HOMEWORK PROBLEMS

LECTURER: LIN CHEN

TA: WENHAN DAI

Homework 4 (Due on April 29)
Problem 4.1 (Lecture 8, Exercise 1.6). Prove the following.
(1) For $w, w^{\prime} \in W$ such that $\ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right)$, we have

$$
\delta_{w} \delta_{w^{\prime}}=\delta_{w w^{\prime}}
$$

(2) For $w \in W$ and $s \in S$, we have

$$
\delta_{w} \delta_{s}= \begin{cases}\delta_{w s} & \text { if } w<w s \\ \left(v^{-1}-v\right) \delta_{w}+\delta_{w s} & \text { if } w>w s\end{cases}
$$

and

$$
\delta_{s} \delta_{w}= \begin{cases}\delta_{s w} & \text { if } w<s w \\ \left(v^{-1}-v\right) \delta_{w}+\delta_{s w} & \text { if } w>w s\end{cases}
$$

Solution. (1) Recall that if $w=s_{i_{1}} \cdots s_{i_{k}}$ with $k=\ell(w)$ is a reduced decomposition of w, then $\delta_{w}=\delta_{s_{i_{1}}} \cdots \delta_{s_{i_{k}}}$. Provided that $\ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right)$, we see a reduced decomposition of $w w^{\prime}$ can be constructed by concatenating those of w and w^{\prime}. Then

$$
\delta_{w} \delta_{w^{\prime}}=\delta_{w w^{\prime}}
$$

(2) We first compute $\delta_{w} \delta_{s}$. Suppose $w<w s$ then $\ell(w s)=\ell(w)+1=\ell(w)+\ell(s)$. Then by part (1) the result $\delta_{w} \delta_{s}=\delta_{w s}$ follows. Whenever $w>w s$ we may write $w=w^{\prime} s$ for some $w^{\prime} \in W$; note that if this is the case then $w s=w^{\prime} s^{2}=w^{\prime}$, and hence $\delta_{w}=\delta_{w^{\prime}} \delta_{s}$ with $\delta_{w^{\prime}}=\delta_{w s}$. Recall the inverse formula

$$
\delta_{s}^{-1}=\delta_{s}+\left(v-v^{-1}\right)
$$

which is equivalent to $\delta_{s}^{2}=\left(v^{-1}-v\right) \delta_{s}+1$. Combining the ingredients above we obtain that

$$
\delta_{w} \delta_{s}=\delta_{w^{\prime}} \delta_{s}^{2}=\delta_{w^{\prime}}\left(\left(v^{-1}-v\right) \delta_{s}+1\right)=\left(v^{-1}-v\right) \delta_{w^{\prime}} \delta_{s}+\delta_{w^{\prime}}=\left(v^{-1}-v\right) \delta_{w}+\delta_{w s}
$$

This proves the formula of $\delta_{w} \delta_{s}$, and the case of $\delta_{s} \delta_{w}$ follows from a similar argument.
Problem 4.2 (Lecture 8, Exercise 4.8). For any $\lambda \in \mathfrak{t}^{*}$, prove
(1) The surjection $P_{\lambda} \rightarrow L_{\lambda}$ factors as $P_{\lambda} \rightarrow M_{\lambda} \rightarrow L_{\lambda}$.
(2) The obtained map $P_{\lambda} \rightarrow M_{\lambda}$ is surjective and exhibits P_{λ} as a projective cover of M_{λ}.

