HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

Homework 6 (Due on May 27)

Problem 6.1 (Lecture 12, Exercise 3.9). Show that

$$
\operatorname{dim} \mathscr{F} \ell_{G}^{=w}=\ell(w) .
$$

If you do not know the basics about reductive groups, prove this for semisimple G.
Solution. By [Lecture 12, Lemma 3.7] we have that

$$
\mathscr{F} \ell_{G}^{=w} \simeq N /\left(\operatorname{Ad}_{w}(N) \cap N\right) \simeq \operatorname{Ad}_{w}(N) \cap N^{-}
$$

Recall that $\operatorname{dim} N$ is the number of positive roots, and the goal now is to also reformulate $\operatorname{Ad}_{w}(N) \cap N^{-}$in terms of positive roots in Φ^{+}. For this, provided the root space decomposition $\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, let $X_{\alpha} \in \mathfrak{g}_{\alpha}$ be the root vector corresponding to α; this defines the root subgroup

$$
U_{\alpha}:=\left\{\exp \left(s X_{\alpha}\right): s \in k\right\} .
$$

Observe that each U_{α} is a 1-dimensional algebraic group over k, and we can view the generator of U_{α} as the map $u_{\alpha}: \mathbb{G}_{\mathrm{a}} \rightarrow G, s \mapsto \exp \left(s X_{\alpha}\right)$. Also, to consider the W-adjoint action on U_{α}, we compute $u_{w(\alpha)}(s)=\exp \left(s X_{w(\alpha)}\right)=\exp \left(s \operatorname{Ad}_{w}\left(X_{\alpha}\right)\right)=\left(\operatorname{Ad}_{w}\left(u_{\alpha}\right)\right)(s)$, and it follows that

$$
\operatorname{Ad}_{w}\left(U_{\alpha}\right)=U_{w(\alpha)}
$$

On the other hand, there are isomorphisms of k-schemes $N \simeq \prod_{\alpha \in \Phi^{+}} U_{\alpha}$ and $N^{-} \simeq \prod_{\alpha \in \Phi^{-}} U_{\alpha}$, so in particular $\operatorname{Ad}_{w}(N) \simeq \prod_{\alpha \in \Phi^{+}} U_{w(\alpha)}$. To conclude, we obtain

$$
\operatorname{Ad}_{w}(N) \cap N^{-} \simeq \prod_{\alpha \in \Phi^{+}} U_{w(\alpha)} \cap \prod_{\beta \in \Phi^{+}} U_{-\beta} \simeq \prod_{\substack{\alpha \in \Phi^{+} \\ w(\alpha) \in \Phi^{-}}} U_{\alpha}
$$

because $U_{w(\alpha)} \cap U_{-\beta}=\emptyset$ unless $w(\alpha)=-\beta \in \Phi^{-}$. Again, by $\operatorname{dim} U_{\alpha}=1$ we see

$$
\operatorname{dim} \mathscr{F} \ell_{G}^{=w}=\#\left\{\alpha \in \Phi^{+}: w(\alpha) \in \Phi^{-}\right\}=\ell(w)
$$

where the last equality is by definition of $\ell(w)$.
Problem 6.2 (Lecture 12, Exercise 4.9). Deduce the BGG theorem from the localization theorem (see [Lecture 12, Theorem 4.7]) ${ }^{1}$.

Solution. Given $\lambda, \mu \in \mathfrak{t}^{*}$, there are w and w^{\prime} such that $\lambda=w \cdot(-2 \rho)$ and $\mu=w^{\prime} \cdot(-2 \rho)$. To deduce the BGG theorem, assume $\left[M_{\lambda}: L_{\mu}\right] \neq 0$ and it suffices to prove $w^{\prime} \leq w$.

