2024 Spring — Geometric Representation Theory (1)

HOMEWORK PROBLEMS

LECTURER: LIN CHEN TA: WENHAN DAI

Homework 4 (Due on April 29)

Problem 4.1 (Lecture 8, Exercise 1.6). Prove the following.

(1) For $w, w' \in W$ such that $\ell(w) + \ell(w') = \ell(ww')$, we have

$$\delta_w \delta_{w'} = \delta_{ww'}$$

(2) For $w \in W$ and $s \in S$, we have

$$\delta_w \delta_s = \begin{cases} \delta_{ws} & \text{if } w < ws, \\ (v^{-1} - v)\delta_w + \delta_{ws} & \text{if } w > ws. \end{cases}$$

and

$$\delta_s \delta_w = \begin{cases} \delta_{sw} & \text{if } w < sw, \\ (v^{-1} - v)\delta_w + \delta_{sw} & \text{if } w > ws. \end{cases}$$

Solution. (1) Recall that if $w = s_{i_1} \cdots s_{i_k}$ with $k = \ell(w)$ is a reduced decomposition of w, then $\delta_w = \delta_{s_{i_1}} \cdots \delta_{s_{i_k}}$. Provided that $\ell(w) + \ell(w') = \ell(ww')$, we see a reduced decomposition of ww' can be constructed by concatenating those of w and w'. Then

 $\delta_w \delta_{w'} = \delta_{ww'}.$

(2) We first compute $\delta_w \delta_s$. Suppose w < ws then $\ell(ws) = \ell(w) + 1 = \ell(w) + \ell(s)$. Then by part (1) the result $\delta_w \delta_s = \delta_{ws}$ follows. Whenever w > ws we may write w = w's for some $w' \in W$; note that if this is the case then $ws = w's^2 = w'$, and hence $\delta_w = \delta_{w'} \delta_s$ with $\delta_{w'} = \delta_{ws}$. Recall the inverse formula

$$\delta_s^{-1} = \delta_s + (v - v^{-1})$$

which is equivalent to $\delta_s^2 = (v^{-1} - v)\delta_s + 1$. Combining the ingredients above we obtain that

$$\delta_w \delta_s = \delta_{w'} \delta_s^2 = \delta_{w'} ((v^{-1} - v)\delta_s + 1) = (v^{-1} - v)\delta_{w'} \delta_s + \delta_{w'} = (v^{-1} - v)\delta_w + \delta_{ws}.$$

This proves the formula of $\delta_w \delta_s$, and the case of $\delta_s \delta_w$ follows from a similar argument.

Problem 4.2 (Lecture 8, Exercise 4.8). For any $\lambda \in \mathfrak{t}^*$, prove

- (1) The surjection $P_{\lambda} \twoheadrightarrow L_{\lambda}$ factors as $P_{\lambda} \to M_{\lambda} \to L_{\lambda}$.
- (2) The obtained map $P_{\lambda} \to M_{\lambda}$ is surjective and exhibits P_{λ} as a projective cover of M_{λ} .

Solution. (1) By definition P_{λ} is a projective cover of L_{λ} ; in particular, it is a projective module. On the other hand, $M_{\lambda} \twoheadrightarrow L_{\lambda}$ is the canonical projection in Verma module, so $P_{\lambda} \twoheadrightarrow L_{\lambda}$ factors through M_{λ} by the universal property of projective module P_{λ} .

(2) Recall that M_{λ} is generated by a highest weight vector v_{λ} ; so to show that $P_{\lambda} \to M_{\lambda}$ is surjective, it boils down to figuring out the preimage of v_{λ} in P_{λ} . Since $P_{\lambda} \twoheadrightarrow L_{\lambda}$ is surjective, if we write \overline{v}_{λ} for the image of v_{λ} along $M_{\lambda} \twoheadrightarrow L_{\lambda}$, then there exists some $w_{\lambda} \in P_{\lambda}$ mapping to \overline{v}_{λ} . Note that w_{λ} is nonzero of weight λ , and hence mapped to a highest weight vector $v'_{\lambda} \in M_{\lambda}$; on the other hand, the subspace in M_{λ} spanned by highest weight vector is 1-dimensional, so $v'_{\lambda} = c \cdot v_{\lambda}$ for some $c \in k^{\times}$, which deduces that v_{λ} is the image of $c^{-1}w_{\lambda}$. Therefore, $P_{\lambda} \twoheadrightarrow M_{\lambda}$ is surjective. To exhibit P_{λ} as a projective cover of M_{λ} , notice that the surjectivity result above can be reinterpreted as follows: P_{λ} surjects to M_{λ} if and only if it surjects to L_{λ} . We need to show that any proper submodule of P_{λ} cannot be mapped to M_{λ} by any surjection. For this, if $N \subset P_{\lambda}$ is a proper submodule with $N \twoheadrightarrow M_{\lambda}$, then we also have $N \twoheadrightarrow L_{\lambda}$, which contradicts to the fact P_{λ} is a projective cover of L_{λ} .