Solution. (1) By definition P_{λ} is a projective cover of L_{λ}; in particular, it is a projective module. On the other hand, $M_{\lambda} \rightarrow L_{\lambda}$ is the canonical projection in Verma module, so $P_{\lambda} \rightarrow L_{\lambda}$ factors through M_{λ} by the universal property of projective module P_{λ}.
(2) Recall that M_{λ} is generated by a highest weight vector v_{λ}; so to show that $P_{\lambda} \rightarrow M_{\lambda}$ is surjective, it boils down to figuring out the preimage of v_{λ} in P_{λ}. Since $P_{\lambda} \rightarrow L_{\lambda}$ is surjective, if we write \bar{v}_{λ} for the image of v_{λ} along $M_{\lambda} \rightarrow L_{\lambda}$, then there exists some $w_{\lambda} \in P_{\lambda}$ mapping to \bar{v}_{λ}. Note that w_{λ} is nonzero of weight λ, and hence mapped to a highest weight vector $v_{\lambda}^{\prime} \in M_{\lambda}$; on the other hand, the subspace in M_{λ} spanned by highest weight vector is 1-dimensional, so $v_{\lambda}^{\prime}=c \cdot v_{\lambda}$ for some $c \in k^{\times}$, which deduces that v_{λ} is the image of $c^{-1} w_{\lambda}$. Therefore, $P_{\lambda} \rightarrow M_{\lambda}$ is surjective.

To exhibit P_{λ} as a projective cover of M_{λ}, notice that the surjectivity result above can be reinterpreted as follows: P_{λ} surjects to M_{λ} if and only if it surjects to L_{λ}. We need to show that any proper submodule of P_{λ} cannot be mapped to M_{λ} by any surjection. For this, if $N \subset P_{\lambda}$ is a proper submodule with $N \rightarrow M_{\lambda}$, then we also have $N \rightarrow L_{\lambda}$, which contradicts to the fact P_{λ} is a projective cover of L_{λ}.

Problem 4.3 (Lecture 8, Exercise 4.12). For $\lambda \in \mathfrak{t}^{*}$, let $P \rightarrow L_{\lambda}$ be the surjection constructed in the proof of [Lecture 8, Theorem 4.3], i.e., P represents the functor

$$
\mathcal{O}_{\chi} \longrightarrow \text { Vect, } \quad M \longmapsto M^{\mathrm{wt}=\lambda}
$$

Prove:
(1) This map factors as $P \rightarrow P_{\lambda} \rightarrow L_{\lambda}$. Moreover, $P \rightarrow P_{\lambda}$ is surjective.
(2) For $\mathfrak{g}=\mathfrak{s l}_{2}$, the obtained map $P \rightarrow P_{\lambda}$ happens to be an isomorphism ${ }^{1}$.
(3) In general, $P \rightarrow P_{\lambda}$ is not an isomorphism ${ }^{2}$.

Solution. (1) Recall from proof of [Lecture 8, Theorem 4.3] that P is projective, so the factorization follows from the universal property, provided that $P_{\lambda} \rightarrow L_{\lambda}$ is a projective cover by Problem 4.2. Notice that the surjection $P \rightarrow L_{\lambda}$ induces another surjection $\operatorname{im}\left(P \rightarrow P_{\lambda}\right) \rightarrow L_{\lambda}$, and then $P_{\lambda}=\operatorname{im}\left(P \rightarrow P_{\lambda}\right)$ because P_{λ} is essential as a projective cover. This shows $P=\operatorname{im}\left(P \rightarrow P_{\lambda}\right)$, namely $P \rightarrow P_{\lambda}$ is surjective.
(2) As P is projective, by part (1) we get $P \cong P_{\lambda} \oplus K$ with $K:=\operatorname{ker}\left(P \rightarrow P_{\lambda}\right)$. Note that the injection $P_{\lambda} \hookrightarrow P$ induces $\operatorname{Hom}_{\mathcal{O}_{\chi}}\left(P_{\lambda}, M\right) \hookrightarrow \operatorname{Hom}_{\mathcal{O}_{\chi}}(P, M)$ for all $M \in \mathcal{O}_{\chi}$. It then suffices to show

$$
(*)
$$

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}_{\chi}}(P, M)=\operatorname{dim} \operatorname{Hom}_{\mathcal{O}_{\chi}}\left(P_{\lambda}, M\right) \tag{*}
\end{equation*}
$$