By localization theorem, we have

$$
M_{\lambda} \longleftrightarrow \Delta_{w}, \quad L_{\mu} \longleftrightarrow \mathrm{IC}_{w^{\prime}}
$$

Here $\Delta_{w}:=i_{w,!} \mathcal{O} \mathscr{\mathscr { F } \ell} \overline{\bar{G}}^{w}$ with $i_{w}: \mathscr{F} \ell_{G}{ }^{w} \hookrightarrow \mathscr{F} \ell_{G}$. Since the Schubert cell $\mathscr{F} \ell_{G}^{w}$ is a locally closed subset of $\mathscr{F} \ell_{G}$ and $\operatorname{supp}\left(\Delta_{w}\right) \subset \operatorname{supp}\left(\mathcal{O}_{\mathscr{F} \ell} \ell_{G}^{w}\right)$ by property of !-pushforward, we see Δ_{w} is settheoretically supported on the closure of $\mathscr{F} \ell_{G}^{=w}$, which is $\mathscr{F} \ell_{G}^{\leq w}$. In particular, any subquotient of Δ_{w} is set-theoretically supported on $\mathscr{F} \ell_{G}^{\leq w}$. From the assumption $\left[M_{\lambda}: L_{\mu}\right] \neq 0$, we know $\mathrm{IC}_{w^{\prime}}$ is isomorphic to a subquotient of Δ_{w}, and hence supported on $\mathscr{F} \ell_{G}^{\leq w}$.

[^0]Provided the above, we get $\operatorname{supp}\left(\Delta_{w^{\prime}}\right)=\mathscr{F} \ell_{\bar{G}} \leq w^{\prime}$, and it suffices to show the Bruhat cell $C_{w^{\prime}}:=\mathscr{F} \ell \overline{\bar{G}}^{w^{\prime}}$ is contained in $\operatorname{supp}\left(\mathrm{IC}_{w^{\prime}}\right)$. Indeed, by definition we have $\mathrm{IC}_{w^{\prime}}=\operatorname{im}\left(\Delta_{w^{\prime}} \rightarrow \nabla_{w^{\prime}}\right)$; on the other hand $\left.\Delta_{w^{\prime}}\right|_{C_{w^{\prime}}}=\left.\nabla_{w^{\prime}}\right|_{C_{w^{\prime}}}=\mathcal{O}_{C_{w^{\prime}}}$, implying that $\left.\mathrm{IC}_{w^{\prime}}\right|_{C_{w^{\prime}}}=\mathcal{O}_{C_{w^{\prime}}}$. This proves that $\mathrm{IC}_{w^{\prime}}$ is non-zero when restricted to $\mathscr{F} \ell_{G}^{=\bar{w}^{\prime}}$, and hence $w^{\prime} \leq w$. It follows that $\mu \preceq \subset \lambda$ as desired.

Problem 6.3 (Lecture 12, Exercise 4.10). Prove that when $G=\mathrm{SL}_{2}$, the homomorphism $\alpha: U(\mathfrak{g}) \rightarrow \mathcal{D}\left(\mathscr{F} \ell_{G}\right)$ induces an isomorphism

$$
U(\mathfrak{g})_{\chi_{0}} \simeq \mathcal{D}\left(\mathscr{F} \ell_{G}\right)
$$

This is a special case of part (1) of localization theorem (see [Lecture 12, Theorem 4.7]).
Solution. When $G=\mathrm{SL}_{2}$, we have $\mathscr{F} \ell_{G}=\mathbb{P}^{1}$ and need to consider $\alpha: U(\mathfrak{g})=U\left(\mathfrak{s l}_{2}\right) \longrightarrow \mathcal{D}\left(\mathbb{P}^{1}\right)$. Let e, f, h be a standard basis of $\mathfrak{g}=\mathfrak{s l}_{2}$. Recall that $Z(U(\mathfrak{g}))$ is generated by the Casimir element $\Omega=e f+f e+h^{2} / 2 \in U(\mathfrak{g})$. Let $U=\{(x: 1): x \in k\}$ be a standard affine open in \mathbb{P}^{1}. For each coordinate parameter u of U, by computing

$$
\alpha(\mathbf{g}) \cdot u=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \exp (t \mathbf{g})(\exp (-t \mathbf{g}) u), \quad \mathbf{g} \in\{e, f, h\}
$$

we see, depending on the choice of u,

$$
\alpha(e)=-\partial_{u}, \quad \alpha(f)=u^{2} \partial_{u}, \quad \alpha(h)=-2 u \partial_{u}
$$

