HOMEWORK PROBLEMS

LECTURER: LIN CHEN

TA: WENHAN DAI

Homework 5 (Due on May 13)

Problem 5.1 (Lecture 10, Exercise 3.3). Let X be an affine smooth k-scheme. Prove: Any k-derivation $\mathcal{O}(X) \rightarrow \mathcal{O}(X)$ is a differential operator of order 1 , and the obtained map

$$
\mathcal{O}(X) \oplus \mathcal{T}(X) \longrightarrow \mathrm{F}^{\leqslant 1} \mathcal{D}(X)
$$

is an isomorphism.
Solution. Let $\partial: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ be any k-derivation, regarded as an element of $\mathcal{T}(X)$. Then for any $f, g \in \mathcal{O}(X)$, we have

$$
[\partial, f](g)=\partial(f g)-f \cdot \partial(g)=\partial(f) \cdot g
$$

Here the first equality above is by definition of Lie bracket, and the second is because ∂ satisfies Leibniz rule. Since multiplying by $\partial(f) \in \mathcal{O}(X)$ is known to be a differential operator of order 0 , we see ∂ is a differential operator of order 1 .

To prove the provided map is an isomorphism, we need to show that each element of $\mathrm{F}^{\leqslant 1} \mathcal{D}(X)$ can be uniquely written as a sum $f+\partial$ with $f \in \mathcal{O}(X)$ and $\partial \in \mathcal{T}(X)$. From the argument above we know $f \in \mathrm{~F}^{\leqslant 0} \mathcal{D}(X)$ and $\partial \in \mathrm{F}^{\leqslant 1} \mathcal{D}(X)$, so that $f+\partial \in \mathrm{F} \leqslant 1 \mathcal{D}(X)$. Thus the following k-linear map makes sense:

$$
\Phi: \mathcal{O}(X) \oplus \mathcal{T}(X) \longrightarrow \mathrm{F}^{\leqslant 1} \mathcal{D}(X), \quad(f, \partial) \longmapsto f+\partial .
$$

Now it suffices to check the bijectivity of Φ.
For the injectivity, let $f+\partial=0$ in im Φ, then $f \cdot g+\partial(g)=0$ for all $g \in \mathcal{O}(X)$. In particular, when $g=\mathbb{1}$ we obtain

$$
f+\partial(\mathbb{1})=0 .
$$

Here $\partial \in \mathcal{T}(X)$ satisfies Leibniz rule, so $\partial(\mathbb{1})=\partial(\mathbb{1} \cdot \mathbb{1})=\mathbb{1} \cdot \partial(\mathbb{1})+\mathbb{1} \cdot \partial(\mathbb{1})=2 \partial(\mathbb{1})$, which implies $\partial(\mathbb{1})=0$. It follows that $f=0$, and thus $\partial=0$ as well, which proves the injectivity.

For the surjectivity, let $D \in \mathrm{~F}^{\leqslant 1} \mathcal{D}(X)$. Caution that D does not need to satisfy Leibniz rule. For any $f \in \mathcal{O}(X)$, the operator

$$
[D, f]: \mathcal{O}(X) \longrightarrow \mathcal{O}(X), \quad s \longmapsto D(f s)-f \cdot D(s)
$$

is of order 0 , so we get $[D, f](\mathbb{1}) \in \mathcal{O}(X)$, and $[D, f](s)=[D, f](\mathbb{1}) \cdot s$ holds for all $s \in \mathcal{O}(X)$. In particular, we take $s=\mathbb{1} \in \mathcal{O}(X)$ to deduce

$$
[D, f](\mathbb{1})=D(f)-f \cdot D(\mathbb{1}) \in \mathcal{O}(X)
$$

Using this formula of $[D, f]$, for any $g \in \mathcal{O}(X)$, we deduce

$$
D(f g)-f \cdot D(g)=[D, f](g)=[D, f](\mathbb{1}) \cdot g=D(f) \cdot g-D(\mathbb{1}) \cdot f g
$$

This then gives us a formula of $D(f g)$, written as

$$
D(f g)=D(f) \cdot g+f \cdot D(g)-D(\mathbb{1}) \cdot f g
$$

On the other hand, the formula of $[D, f]$ also suggests to consider the map

$$
D-D(\mathbb{1})=[D,-](\mathbb{1}): \mathcal{O}(X) \longrightarrow \mathcal{O}(X), \quad f \longmapsto[D, f] .
$$