because if this is true then the two spaces are the same and Yoneda lemma deduces $P=P_{\lambda}$. To prove $(*)$, since P represents the functor $M \mapsto M^{\mathrm{wt}=\lambda}$, we have

$$
\operatorname{Hom}_{\mathcal{O}_{\chi}}(P, M)=M^{\mathrm{wt}=\lambda}
$$

On the other hand, by [Lecture 8, Corollary 4.9], we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}_{\chi}}\left(P_{\lambda}, M\right)=\left[M: L_{\lambda}\right]
$$

So it remains to prove $\operatorname{dim} M^{\mathrm{wt}=\lambda}=\left[M: L_{\lambda}\right]$ for any simple objects $M \in \mathcal{O}_{\chi}$. But in the case of $\mathfrak{g}=\mathfrak{s l}_{2}$, this follows from the classification in [Lecture 8, Example 3.17], together with the fact that when $l, l^{\prime} \in \mathbb{Z}$, the l^{\prime}-weight space of M_{l} is 1-dimensional (so that for distinct weights $\mu \neq \lambda$ there is no vector in L_{μ} of weight λ).
(3) We give a counter-example for $\mathfrak{g}=\mathfrak{s l}_{3}$ to show the equality $\operatorname{dim} M^{\mathrm{wt}=\lambda}=\left[M: L_{\lambda}\right]$ in the proof of part (2) fails. In the context of Problem 3.2(3), with $\chi=\varpi(0)$, we have for $\lambda=-2 \alpha_{1}-\alpha_{2}$ and $M=M_{0}$ that $\left[M_{0}: L_{-2 \alpha_{1}-\alpha_{2}}\right]=1$. This comes from combining part (1) and (2) of Problem 3.3 (which dictates that $\left[M_{0}: L_{-\alpha_{2}}\right]=\left[M_{-\alpha_{2}}: M_{-2 \alpha_{1}-\alpha_{2}}\right]=1$). However, since $2 \alpha_{1}+\alpha_{2}$ admits two formulations into sum of positive roots, which are $\alpha_{1}+\alpha_{1}+\alpha_{2}$ and $\alpha_{1}+\left(\alpha_{1}+\alpha_{2}\right)$ respectively, we have $\operatorname{dim} M_{0}^{\mathrm{wt}=-2 \alpha_{1}-\alpha_{2}} \geqslant 2$. Thus, $\left[M: L_{\lambda}\right] \neq \operatorname{dim} M^{\mathrm{wt}=\lambda}$.

Problem 4.4 (Lecture 9, Exercise 1.11). Let λ be a weight. Prove:
(1) If $M \in \mathcal{O}$ such that $\operatorname{wt}(M) \cap\{\mu \mid \mu \succeq \lambda\}=\emptyset$, then $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0^{3}$.
(2) $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\lambda}, M_{\lambda}^{\vee}\right)=0$ for $i>0$.
(3) Combining (1) and (2), deduce $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, L_{\mu}\right)=0$ and $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\mu}, M_{\lambda}^{\vee}\right)=0$ for $i>0$ and $\mu \nsucc \lambda$.

[^0]Solution. (1) For any $M \in \mathcal{O}$ satisfying $\operatorname{wt}(M) \cap\{\mu \mid \mu \succeq \lambda\}=\emptyset$, if L_{μ} is an irreducible subquotient of M then $\mu \nsucceq \lambda$ holds. Thus it reduces to considering $M=L_{\mu}$ with $\mu \nsucceq \lambda$. If $\varpi(\mu) \neq \varpi(\lambda)$, i.e. M and M_{λ}^{\vee} come from different blocks in \mathcal{O}, we have $\operatorname{Ext}_{{ }_{\mathcal{O}}}^{i}\left(M, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0$ by [Lecture 9 , Lemma 1.10]; so we may assume $\varpi(\mu)=\varpi(\lambda)$. We then consider the short exact sequence