It follows that

$$
\begin{aligned}
\alpha(\Omega) & =\alpha\left(e f+f e+h^{2} / 2\right) \\
& =\left(-\partial_{u}\right) u^{2} \partial_{u}+u^{2} \partial_{u}\left(-\partial_{u}\right)+\left(2 u \partial_{u}\right)^{2} / 2 \\
& =-2 u \partial_{u}-u^{2} \partial_{u}^{2}-u^{2} \partial_{u}^{2}+2 u \partial_{u}+2 u^{2} \partial_{u}^{2} \\
& =0
\end{aligned}
$$

Since the central character χ_{0} corresponds to $Z(U(\mathfrak{g}))=k[\Omega]$ and $\alpha(\Omega)=0$, the map α factors through $U(\mathfrak{g})_{\chi_{0}}$. So we get

$$
\alpha_{\chi_{0}}: U(\mathfrak{g})_{\chi_{0}} \longrightarrow \mathcal{D}\left(\mathscr{F} \ell_{G}\right)
$$

Note that both sides of $\alpha_{\chi_{0}}$ admits graded structure, and we claim that

$$
\operatorname{gr}^{1}\left(U(\mathfrak{g})_{\chi_{0}}\right)=\mathfrak{g} \longrightarrow \mathcal{T}\left(\mathscr{F} \ell_{G}\right)=\operatorname{gr}^{1} \mathcal{D}\left(\mathscr{F} \ell_{G}\right)
$$

is surjective. If this is true, then $\alpha_{\chi_{0}}$ is surjective as well. Indeed, the claim follows from that $\mathcal{T}\left(\mathscr{F} \ell_{G}\right)=\mathcal{O}_{\mathscr{F} \ell_{G}}(2)$, whose global section is generated by $\alpha(e), \alpha(f), \alpha(h)$, meaning that α is surjective when restricted to \mathfrak{g}. Thus we have proved the claim as well as the surjectivity of $\alpha_{\chi_{0}}$. Now it remains to check the injectivity. For this, we have the embedding $\operatorname{gr}{ }^{\bullet} \mathcal{D}\left(\mathscr{F} \ell_{G}\right) \hookrightarrow$ $\left(\mathrm{Sym}^{\bullet} \mathcal{T}\right)\left(\mathscr{F} \ell_{G}\right)$ that is an identity on degree 1 part. Also, the diagram below commutes:

Here the map $\operatorname{gr}^{\bullet}\left(U(\mathfrak{g})_{\chi_{0}}\right) \rightarrow\left(\operatorname{Sym}^{\bullet} \mathcal{T}\right)\left(\mathscr{F} \ell_{G}\right)$ is surjective because we have shown $\alpha_{\chi_{0}}$ is surjective on degree 1 part. To show this map is injective, we only need for all $n \geqslant 1$ that

$$
\operatorname{dim} \operatorname{gr}^{n}\left(U(\mathfrak{g})_{\chi_{0}}\right)=\operatorname{dim}\left(\operatorname{Sym}^{n} \mathcal{T}\right)\left(\mathscr{F} \ell_{G}\right)
$$

Note that $\operatorname{Sym}^{n} \mathcal{T}=\operatorname{Sym}^{n} \mathcal{O}(2)=\mathcal{O}_{\mathbb{P}^{1}}(2 n)^{2}$, so the right-hand side equals $\operatorname{dim} \Gamma\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2 n)\right)=$ $2 n+1$. To compute the left-hand side, using PBW theorem, $\operatorname{gr}^{n}\left(U(\mathfrak{g})_{\chi_{0}}\right)$ has a basis $\left\{e^{i} f^{n-i}: 0 \leqslant\right.$ $i \leqslant n\} \cup\left\{e^{i} f^{n-i-1} h: 0 \leqslant i \leqslant n-1\right\}$, so it also has dimension $2 n+1$. This completes the proof that $\alpha_{\chi_{0}}$ is injective, and hence an isomorphism.