We claim that it is an element of $\mathcal{T}(X)=\operatorname{Der}(\mathcal{O}(X), \mathcal{O}(X))$. Indeed, since the k-linearity of $[D, \boldsymbol{-}](\mathbb{1})$ in f is clear, it is clearly an endomorphism on $\mathcal{O}(X)$, and we only need to verify Leibniz rule. For this, we compute for any $f, g \in \mathcal{O}(X)$ that

$$
\begin{aligned}
{[D, f g](\mathbb{1}) } & =D(f g)-D(\mathbb{1}) \cdot f g \\
& =D(f) \cdot g+f \cdot D(g)-2 D(\mathbb{1}) \cdot f g \\
& =(D(f)-D(\mathbb{1}) \cdot f) \cdot g+f \cdot(D(g)-D(\mathbb{1}) \cdot g) \\
& =[D, f](\mathbb{1}) \cdot g+f \cdot[D, g](\mathbb{1}) .
\end{aligned}
$$

Here the first and last equalities above are due to the identity $D-D(\mathbb{1})=[D,-](\mathbb{1})$, and the second is by the prescribed formula of $D(f g)$. This finishes the proof of surjectivity because

$$
D=D(\mathbb{1})+[D,-]
$$

with $D(\mathbb{1}) \in \mathcal{O}(X)$ and $[D,-] \in \mathcal{T}(X)$.
Problem 5.2 (Lecture 10, Exercise 7.3). Let X be a smooth k-scheme dimension n. Prove: There is a unique right \mathcal{D}_{X}-module structure on Ω_{X}^{n} such that for local sections $f \in \mathcal{O}(U)$, $\partial \in \mathcal{T}(U)$, and $\omega \in \Omega_{X}^{n}(U)$, the right action is given by

$$
\omega \cdot f=f \omega, \quad \omega \cdot \partial=-\mathcal{L}_{\partial}(\omega)
$$

Solution. Since X is a smooth k-scheme, it suffices to check the unique $\mathcal{D}_{X}(U)$-module structure on $\Omega_{X}^{n}(U)$ for each open affine $U \subset X$. For this, we only need to concern about the action of $\mathrm{F} \leqslant 1 \mathcal{D}_{X}(U)$. By Problem 5.1, it suffices to consider the actions of $\mathcal{O}(U)$ and $\mathcal{T}(U)$.

Let $\left\{x_{i}\right\}_{i=1}^{n}$ be an étale coordinate system locally on U. Then, according to [Lecture 10, Proposition-Definition 1.21], $\left\{\mathrm{d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{m}}: 1 \leqslant i_{1}<\cdots<i_{m} \leqslant n\right\}$ form a free basis of $\Omega_{X}^{n}(U)$ as an $\mathcal{O}(U)$-module, and $\left\{\partial_{i_{1}} \cdots \partial_{i_{m}}: 1 \leqslant i_{1}<\cdots<i_{m} \leqslant n\right\}$ is the dual basis of $\mathcal{T}(U)$. Note that for $l \neq k$ we have $\left[\partial_{l}, \partial_{k}\right]=0$. To recognize the action of $\mathcal{T}(U)$, we compute for $\omega \in \mathcal{O}_{X}^{n}(U)$ that

$$
\omega \cdot\left(\partial_{i_{1}} \cdots \partial_{i_{m}}\right)=(-1)^{m}\left(\mathcal{L}_{\partial_{i_{1}}} \circ \cdots \circ \mathcal{L}_{\partial_{i_{m}}}\right)(\omega)
$$

Also, to check the compatibility of actions by $\mathcal{O}(U)$ and $\mathcal{T}(U)$, we need to check:

- The definition of Lie bracket $[\partial, f]$, i.e. $(\omega \cdot \partial) \cdot f-(f \omega) \cdot \partial=\omega \cdot \partial(f)$, and
- The composition equality $\omega \cdot(f \partial)=(\omega \cdot f) \cdot \partial$.

For the former, the given action means it is equivalent to $-f \mathcal{L}_{\partial}(\omega)+\mathcal{L}_{\partial}(f \omega)=\partial(f) \omega$. As for the latter, it suffices to check $-\mathcal{L}_{f \partial}(\omega)=-\mathcal{L}_{\partial}(f \omega)$. We see both equalities above are clear by definition of $\mathcal{L}_{\partial}{ }^{1}$, so we get the right \mathcal{D}_{X}-module structure. The uniqueness also follows from the argument.

