ Pλ is surjective.

(2) As P is projective, by part (1) we get P ∼= Pλ ⊕K with K := ker(P ↠ Pλ). Note that the
injection Pλ ↩→ P induces HomOχ(Pλ, M) ↩→ HomOχ(P, M) for all M ∈ Oχ. It then suffices to
show

(∗) dim HomOχ(P, M) = dim HomOχ(Pλ, M),

because if this is true then the two spaces are the same and Yoneda lemma deduces P = Pλ.
To prove (∗), since P represents the functor M 󰀁→ Mwt=λ, we have

HomOχ(P, M) = Mwt=λ.

On the other hand, by [Lecture 8, Corollary 4.9], we have

dim HomOχ
(Pλ, M) = [M : Lλ].

So it remains to prove dim Mwt=λ = [M : Lλ] for any simple objects M ∈ Oχ. But in the case
of g = sl2, this follows from the classification in [Lecture 8, Example 3.17], together with the
fact that when l, l′ ∈ Z, the l′-weight space of Ml is 1-dimensional (so that for distinct weights
µ ∕= λ there is no vector in Lµ of weight λ).

(3) We give a counter-example for g = sl3 to show the equality dim Mwt=λ = [M : Lλ]
in the proof of part (2) fails. In the context of Problem 3.2(3), with χ = ϖ(0), we have for
λ = −2α1 − α2 and M = M0 that [M0 : L−2α1−α2 ] = 1. This comes from combining part (1)
and (2) of Problem 3.3 (which dictates that [M0 : L−α2 ] = [M−α2 : M−2α1−α2 ] = 1). However,
since 2α1 + α2 admits two formulations into sum of positive roots, which are α1 + α1 + α2 and
α1 + (α1 + α2) respectively, we have dim Mwt=−2α1−α2

0 󰃍 2. Thus, [M : Lλ] ∕= dim Mwt=λ. □

Problem 4.4 (Lecture 9, Exercise 1.11). Let λ be a weight. Prove:
(1) If M ∈ O such that wt(M) ∩ {µ | µ ≽ λ} = ∅, then Exti

O(M, M∨
λ ) = 0 for i 󰃍 03.

(2) Exti
O(Lλ, M∨

λ ) = 0 for i > 0.
(3) Combining (1) and (2), deduce Exti

O(Mλ, Lµ) = 0 and Exti
O(Lµ, M∨

λ ) = 0 for i > 0 and
µ ∕≻ λ.

1Hint: Use [Lecture 8, Corollary 4.9].
2Hint: What we have learned so far can (at least) prove this for sl3 and sl4.
3Hint: Step I. Reduce to the case M = Lµ with ϖ(µ) = ϖ(λ) and µ ∕≽ λ.

Step II. Consider 0 → K → Mµ → Lµ → 0 and note that wt(K) ≺ µ.
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Solution. (1) For any M ∈ O satisfying wt(M) ∩ {µ | µ ≽ λ} = ∅, if Lµ is an irreducible
subquotient of M then µ ∕≽ λ holds. Thus it reduces to considering M = Lµ with µ ∕≽ λ. If
ϖ(µ) ∕= ϖ(λ), i.e. M and M∨

λ come from different blocks in O, we have Exti
O(M, M∨

λ ) = 0 for
i 󰃍 0 by [Lecture 9, Lemma 1.10]; so we may assume ϖ(µ) = ϖ(λ). We then consider the short
exact sequence

0 −→ K −→ Mµ −→ Lµ −→ 0
induced by the canonical projection Mµ ↠ Lµ with kernel K. Recall [Lecture 9, Corollary 1.3]
that we have Exti

O(Mµ, M∨
λ ) = 0 for i > 0. Moreover, by [Lecture 8, Lemma 3.14] and the

assumption µ ∕≽ λ, we get HomO(Mµ, M∨
λ ) = Ext0

O(Mµ, M∨
λ ) = 0, and consequently

Ext0
O(Lµ, M∨

λ ) = 0.

Now it remains to show Exti
O(Lµ, M∨

λ ) = 0 for i > 0. For this, applying the contravariant
functor HomO(−, M∨

λ ) to the short exact sequence above, we have a long exact sequence:
0

· · · Exti
O(Lµ, M∨

λ ) Exti
O(Mµ, M∨

λ ) Exti
O(K, M∨

λ )

Exti+1
O (Lµ, M∨

λ ) Exti+1
O (Mµ, M∨

λ ) Exti+1
O (K, M∨

λ ) · · ·

0

=
=

It then follows that for i 󰃍 0,

Exti
O(K, M∨

λ ) ∼= Exti+1
O (Lµ, M∨

λ ).

So we only need to prove Exti
O(K, M∨

λ ) = 0 for i 󰃍 0. Since there are only finitely many
irreducible objects in Oϖ(µ), this can be done by induction on µ with respect to ≺:

⋄ If µ is dot-antidominant, then Mµ is irreducible and K = 0. In this case, the vanishing
result obviously follows.

⋄ Suppose Exti
O(Lµ′ , M∨

λ ) = 0 holds for all i 󰃍 0 and µ′ ≺ µ. Notice that K ∈ O is always
an extension of Lµ′ ’s with µ′ ≺ µ. So we get Exti

O(K, M∨
λ ) = 0 for i 󰃍 0 as desired.