[^1]Problem 6.4 (Lecture 13, Exercise 1.5). Let $e \in X \simeq G / B$ be the closed point corresponding to the chosen Borel subgroup B. We aim to prove that, as stated in the localization theorem, we can produce the (left) Verma module $M_{-2 \rho}$ with highest weight -2ρ if using the left \mathcal{D}-module corresponding to δ_{e}. Let $\delta_{e}^{1} \simeq \delta_{e} \otimes \omega_{X}^{-1}$ be the left \mathcal{D}-module corresponding to δ_{e}. Consider the left $U(\mathfrak{g})$-module $V:=\Gamma\left(X, \delta_{e}^{1}\right)$.
(1) Prove: There is a canonical isomorphism

$$
\delta_{e}^{1} \simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \ell
$$

where ℓ is the fiber of ω_{X}^{-1} at e, viewed as a skyscraper sheaf.
(2) Let $\ell \hookrightarrow V$ be the injection induced by taking global sections for the embedding $\mathcal{O}_{X} \otimes_{\mathcal{O}_{X}}$ $\ell \hookrightarrow \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \ell$. Prove ${ }^{3}$: This line in V is a weight subspace of weight -2ρ.
(3) Prove ${ }^{4}:$ The subalgebra $\mathfrak{b} \subset \mathfrak{g}$ stabilizes the line $\ell \subset V^{2 \rho}$.
(4) Construct a $U(\mathfrak{g})$-linear map

$$
M_{-2 \rho} \longrightarrow V
$$

and prove it is an isomorphism.
Solution. (1) By Problem 5.4, there is an isomorphism $\delta_{e} \simeq k_{e} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$ of right \mathcal{D}_{X}-modules. On the other hand, by definition we have the commutative diagram

which leads to $k_{e} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \omega_{X}^{-1} \simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} k_{e} \otimes_{\mathcal{O}_{X}} \omega_{X}^{-1}$. If we write $i: e \hookrightarrow X$, then by construction we have an isomorphism $\ell \simeq i_{*} i^{*} \omega_{X}^{-1}$ of \mathcal{O}_{X}-modules. Thus,

$$
\begin{array}{rlr}
\delta_{e}^{1} & \simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*} k \otimes_{\mathcal{O}_{X}} \omega_{X}^{-1} & \text { (by argument above) } \\
& \simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*}\left(k \otimes_{\mathcal{O}_{e}} i^{*} \omega_{X}^{-1}\right) & \text { (by projection formula) } \\
& =\mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*} i^{*} \omega_{X}^{-1} & \left(\text { by } \mathcal{O}_{e}=k\right) \\
& \simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \ell . & \text { (by prescribed description of } \ell \text {) }
\end{array}
$$

(2) By construction we have $\ell \simeq \wedge^{d} \mathcal{T}_{X, e} \simeq \wedge^{d} \mathfrak{n}^{-}$. Let v be a generator of this line ℓ, then v must be of form $\bigwedge_{\alpha \in \Phi^{-}} v_{\alpha}$. For each $h \in \mathfrak{h}$, we have by definition of \mathfrak{h}-action that

$$
h(v)=\sum_{\beta \in \Phi^{-}} \bigwedge_{\alpha \in \Phi^{-}-\{\beta\}} v_{\alpha} \wedge h\left(v_{\beta}\right)=\sum_{\beta \in \Phi^{-}} \beta(h) \cdot \bigwedge_{\alpha \in \Phi^{-}} v_{\alpha}=\sum_{\beta \in \Phi^{-}} \beta(h) \cdot v
$$