$$
0 \longrightarrow K \longrightarrow M_{\mu} \longrightarrow L_{\mu} \longrightarrow 0
$$

induced by the canonical projection $M_{\mu} \rightarrow L_{\mu}$ with kernel K. Recall [Lecture 9, Corollary 1.3] that we have $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\mu}, M_{\lambda}^{\vee}\right)=0$ for $i>0$. Moreover, by [Lecture 8, Lemma 3.14] and the assumption $\mu \nsucceq \lambda$, we get $\operatorname{Hom}_{\mathcal{O}}\left(M_{\mu}, M_{\lambda}^{\vee}\right)=\operatorname{Ext}_{\mathcal{O}}^{0}\left(M_{\mu}, M_{\lambda}^{\vee}\right)=0$, and consequently

$$
\operatorname{Ext}_{\mathcal{O}}^{0}\left(L_{\mu}, M_{\lambda}^{\vee}\right)=0
$$

Now it remains to show $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\mu}, M_{\lambda}^{\vee}\right)=0$ for $i>0$. For this, applying the contravariant functor $\operatorname{Hom}_{\mathcal{O}}\left(-, M_{\lambda}^{\vee}\right)$ to the short exact sequence above, we have a long exact sequence:

$$
\cdots \xrightarrow{\longrightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\mu}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\mu}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(K, M_{\lambda}^{\vee}\right)} \longrightarrow \stackrel{\begin{array}{c}
0 \\
\operatorname{Ext}_{\mathcal{O}}^{i+1}\left(L_{\mu}, M_{\lambda}^{\vee}\right) \\
\operatorname{Ext}_{\mathcal{O}}^{i+1}\left(M_{\mu}, M_{\lambda}^{\vee}\right) \longrightarrow \\
\| \\
0
\end{array}}{\longrightarrow \operatorname{Ext}_{\mathcal{O}}^{i+1}\left(K, M_{\lambda}^{\vee}\right) \longrightarrow} \longrightarrow \cdots
$$

It then follows that for $i \geqslant 0$,

$$
\operatorname{Ext}_{\mathcal{O}}^{i}\left(K, M_{\lambda}^{\vee}\right) \cong \operatorname{Ext}_{\mathcal{O}}^{i+1}\left(L_{\mu}, M_{\lambda}^{\vee}\right)
$$

So we only need to prove $\operatorname{Ext}_{\mathcal{O}}^{i}\left(K, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0$. Since there are only finitely many irreducible objects in $\mathcal{O}_{\varpi(\mu)}$, this can be done by induction on μ with respect to \prec :
\diamond If μ is dot-antidominant, then M_{μ} is irreducible and $K=0$. In this case, the vanishing result obviously follows.
\diamond Suppose $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\mu^{\prime}}, M_{\lambda}^{\vee}\right)=0$ holds for all $i \geqslant 0$ and $\mu^{\prime} \prec \mu$. Notice that $K \in \mathcal{O}$ is always an extension of $L_{\mu^{\prime}}$ s with $\mu^{\prime} \prec \mu$. So we get $\operatorname{Ext}_{\mathcal{O}}^{i}\left(K, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0$ as desired.
This completes the induction and we conclude that $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0$.
(2) Suppose As in part (1), consider the short exact sequence

$$
0 \longrightarrow K \longrightarrow M_{\lambda} \longrightarrow L_{\lambda} \longrightarrow 0
$$