Problem 4.3 (Lecture 8, Exercise 4.12). For $\lambda \in \mathfrak{t}^*$, let $P \twoheadrightarrow L_{\lambda}$ be the surjection constructed in the proof of [Lecture 8, Theorem 4.3], i.e., P represents the functor

$$\mathcal{O}_{\chi} \longrightarrow \mathsf{Vect}, \quad M \longmapsto M^{\mathrm{wt}=\lambda}$$

Prove:

- (1) This map factors as $P \to P_{\lambda} \twoheadrightarrow L_{\lambda}$. Moreover, $P \to P_{\lambda}$ is surjective.
- (2) For $\mathfrak{g} = \mathfrak{sl}_2$, the obtained map $P \to P_\lambda$ happens to be an isomorphism¹.
- (3) In general, $P \to P_{\lambda}$ is not an isomorphism².

Solution. (1) Recall from proof of [Lecture 8, Theorem 4.3] that P is projective, so the factorization follows from the universal property, provided that $P_{\lambda} \twoheadrightarrow L_{\lambda}$ is a projective cover by Problem 4.2. Notice that the surjection $P \twoheadrightarrow L_{\lambda}$ induces another surjection $\operatorname{im}(P \to P_{\lambda}) \twoheadrightarrow L_{\lambda}$, and then $P_{\lambda} = \operatorname{im}(P \to P_{\lambda})$ because P_{λ} is essential as a projective cover. This shows $P = \operatorname{im}(P \to P_{\lambda})$, namely $P \twoheadrightarrow P_{\lambda}$ is surjective.

(2) As P is projective, by part (1) we get $P \cong P_{\lambda} \oplus K$ with $K \coloneqq \ker(P \twoheadrightarrow P_{\lambda})$. Note that the injection $P_{\lambda} \hookrightarrow P$ induces $\operatorname{Hom}_{\mathcal{O}_{\chi}}(P_{\lambda}, M) \hookrightarrow \operatorname{Hom}_{\mathcal{O}_{\chi}}(P, M)$ for all $M \in \mathcal{O}_{\chi}$. It then suffices to show

(*)
$$\dim \operatorname{Hom}_{\mathcal{O}_{Y}}(P, M) = \dim \operatorname{Hom}_{\mathcal{O}_{Y}}(P_{\lambda}, M),$$

because if this is true then the two spaces are the same and Yoneda lemma deduces $P = P_{\lambda}$. To prove (*), since P represents the functor $M \mapsto M^{\text{wt}=\lambda}$, we have

$$\operatorname{Hom}_{\mathcal{O}_{\chi}}(P, M) = M^{\operatorname{wt}=\lambda}$$

On the other hand, by [Lecture 8, Corollary 4.9], we have

 $\dim \operatorname{Hom}_{\mathcal{O}_{\gamma}}(P_{\lambda}, M) = [M : L_{\lambda}].$

So it remains to prove dim $M^{\text{wt}=\lambda} = [M : L_{\lambda}]$ for any simple objects $M \in \mathcal{O}_{\chi}$. But in the case of $\mathfrak{g} = \mathfrak{sl}_2$, this follows from the classification in [Lecture 8, Example 3.17], together with the fact that when $l, l' \in \mathbb{Z}$, the l'-weight space of M_l is 1-dimensional (so that for distinct weights $\mu \neq \lambda$ there is no vector in L_{μ} of weight λ).