Problem 5.3 (Lecture 10, Exercise 7.6). In [Lecture 10, Example 7.5], prove $\mathcal{M}_{x^{\lambda}}$ is isomorphic to \mathcal{O}_{X} as left \mathcal{D}_{X}-modules if and only if $\lambda \in \mathbb{Z}$.

Solution. Recall the construction of $\mathcal{M}_{x^{\lambda}}$ as follows. On $X=\mathbb{A}^{1}-0=\operatorname{Spec} k\left[x^{ \pm 1}\right]$, with $\lambda \in k$, the \mathcal{T}_{X}-action on the left $\mathcal{D}_{X^{-}}$-module $\mathcal{M}_{x^{\lambda}}$ is given by $\partial_{x} \cdot x^{\lambda}-\lambda x^{-1} \cdot x^{\lambda}=0$, and then we have an \mathcal{D}_{X}-module isomorphism

$$
\mathcal{M}_{x^{\lambda}} \simeq \mathcal{D}_{X} / \mathcal{D}_{X} \cdot\left(\partial_{x}-\lambda x^{-1}\right)
$$

Note that we have an isomorphism between underlying \mathcal{O}_{X}-module structures; note that any isomorphism $\mathcal{M}_{x^{\lambda}} \simeq \mathcal{O}_{X}$ of $\mathcal{O}_{X^{-}}$-modules must be of form

$$
\iota: \mathcal{O}_{X} \longrightarrow \mathcal{M}_{x^{\lambda}}, \quad f \longmapsto u f
$$

[^0]for some $u \in \mathcal{O}_{X}^{\times}$. Fix such an ι in the following, then by PBW theorem for \mathcal{D}_{X}, this ι upgrades to an isomorphism of \mathcal{D}_{X}-modules if and only if u is such that
$$
\partial_{x}(f)=\partial_{x} \cdot(u f)
$$
where the right-hand side means the left action image of $\partial_{x} \in \mathcal{D}_{X}$. Since $\partial_{x} \in \mathcal{T}_{X}$, it satisfies Leibniz rule and we get
$$
\partial_{x} \cdot(u f)=\partial_{x}(u f)-u \cdot \partial_{x}(f)=\partial_{x}(u) \cdot f=\lambda x^{-1} \cdot(u f)
$$

As this holds for all $f \in \mathcal{O}_{X}$, we see $u=x^{\lambda} \in \mathcal{O}_{X}^{\times}$. Also, $x^{\lambda} \in \mathcal{O}_{X}^{\times}=k\left[x^{ \pm 1}\right]^{\times}$if and only if $\lambda \in \mathbb{Z}$. So we see ι is an isomorphism of \mathcal{D}_{X}-modules if and only if $\lambda \in \mathbb{Z}$.

Problem 5.4 (Lecture 11, Exercise 6.7). Let $x:$ pt $\rightarrow X$ be a closed point of X. We write $\delta_{x}:=x_{*, \mathrm{dR}}(k)$. Prove:
(1) $\delta_{x} \simeq k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$ as a right \mathcal{D}_{X}-module.
(2) δ_{x} is set-theoretically supported at x, i.e., for the complement open $U:=X-x$, we have $\left.\delta_{x}\right|_{U}=0$.
 section f of \mathcal{O}_{X} defined near x.
(4) δ_{x} is generated by Dirac_{x} as a right \mathcal{D}_{X}-module.

Solution. (1) Note that x is an affine morphism (implying that $x_{*, \mathrm{dR}}$ is t-exact) and $\mathcal{D}_{\mathrm{pt} \rightarrow X}$ is locally free as an \mathcal{O}_{X}-module. Then by definition we have that

$$
\delta_{x}=x_{*, \mathrm{dR}}(k)=x_{*}\left(k \otimes_{\mathcal{D}_{\mathrm{pt}}} \mathcal{D}_{\mathrm{pt} \rightarrow X}\right)
$$

where $\mathcal{D}_{\mathrm{pt}}=\mathcal{O}_{\mathrm{pt}}=k$ and $\mathcal{D}_{\mathrm{pt} \rightarrow X}=x^{*} \mathcal{D}_{X}$. Combining this with derived projection formula, we get an isomorphism of \mathcal{D}_{X}-modules

$$
\delta_{x}=x_{*}\left(k \otimes_{\mathcal{O}_{\mathrm{pt}}} x^{*} \mathcal{D}_{X}\right) \simeq x_{*} k \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}=k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}
$$

