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HOMEWORK 5 (DUE ON MAy 13)

Problem 5.1 (Lecture 10, Exercise 3.3). Let X be an affine smooth k-scheme. Prove: Any
k-derivation O(X) — O(X) is a differential operator of order 1, and the obtained map
O(X) & T(X) — FS'D(X)
is an isomorphism.
Solution. Let 0: O(X) — O(X) be any k-derivation, regarded as an element of 7(X). Then
for any f,g € O(X), we have
[0, f1(9) = 0(fg) — f - 0(g) = O(f) - g-

Here the first equality above is by definition of Lie bracket, and the second is because 0 satisfies
Leibniz rule. Since multiplying by 9(f) € O(X) is known to be a differential operator of order
0, we see 0 is a differential operator of order 1.

To prove the provided map is an isomorphism, we need to show that each element of FS1D(X)
can be uniquely written as a sum f + 0 with f € O(X) and 9 € T(X). From the argument
above we know f € FSOD(X) and 9 € FS'D(X), so that f + 0 € FS'D(X). Thus the following
k-linear map makes sense:

®: O0(X)eT(X) — FSI'D(X), (f,0) — f+0.

Now it suffices to check the bijectivity of ®.

For the injectivity, let f4+0 = 0 in im @, then f-g+9(g) = 0 for all g € O(X). In particular,
when g = 1 we obtain

F+o(1) =o0.

Here 0 € T(X) satisfies Leibniz rule, so (1) = 0(1-1) =1-9(1) + 1 - 9(1) = 20(1), which
implies 9(1) = 0. It follows that f = 0, and thus @ = 0 as well, which proves the injectivity.

For the surjectivity, let D € FSID(X). Caution that D does not need to satisfy Leibniz rule.
For any f € O(X), the operator

(D, f]: O(X) — O(X), s+ D(fs) = f-D(s)
is of order 0, so we get [D, f](1) € O(X), and [D, f|(s) = [D, f](1) - s holds for all s € O(X).
In particular, we take s = 1 € O(X) to deduce
(D, f](1) = D(f) = f- D(1) € O(X).
Using this formula of [D, f], for any g € O(X), we deduce
D(fg) - f-D(g9) =D, fl(g) = [D, fI(L) - g = D(f) - g — D(L) - fg.
This then gives us a formula of D(fg), written as
D(fg) =D(f)-g+ f-D(g) —D(1)- fg.

On the other hand, the formula of [D, f] also suggests to consider the map

D - D(1) = [D,=](1): O(X) — O(X), f+~— D, f).
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We claim that it is an element of 7(X) = Der(O(X),O(X)). Indeed, since the k-linearity of
[D,=](1) in f is clear, it is clearly an endomorphism on O(X), and we only need to verify
Leibniz rule. For this, we compute for any f,g € O(X) that

[D, fg](1) = D(fg) — D(1) - fg
=D(f) g+ f-D(g)—2D(1)" fg
=(D(f)=D@)-f)-g+f-(D(g) —D(1)-g)
=[D,fl(1)- g+ f-[D,gl(1).
Here the first and last equalities above are due to the identity D — D(1) = [D,=|(1), and the
second is by the prescribed formula of D(fg). This finishes the proof of surjectivity because

D=D(1)+[D,—],
with D(1) € O(X) and [D, =] € T(X). O

Problem 5.2 (Lecture 10, Exercise 7.3). Let X be a smooth k-scheme dimension n. Prove:
There is a unique right Dx-module structure on Q% such that for local sections f € O(U),
0e€T(U),and w e Q% (U), the right action is given by

w-f=fw, w-0=—-Lyw).

Solution. Since X is a smooth k-scheme, it suffices to check the unique Dx (U)-module structure
on Q% (U) for each open affine U C X. For this, we only need to concern about the action of
FSIDx (U). By Problem 5.1, it suffices to consider the actions of O(U) and T (U).

Let {z;}?, be an étale coordinate system locally on U. Then, according to [Lecture 10,
Proposition-Definition 1.21], {dz;, A - Adz;, : 1 < i3 < -+ < iy, < n} form a free basis of
Q% (U) as an O(U)-module, and {0, ---0;,,: 1 < i1 < -+ < iy, < n} is the dual basis of T(U).
Note that for | # k we have [0;,0x] = 0. To recognize the action of 7(U), we compute for
w € O%(U) that

w - (82 cee Olm) = (—1)m(£311 O--+0 ,Caim)(w).