(3) We give a counter-example for $\mathfrak{g} = \mathfrak{sl}_3$ to show the equality dim $M^{\mathrm{wt}=\lambda} = [M : L_{\lambda}]$ in the proof of part (2) fails. In the context of Problem 3.2(3), with $\chi = \varpi(0)$, we have for $\lambda = -2\alpha_1 - \alpha_2$ and $M = M_0$ that $[M_0 : L_{-2\alpha_1-\alpha_2}] = 1$. This comes from combining part (1) and (2) of Problem 3.3 (which dictates that $[M_0 : L_{-\alpha_2}] = [M_{-\alpha_2} : M_{-2\alpha_1-\alpha_2}] = 1$). However, since $2\alpha_1 + \alpha_2$ admits two formulations into sum of positive roots, which are $\alpha_1 + \alpha_1 + \alpha_2$ and $\alpha_1 + (\alpha_1 + \alpha_2)$ respectively, we have dim $M_0^{\mathrm{wt}=-2\alpha_1-\alpha_2} \ge 2$. Thus, $[M : L_{\lambda}] \neq \dim M^{\mathrm{wt}=\lambda}$. \Box

Problem 4.4 (Lecture 9, Exercise 1.11). Let λ be a weight. Prove:

- (1) If $M \in \mathcal{O}$ such that $wt(M) \cap \{\mu \mid \mu \succeq \lambda\} = \emptyset$, then $\operatorname{Ext}^{i}_{\mathcal{O}}(M, M_{\lambda}^{\vee}) = 0$ for $i \ge 0^{3}$.
- (2) $\operatorname{Ext}_{\mathcal{O}}^{i}(L_{\lambda}, M_{\lambda}^{\vee}) = 0 \text{ for } i > 0.$
- (3) Combining (1) and (2), deduce $\operatorname{Ext}^{i}_{\mathcal{O}}(M_{\lambda}, L_{\mu}) = 0$ and $\operatorname{Ext}^{i}_{\mathcal{O}}(L_{\mu}, M_{\lambda}^{\vee}) = 0$ for i > 0 and $\mu \neq \lambda$.

¹Hint: Use [Lecture 8, Corollary 4.9].

²Hint: What we have learned so far can (at least) prove this for \mathfrak{sl}_3 and \mathfrak{sl}_4 .

³Hint: **Step I.** Reduce to the case $M = L_{\mu}$ with $\varpi(\mu) = \varpi(\lambda)$ and $\mu \not\geq \lambda$. **Step II.** Consider $0 \to K \to M_{\mu} \to L_{\mu} \to 0$ and note that $wt(K) \prec \mu$.

Solution. (1) For any $M \in \mathcal{O}$ satisfying $\operatorname{wt}(M) \cap \{\mu \mid \mu \succeq \lambda\} = \emptyset$, if L_{μ} is an irreducible subquotient of M then $\mu \not\succeq \lambda$ holds. Thus it reduces to considering $M = L_{\mu}$ with $\mu \not\succeq \lambda$. If $\varpi(\mu) \neq \varpi(\lambda)$, i.e. M and M_{λ}^{\vee} come from different blocks in \mathcal{O} , we have $\operatorname{Ext}^{i}_{\mathcal{O}}(M, M_{\lambda}^{\vee}) = 0$ for $i \ge 0$ by [Lecture 9, Lemma 1.10]; so we may assume $\varpi(\mu) = \varpi(\lambda)$. We then consider the short exact sequence

$$0 \longrightarrow K \longrightarrow M_{\mu} \longrightarrow L_{\mu} \longrightarrow 0$$

induced by the canonical projection $M_{\mu} \to L_{\mu}$ with kernel K. Recall [Lecture 9, Corollary 1.3] that we have $\operatorname{Ext}^{i}_{\mathcal{O}}(M_{\mu}, M_{\lambda}^{\vee}) = 0$ for i > 0. Moreover, by [Lecture 8, Lemma 3.14] and the assumption $\mu \succeq \lambda$, we get $\operatorname{Hom}_{\mathcal{O}}(M_{\mu}, M_{\lambda}^{\vee}) = \operatorname{Ext}^{0}_{\mathcal{O}}(M_{\mu}, M_{\lambda}^{\vee}) = 0$, and consequently

$$\operatorname{Ext}^{0}_{\mathcal{O}}(L_{\mu}, M_{\lambda}^{\vee}) = 0.$$

Now it remains to show $\operatorname{Ext}^{i}_{\mathcal{O}}(L_{\mu}, M_{\lambda}^{\vee}) = 0$ for i > 0. For this, applying the contravariant functor $\operatorname{Hom}_{\mathcal{O}}(-, M_{\lambda}^{\vee})$ to the short exact sequence above, we have a long exact sequence:

It then follows that for $i \ge 0$,

$$\operatorname{Ext}^{i}_{\mathcal{O}}(K, M_{\lambda}^{\vee}) \cong \operatorname{Ext}^{i+1}_{\mathcal{O}}(L_{\mu}, M_{\lambda}^{\vee}).$$