(2) Consider the open embedding $j: U \hookrightarrow X$. Using the isomorphism of part (1), we have

$$
j^{*} \delta_{x} \simeq j^{*}\left(k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}\right) \simeq j^{*} k_{x} \otimes_{\mathcal{O}_{X}} j^{*} \mathcal{D}_{X}
$$

But as we know $k_{x}=x_{*} k$, it is clear that $j^{*} k_{x}=0$. Here we regard k_{x} as the skyscraper sheaf at x and k the constant sheaf on X. So we have $\left.\delta_{x}\right|_{U}=j^{*} \delta_{x}=0$ as desired.
(3) We see from part (1) that $\delta_{x} \simeq k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$. We claim that Dirac ${ }_{x} \in \delta_{x}$ is the isomorphic image of the canonical element $1 \otimes \mathbb{1} \in k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$, and hence the existence and uniqueness follows. To check $1 \otimes \mathbb{1}$ satisfies the desired property, we let U_{x} be any open neighborhood of x in X and compute for any local section $f \in \mathcal{O}_{X}\left(U_{x}\right)$ that

$$
(1 \otimes \mathbb{1}) \cdot f=1 \otimes(\mathbb{1} \cdot f)=\left.1 \otimes f\right|_{\{x\}}=f(x)(1 \otimes \mathbb{1})
$$

This completes the proof of Dirac $_{x} \cdot f=f(x)$ Dirac $_{x}$.
(4) By argument in part (3), we can identify Dirac Dith $_{x}$ wi $\mathbb{1} \in k_{x} \otimes \mathcal{O}_{X} \mathcal{D}_{X}$. Since $1 \otimes \mathbb{1}$ clearly generates $k_{x} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$ under the right \mathcal{D}_{X}-action, the conclusion follows.

Problem 5.5 (Lecture 11, Exercise 8.3). Let $x:$ pt $\rightarrow X$ be a closed point of X. Prove

$$
\delta_{x} \otimes!\delta_{x} \simeq \delta_{x}
$$

(A formal proof exists, but you are encouraged to do some direct calculations to see $\mathcal{H}^{i}\left(\delta_{x} \otimes_{\mathcal{O}_{X}}\right.$ $\left.\delta_{x}\right)=0$ unless $i=0$, and $\left.\mathcal{H}^{0}\left(\delta_{x} \otimes_{\mathcal{O}_{X}} \delta_{x}\right)=\delta_{x}.\right)$

Solution. We present a formal proof. Apply base change theorem to the following Cartesian diagram

we see that $x^{!} \circ x_{*, \mathrm{dR}} \cong \mathrm{id}_{*, \mathrm{dR}} \circ \mathrm{id}^{!}$. Thus we are able to compute

$$
\begin{array}{rlr}
\delta_{x} \otimes^{!} \delta_{x} & =x_{*, \mathrm{dR}} k \otimes^{!} \delta_{x} & \text { (by definition) } \\
& \simeq x_{*, \mathrm{dR}}\left(k \otimes \otimes^{!} x^{!} \delta_{x}\right) & \text { (by projection formula) } \\
& =x_{*, \mathrm{dR}}\left(k \otimes!x^{!} x_{*, \mathrm{dR}} k\right) & \text { (by definition) } \\
& \simeq x_{*, \mathrm{dR}}\left(k \otimes!\mathrm{id}_{*, \mathrm{dR}} \mathrm{id}^{!} k\right) & \text { (by base change) } \\
& \simeq x_{*, \mathrm{dR}}(k \otimes!k) .
\end{array}
$$

But it is clear that $k \otimes!k \simeq k$, and hence we get $\delta_{x} \otimes!\delta_{x} \simeq x_{*, \mathrm{dR}} k=\delta_{x}$.

[^0]: ${ }^{1}$ By definition, when U is affine with étale coordinate system $\left\{x_{i}\right\}_{i=1}^{n}$, if we write $\omega=\omega\left(x_{1}, \ldots, x_{n}\right)$, then

 $$
 \mathcal{L}_{\partial}(\omega):=\partial(\omega)-\sum_{i=1}^{n} \omega^{(i)}
 $$

 where $\omega^{(i)}=\omega\left(x_{1}, \ldots,\left[\partial, x_{i}\right], \ldots, x_{n}\right)$.