Notice again that for each $\mu \in \mathrm{wt}(K)$ we have $\mu \prec \lambda$, so $\mathrm{wt}(K) \cap\{\mu \mid \mu \succeq \lambda\}=\emptyset$, and then by part (1) we get $\operatorname{Ext}_{\mathcal{O}}^{i}\left(K, M_{\lambda}^{\vee}\right)=0$ for $i \geqslant 0$. On the other hand, as in part (1), we know $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M_{\lambda}^{\vee}\right)=0$ for $i>0$. Therefore, applying the contravariant functor $\operatorname{Hom}_{\mathcal{O}}\left(-, M_{\lambda}^{\vee}\right)$ to the short exact sequence above, we have a long exact sequence as follows:
$0 \longrightarrow \operatorname{Hom}_{\mathcal{O}}\left(L_{\lambda}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}}\left(M_{\lambda}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}}\left(K, M_{\lambda}^{\vee}\right)$ \qquad

$$
\longleftrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(L_{\lambda}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(M_{\lambda}, M_{\lambda}^{\vee}\right) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(K, M_{\lambda}^{\vee}\right) \longrightarrow \cdots
$$

$0 \quad 0$

Thus, $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\lambda}, M_{\lambda}^{\vee}\right)=0$ for $i>0$ is implied by $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M_{\lambda}^{\vee}\right)=\operatorname{Ext}_{\mathcal{O}}^{i-1}\left(K, M_{\lambda}^{\vee}\right)=0 ;$ but note that this may not vanish at $i=0$.
(3) Using the isomorphism $L_{\mu} \cong L_{\mu}^{\vee}$, the vanishing result of $\operatorname{Ext}^{\mathcal{O}}{ }_{\mathcal{O}}\left(M_{\lambda}, L_{\mu}\right)$ follows from that of $\operatorname{Ext}_{\mathcal{O}}^{i}$ by duality. Thus it suffices to check $\operatorname{Ext}_{\mathcal{O}^{i}}^{i}\left(L_{\mu}, M_{\lambda}^{\vee}\right)=0$. If $\mu \prec \lambda$ then $M=L_{\lambda}$ satisfies
the condition of (1), otherwise $\mu=\lambda$ and we are in the case of (2), and in both cases we have the desired vanishing result.

Problem 4.5 (Lecture 9, Exercise 3.18). Let μ be any dot-antidominant integral weight. Prove ${ }^{4}$:
(1) For any $w \in W,\left(\Xi_{\mu}: M_{w \cdot \mu}\right)=1$ and there is a surjection $\Xi_{\mu} \rightarrow M_{\mu}$.
(2) For any $w \in W,\left(P_{\mu}: M_{w \cdot \mu}\right) \geqslant 1$ and there is a surjection $P_{\mu} \rightarrow M_{\mu}$.
(3) There exists an isomorphism $\Xi_{\mu} \simeq P_{\mu}$ compatible with the surjections to M_{μ}.
(4) For any $w \in W,\left[M_{w \cdot \mu}: L_{\mu}\right]=1^{5}$.

Solution. (1) By [Lecture 9, Lemma 3.5], if ν is the unique dominant integral weight in $W(\mu-$ $(-\rho))=W(\mu+\rho)$, then $\Xi_{\mu}:=T_{-\rho}^{\mu}\left(L_{-\rho}\right) \cong T_{-\rho}^{\mu}\left(M_{-\rho}\right) \in \mathcal{O}_{\varpi(\mu)}$ admits a standard filtration and we have the multiplicity

$$
\left(\Xi_{\mu}: M_{w \cdot \mu}\right)=\left(T_{-\rho}^{\mu}\left(M_{-\rho}\right): M_{w \cdot \mu}\right)=\operatorname{dim} L_{\nu}^{\mathrm{wt}=w \cdot \mu-(-\rho)}=1
$$

Here the last equality follows from $w \cdot \mu+\rho \in W(\nu)$ by our construction. In particular, taking $w=1$, we deduce

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(\Xi_{\mu}, M_{\mu}^{\vee}\right)=\left(\Xi_{\mu}: M_{\mu}\right)=1
$$