So we only need to prove $\operatorname{Ext}^{i}_{\mathcal{O}}(K, M^{\vee}_{\lambda}) = 0$ for $i \ge 0$. Since there are only finitely many irreducible objects in $\mathcal{O}_{\varpi(\mu)}$, this can be done by induction on μ with respect to \prec :

- \diamond If μ is dot-antidominant, then M_{μ} is irreducible and K = 0. In this case, the vanishing result obviously follows.
- ◊ Suppose $\operatorname{Ext}^{i}_{\mathcal{O}}(L_{\mu'}, M_{\lambda}^{\vee}) = 0$ holds for all $i \ge 0$ and $\mu' \prec \mu$. Notice that $K \in \mathcal{O}$ is always an extension of $L_{\mu'}$'s with $\mu' \prec \mu$. So we get $\operatorname{Ext}^{i}_{\mathcal{O}}(K, M_{\lambda}^{\vee}) = 0$ for $i \ge 0$ as desired.

This completes the induction and we conclude that $\operatorname{Ext}_{\mathcal{O}}^{i}(M, M_{\lambda}^{\vee}) = 0$ for $i \ge 0$.

(2) Suppose As in part (1), consider the short exact sequence

$$0 \longrightarrow K \longrightarrow M_{\lambda} \longrightarrow L_{\lambda} \longrightarrow 0.$$

Notice again that for each $\mu \in \operatorname{wt}(K)$ we have $\mu \prec \lambda$, so $\operatorname{wt}(K) \cap \{\mu \mid \mu \succeq \lambda\} = \emptyset$, and then by part (1) we get $\operatorname{Ext}^{i}_{\mathcal{O}}(K, M^{\vee}_{\lambda}) = 0$ for $i \ge 0$. On the other hand, as in part (1), we know $\operatorname{Ext}^{i}_{\mathcal{O}}(M_{\lambda}, M^{\vee}_{\lambda}) = 0$ for i > 0. Therefore, applying the contravariant functor $\operatorname{Hom}_{\mathcal{O}}(-, M^{\vee}_{\lambda})$ to the short exact sequence above, we have a long exact sequence as follows:

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{O}}(L_{\lambda}, M_{\lambda}^{\vee}) \longrightarrow \operatorname{Hom}_{\mathcal{O}}(M_{\lambda}, M_{\lambda}^{\vee}) \longrightarrow \operatorname{Hom}_{\mathcal{O}}(K, M_{\lambda}^{\vee}) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(L_{\lambda}, M_{\lambda}^{\vee}) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(M_{\lambda}, M_{\lambda}^{\vee}) \longrightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(K, M_{\lambda}^{\vee}) \longrightarrow \cdots$$

$$\| \begin{array}{c} 0 \\ 0 \\ 0 \end{array}$$

Thus, $\operatorname{Ext}_{\mathcal{O}}^{i}(L_{\lambda}, M_{\lambda}^{\vee}) = 0$ for i > 0 is implied by $\operatorname{Ext}_{\mathcal{O}}^{i}(M_{\lambda}, M_{\lambda}^{\vee}) = \operatorname{Ext}_{\mathcal{O}}^{i-1}(K, M_{\lambda}^{\vee}) = 0$; but note that this may not vanish at i = 0.

(3) Using the isomorphism $L_{\mu} \cong L_{\mu}^{\vee}$, the vanishing result of $\operatorname{Ext}^{i}_{\mathcal{O}}(M_{\lambda}, L_{\mu})$ follows from that of $\operatorname{Ext}^{i}_{\mathcal{O}}$ by duality. Thus it suffices to check $\operatorname{Ext}^{i}_{\mathcal{O}}(L_{\mu}, M_{\lambda}^{\vee}) = 0$. If $\mu \prec \lambda$ then $M = L_{\lambda}$ satisfies

the condition of (1), otherwise $\mu = \lambda$ and we are in the case of (2), and in both cases we have the desired vanishing result.

Problem 4.5 (Lecture 9, Exercise 3.18). Let μ be any dot-antidominant integral weight. Prove⁴:

- (1) For any $w \in W$, $(\Xi_{\mu} : M_{w \cdot \mu}) = 1$ and there is a surjection $\Xi_{\mu} \twoheadrightarrow M_{\mu}$.
- (2) For any $w \in W$, $(P_{\mu} : M_{w \cdot \mu}) \ge 1$ and there is a surjection $P_{\mu} \twoheadrightarrow M_{\mu}$.
- (3) There exists an isomorphism $\Xi_{\mu} \simeq P_{\mu}$ compatible with the surjections to M_{μ} .
- (4) For any $w \in W$, $[M_{w \cdot \mu} : L_{\mu}] = 1^5$.