Also, to check the compatibility of actions by O(U) and T (U), we need to check:

e The definition of Lie bracket [0, f], i.e. (w-09) - f — (fw) -0 =w-9I(f), and

e The composition equality w - (f0) = (w - f) - 0.
For the former, the given action means it is equivalent to —fLs(w) + Lo(fw) = O(f)w. As for
the latter, it suffices to check —Ls(w) = —Ls(fw). We see both equalities above are clear by
definition of L5!, so we get the right Dx-module structure. The uniqueness also follows from
the argument. g

Problem 5.3 (Lecture 10, Exercise 7.6). In [Lecture 10, Example 7.5], prove M, is isomorphic
to Ox as left Dxy-modules if and only if \ € Z.

Solution. Recall the construction of M, as follows. On X = A! — 0 = Spec k[z*!], with \ € k,
the Tx-action on the left Dy-module M, is given by 9, -2* — Az~!-2* = 0, and then we have
an Dx-module isomorphism

me >~ Dx/DX . (895 — /\xﬁl).

Note that we have an isomorphism between underlying Ox-module structures; note that any
isomorphism M_» ~ Ox of Ox-modules must be of form

t: Ox — Myn, fr—uf

n

1By definition, when U is affine with étale coordinate system {x;}}"_,, if we write w = w(z1,...,xn), then

Lo(w) = 0(w) — Zw(i),
i=1

where w(®) = w(x1,...,[0,2],...,2n).
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for some u € O%. Fix such an ¢ in the following, then by PBW theorem for Dx, this ¢ upgrades
to an isomorphism of Dx-modules if and only if u is such that

0x(f) = 0z - (uf),

where the right-hand side means the left action image of 9, € Dx. Since 0, € Ty, it satisfies
Leibniz rule and we get

0 - (uf) = 0z(uf) —u-0:(f) = 0u(uw) - f = Xa™t - (uf).
As this holds for all f € Ox, we see u = z* € O%. Also, 2* € O% = k[z*']* if and only if
A € Z. So we see ¢ is an isomorphism of D x-modules if and only if A € Z. a
Problem 5.4 (Lecture 11, Exercise 6.7). Let z: pt — X be a closed point of X. We write
0z = Z« ar (k). Prove:

(1) 0z ~ ky ®o, Dx as a right Dx-module.

(2) 6, is set-theoretically supported at z, i.e., for the complement open U = X — z, we
have d,. |y = 0.

(3) There exists a unique section Dirac, of §, such that Dirac, - f = f(z)Dirac, for any local
section f of Ox defined near =x.

(4) ¢, is generated by Dirac, as a right Dx-module.

Solution. (1) Note that x is an affine morphism (implying that x, qr is t-exact) and Dy, x is
locally free as an Ox-module. Then by definition we have that

0y = s ar (k) = z.(k Dy Dpi—x),

where Dy = Opy = k and Dy, x = 2*Dx. Combining this with derived projection formula,
we get an isomorphism of Dx-modules

de = 24 (k ®0,, ©*Dx) ~ vk ®oyx Dx = ks ®ox Dx.
(2) Consider the open embedding j: U — X. Using the isomorphism of part (1), we have

j*(sx ~ *(kx Rox Dx) Ej*kx Rox ]*DX

But as we know k, = x.k, it is clear that j*k, = 0. Here we regard k, as the skyscraper sheaf
at x and k the constant sheaf on X. So we have d,|y = j*J, = 0 as desired.

(3) We see from part (1) that d, ~ k, ®o, Dx. We claim that Dirac, € ¢, is the isomorphic
image of the canonical element 1 ® 1 € k,; ®p, Dx, and hence the existence and uniqueness
follows. To check 1 ® 1 satisfies the desired property, we let U, be any open neighborhood of x
in X and compute for any local section f € Ox(U,) that

1ol)-f=101-f) =18 fluy = f@)(1e1).
This completes the proof of Dirac, - f = f(z)Dirac,.

(4) By argument in part (3), we can identify Dirac, with 1® 1 € k; ®o, Dx. Since 1 ® 1
clearly generates k; ®o, Dx under the right Dx-action, the conclusion follows. O

Problem 5.5 (Lecture 11, Exercise 8.3). Let x: pt — X be a closed point of X. Prove
bp @ 0g 2 0.

(A formal proof exists, but you are encouraged to do some direct calculations to see H'(J, ®o
dz) = 0 unless i = 0, and H°(d, ®oy 0z) = dz.)

Solution. We present a formal proof. Apply base change theorem to the following Cartesian
diagram
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we see that z' o Ty dr = id,4 qr 0id’. Thus we are able to compute

02 ® 0y = Ty ark ®' 6, (by definition)
~ 2, qr(k @ 2'6,) (by projection formula)
= 2. ar(k ®' 2'z, ark) (by definition)
~ 2, qr (k @' id*,dRid!k) (by base change)
~ z, ar(k @' k).

But it is clear that k ®' k ~ k, and hence we get 0, ®" J, ~ Ty drk = 0z.