Consequently, there exists a non-zero map $\phi: \Xi_{\mu} \rightarrow M_{\mu}^{\vee}$ in \mathcal{O}. As μ is dot-antidominant, we see $M_{\mu} \cong M_{\mu}^{\vee}$ is irreducible, and hence Ξ_{μ} must surjects onto M_{μ} through $\Xi_{\mu} \rightarrow M_{\mu}^{\vee} \simeq M_{\mu}$, which is the desired surjection.
(2) Using BGG reciprocity [Lecture 9, Theorem 2.2], we have

$$
\left(P_{\mu}: M_{w \cdot \mu}\right)=\left[M_{w \cdot \mu}: L_{\mu}\right]
$$

To compute the right hand side, by [Lecture 7, Corollary 4.15] and that μ is dot-antidominant integral, $L_{\mu} \cong M_{\mu} \subset M_{w \cdot \mu}$ as a submodule. So we get $\left[M_{w \cdot \mu}: L_{\mu}\right] \geqslant 1$ and hence $\left(P_{\mu}: M_{w \cdot \mu}\right) \geqslant$ 1. Also, the surjection $P_{\mu} \rightarrow M_{\mu}$ is constructed as in Problem 4.2(2).
(3) Since we have the surjection $\Xi_{\mu} \rightarrow M_{\mu}$ from part (1) and Ξ_{μ} is by definition a projective object, the surjection $P_{\mu} \rightarrow M_{\mu}$ induces a factorization diagram

and then we get a map $\eta: \Xi_{\mu} \rightarrow P_{\mu}$ compatible with the surjections to M_{μ}.
Now it remains to show that η is an isomorphism. Recall from Problem 4.2 that P_{μ} is a projective cover of M_{μ}, so η must be surjective by the same argument thereof. To show the injectivity, define the weight submodule $K:=\operatorname{ker}\left(\Xi_{\mu} \rightarrow P_{\mu}\right) \subset \Xi_{\mu}$. Then by (1) and (2), for any $w \in W$,

$$
\left(\Xi_{\mu}: M_{w \cdot \mu}\right)=1 \leqslant\left(P_{\mu}: M_{w \cdot \mu}\right) \Longrightarrow\left(K: M_{w \cdot \mu}\right)=0
$$

This makes sense because K admits a standard filtration by [Lecture 9, Lemma 1.8]. Therefore, we get $K=0$, and $\eta: \Xi_{\mu} \xrightarrow{\sim} P_{\mu}$ is an isomorphism.
(4) It follows from part (3) directly that

$$
\left[M_{w \cdot \mu}: L_{\mu}\right]=\left(P_{\mu}: M_{w \cdot \mu}\right)=\left(\Xi_{\mu}: M_{w \cdot \mu}\right)=1
$$

[^1]
References

[Gai05] Dennis Gaitsgory. Course Notes for Geometric Representation Theory. 2005. available at https:// people.mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.

[^0]: ${ }^{1}$ Hint: Use [Lecture 8, Corollary 4.9].
 ${ }^{2}$ Hint: What we have learned so far can (at least) prove this for $\mathfrak{s l}_{3}$ and $\mathfrak{s l}_{4}$.
 ${ }^{3}$ Hint: Step I. Reduce to the case $M=L_{\mu}$ with $\varpi(\mu)=\varpi(\lambda)$ and $\mu \nsucceq \lambda$.
 Step II. Consider $0 \rightarrow K \rightarrow M_{\mu} \rightarrow L_{\mu} \rightarrow 0$ and note that $\mathrm{wt}(K) \prec \mu$.

[^1]: ${ }^{4}$ Hint: [Lecture 9, Lemma 3.5] for (1); [Lecture 9, Theorem 2.2] and [Corollary 4.15, Lecture 7] for (2). For (3), first find a surjection $\Xi_{\mu} \rightarrow P_{\mu}$ and then use (1) and (2).
 ${ }^{5}$ See [Gai05, Proposition 4.20] for a different proof of this fact.