Solution. (1) By [Lecture 9, Lemma 3.5], if ν is the unique dominant integral weight in $W(\mu - (-\rho)) = W(\mu + \rho)$, then $\Xi_{\mu} := T^{\mu}_{-\rho}(L_{-\rho}) \cong T^{\mu}_{-\rho}(M_{-\rho}) \in \mathcal{O}_{\varpi(\mu)}$ admits a standard filtration and we have the multiplicity

$$(\Xi_{\mu}: M_{w \cdot \mu}) = (T^{\mu}_{-\rho}(M_{-\rho}): M_{w \cdot \mu}) = \dim L^{\mathrm{wt}=w \cdot \mu - (-\rho)}_{\nu} = 1.$$

Here the last equality follows from $w \cdot \mu + \rho \in W(\nu)$ by our construction. In particular, taking w = 1, we deduce

$$\dim \operatorname{Hom}_{\mathcal{O}}(\Xi_{\mu}, M_{\mu}^{\vee}) = (\Xi_{\mu} : M_{\mu}) = 1.$$

Consequently, there exists a non-zero map $\phi \colon \Xi_{\mu} \to M_{\mu}^{\vee}$ in \mathcal{O} . As μ is dot-antidominant, we see $M_{\mu} \cong M_{\mu}^{\vee}$ is irreducible, and hence Ξ_{μ} must surjects onto M_{μ} through $\Xi_{\mu} \to M_{\mu}^{\vee} \simeq M_{\mu}$, which is the desired surjection.

(2) Using BGG reciprocity [Lecture 9, Theorem 2.2], we have

$$(P_{\mu}: M_{w \cdot \mu}) = [M_{w \cdot \mu}: L_{\mu}].$$

To compute the right hand side, by [Lecture 7, Corollary 4.15] and that μ is dot-antidominant integral, $L_{\mu} \cong M_{\mu} \subset M_{w \cdot \mu}$ as a submodule. So we get $[M_{w \cdot \mu} : L_{\mu}] \ge 1$ and hence $(P_{\mu} : M_{w \cdot \mu}) \ge 1$. Also, the surjection $P_{\mu} \to M_{\mu}$ is constructed as in Problem 4.2(2).

(3) Since we have the surjection $\Xi_{\mu} \twoheadrightarrow M_{\mu}$ from part (1) and Ξ_{μ} is by definition a projective object, the surjection $P_{\mu} \twoheadrightarrow M_{\mu}$ induces a factorization diagram

and then we get a map $\eta: \Xi_{\mu} \to P_{\mu}$ compatible with the surjections to M_{μ} .

Now it remains to show that η is an isomorphism. Recall from Problem 4.2 that P_{μ} is a projective cover of M_{μ} , so η must be surjective by the same argument thereof. To show the injectivity, define the weight submodule $K := \ker(\Xi_{\mu} \twoheadrightarrow P_{\mu}) \subset \Xi_{\mu}$. Then by (1) and (2), for any $w \in W$,

$$(\Xi_{\mu}: M_{w \cdot \mu}) = 1 \leqslant (P_{\mu}: M_{w \cdot \mu}) \implies (K: M_{w \cdot \mu}) = 0.$$

This makes sense because K admits a standard filtration by [Lecture 9, Lemma 1.8]. Therefore, we get K = 0, and $\eta: \Xi_{\mu} \xrightarrow{\sim} P_{\mu}$ is an isomorphism.

(4) It follows from part (3) directly that

$$[M_{w \cdot \mu} : L_{\mu}] = (P_{\mu} : M_{w \cdot \mu}) = (\Xi_{\mu} : M_{w \cdot \mu}) = 1.$$

⁴Hint: [Lecture 9, Lemma 3.5] for (1); [Lecture 9, Theorem 2.2] and [Corollary 4.15, Lecture 7] for (2). For (3), first find a surjection $\Xi_{\mu} \twoheadrightarrow P_{\mu}$ and then use (1) and (2).

⁵See [Gai05, Proposition 4.20] for a different proof of this fact.

References

[Gai05] Dennis Gaitsgory. Course Notes for Geometric Representation Theory. 2005. available at https:// people.mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.