This completes the induction and we conclude that Exti
O(M, M∨

λ ) = 0 for i 󰃍 0.
(2) Suppose As in part (1), consider the short exact sequence

0 −→ K −→ Mλ −→ Lλ −→ 0.

Notice again that for each µ ∈ wt(K) we have µ ≺ λ, so wt(K) ∩ {µ | µ ≽ λ} = ∅, and then
by part (1) we get Exti

O(K, M∨
λ ) = 0 for i 󰃍 0. On the other hand, as in part (1), we know

Exti
O(Mλ, M∨

λ ) = 0 for i > 0. Therefore, applying the contravariant functor HomO(−, M∨
λ ) to

the short exact sequence above, we have a long exact sequence as follows:
0

0 HomO(Lλ, M∨
λ ) HomO(Mλ, M∨

λ ) HomO(K, M∨
λ )

Ext1
O(Lλ, M∨

λ ) Ext1
O(Mλ, M∨

λ ) Ext1
O(K, M∨

λ ) · · ·

0 0

=

= =

Thus, Exti
O(Lλ, M∨

λ ) = 0 for i > 0 is implied by Exti
O(Mλ, M∨

λ ) = Exti−1
O (K, M∨

λ ) = 0; but
note that this may not vanish at i = 0.

(3) Using the isomorphism Lµ
∼= L∨

µ , the vanishing result of Exti
O(Mλ, Lµ) follows from that

of Exti
O by duality. Thus it suffices to check Exti

O(Lµ, M∨
λ ) = 0. If µ ≺ λ then M = Lλ satisfies
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the condition of (1), otherwise µ = λ and we are in the case of (2), and in both cases we have
the desired vanishing result. □

Problem 4.5 (Lecture 9, Exercise 3.18). Let µ be any dot-antidominant integral weight. Prove4:
(1) For any w ∈ W , (Ξµ : Mw·µ) = 1 and there is a surjection Ξµ ↠ Mµ.
(2) For any w ∈ W , (Pµ : Mw·µ) 󰃍 1 and there is a surjection Pµ ↠ Mµ.
(3) There exists an isomorphism Ξµ ≃ Pµ compatible with the surjections to Mµ.
(4) For any w ∈ W , [Mw·µ : Lµ] = 15.

Solution. (1) By [Lecture 9, Lemma 3.5], if ν is the unique dominant integral weight in W (µ −
(−ρ)) = W (µ+ρ), then Ξµ := T µ

−ρ(L−ρ) ∼= T µ
−ρ(M−ρ) ∈ Oϖ(µ) admits a standard filtration and

we have the multiplicity

(Ξµ : Mw·µ) = (T µ
−ρ(M−ρ) : Mw·µ) = dim Lwt=w·µ−(−ρ)

ν = 1.

Here the last equality follows from w · µ + ρ ∈ W (ν) by our construction. In particular, taking
w = 1, we deduce

dim HomO(Ξµ, M∨
µ ) = (Ξµ : Mµ) = 1.

Consequently, there exists a non-zero map φ : Ξµ → M∨
µ in O. As µ is dot-antidominant, we see

Mµ
∼= M∨

µ is irreducible, and hence Ξµ must surjects onto Mµ through Ξµ → M∨
µ ≃ Mµ, which

is the desired surjection.
(2) Using BGG reciprocity [Lecture 9, Theorem 2.2], we have

(Pµ : Mw·µ) = [Mw·µ : Lµ].

To compute the right hand side, by [Lecture 7, Corollary 4.15] and that µ is dot-antidominant
integral, Lµ

∼= Mµ ⊂ Mw·µ as a submodule. So we get [Mw·µ : Lµ] 󰃍 1 and hence (Pµ : Mw·µ) 󰃍
1. Also, the surjection Pµ ↠ Mµ is constructed as in Problem 4.2(2).

(3) Since we have the surjection Ξµ ↠ Mµ from part (1) and Ξµ is by definition a projective
object, the surjection Pµ ↠ Mµ induces a factorization diagram

Ξµ Pµ

Mµ

η

and then we get a map η : Ξµ → Pµ compatible with the surjections to Mµ.
Now it remains to show that η is an isomorphism. Recall from Problem 4.2 that Pµ is a

projective cover of Mµ, so η must be surjective by the same argument thereof. To show the
injectivity, define the weight submodule K := ker(Ξµ ↠ Pµ) ⊂ Ξµ. Then by (1) and (2), for
any w ∈ W ,

(Ξµ : Mw·µ) = 1 󰃑 (Pµ : Mw·µ) =⇒ (K : Mw·µ) = 0.

This makes sense because K admits a standard filtration by [Lecture 9, Lemma 1.8]. Therefore,
we get K = 0, and η : Ξµ

∼−→ Pµ is an isomorphism.
(4) It follows from part (3) directly that

[Mw·µ : Lµ] = (Pµ : Mw·µ) = (Ξµ : Mw·µ) = 1.

□

4Hint: [Lecture 9, Lemma 3.5] for (1); [Lecture 9, Theorem 2.2] and [Corollary 4.15, Lecture 7] for (2). For
(3), first find a surjection Ξµ ↠ Pµ and then use (1) and (2).

5See [Gai05, Proposition 4.20] for a different proof of this fact.
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