Note that $\sum_{\beta \in \Phi^{-}} \beta(h)=-2 \rho(h)$, so $\ell \subset V$ is a weight subspace of weight -2ρ.
(3) Recall that the PBW theorem for \mathcal{D}_{X} dictates $\operatorname{gr}{ }^{\bullet} \mathcal{D}_{X} \cong \operatorname{Sym}_{\mathcal{O}_{X}}^{\bullet} \mathcal{T}_{X}$, which further gives rise to a canonical filtration on V, where $\mathrm{F}^{\leqslant i} V$ is the image of ℓ under the action of $\mathrm{F}^{\leqslant i} \mathcal{D}_{X}$. Recall that the \mathfrak{g}-action is realized by \mathcal{D}_{X} through the map $\mathfrak{g} \rightarrow \mathcal{T}_{X} \rightarrow \mathrm{~F} \leqslant 1 \mathcal{D}_{X} \hookrightarrow \mathcal{D}_{X}$. Restricting this to $\mathfrak{b} \subset \mathfrak{g}$, the map $\mathfrak{b} \otimes \ell \rightarrow V$ factors through $\mathrm{F}^{\leqslant 1} V$ (as the canonical map $U(\mathfrak{g}) \rightarrow \mathcal{D}_{X}$ is compatible with the filtration). To show that ℓ is stabilized by \mathfrak{b}, it suffices to show that via the prescribed map $\mathfrak{b} \hookrightarrow \mathfrak{g} \rightarrow \mathcal{D}_{X}$, the image of $\mathfrak{b} \otimes \ell$ lies in $\mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \ell$. For this, we only need to show the composition

$$
\mathfrak{b} \otimes \ell \longrightarrow \mathrm{F}^{\leqslant 1} V \longrightarrow \mathrm{gr}^{1} V
$$

[^2]is zero; but we observe $\operatorname{gr}^{1} V=\left(\operatorname{gr}^{1} \mathcal{D}_{X}\right)(\ell)=\mathcal{T}_{X}(\ell) \simeq \mathfrak{n}^{-} \otimes \ell$, which means the desired composition is induced by the map $\mathfrak{b} \rightarrow \mathfrak{n}^{-}$.
(4) Choose a set-theoretical map $M_{-2 \rho} \rightarrow V$ such that the highest weight vector $v_{-2 \rho} \in M_{-2 \rho}$ is mapped to a generator $v \in \ell$ of $\ell \subset V$. By part (3), $\ell=k v$ is stabilized by \mathfrak{b}, so the map
$$
M_{-2 \rho}=k_{-2 \rho} \otimes_{U(\mathfrak{b})} U(\mathfrak{g}) \longrightarrow V
$$
is $U(\mathfrak{g})$-linear. To show this is an isomorphism, it suffices to show the bijectivity. The surjectivity follows from that V is generated by \mathcal{D}_{X} from ℓ and $U(\mathfrak{g}) \rightarrow \mathcal{D}_{X}$ is surjective. As for the injectivity, suppose $t \in U\left(\mathfrak{n}^{-}\right)$is such that $t \cdot v=0$ in V, then we must have $t \cdot v_{-2 \rho}=0$ in $M_{-2 \rho}$ because the map is $U(\mathfrak{g})$-linear. This completes the proof that $M_{-2 \rho} \simeq V$.
Problem 6.5 (Lecture 13, Exercise 3.12). For $G=\mathrm{SL}_{2}$, prove $\mathfrak{p}: \widetilde{\mathcal{N}} \rightarrow \mathcal{N}$ is the blow-up of \mathcal{N} at the point $0 \in \mathcal{N}$.

Solution. For $\mathfrak{g}=\mathfrak{s l}_{2}$, we have $\mathcal{N}=\left\{X \in \mathfrak{s l}_{2}\right.$: $\left.\operatorname{det} X=0\right\}$. If we write $X=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \in \mathrm{M}_{2}(k)$ satisfying the condition $\operatorname{det} X=-a^{2}-b c=0$, we can realize the nilpotent cone \mathcal{N} as the affine k-scheme

$$
\mathcal{N}=\operatorname{Spec} k[a, b, c] /\left(a^{2}+b c\right)
$$

Recall that the blow-up of \mathcal{N} at 0 is $\operatorname{Proj}(\mathcal{R}(\mathcal{I}))$, where $\mathcal{R}(\mathcal{I})=\bigoplus_{n \geqslant 0} \mathcal{I}^{n}$ is the Rees algebra with \mathcal{I} the defining ideal of $0 \in \mathcal{N}$, generated by images of a, b, c satisfying $a^{2}+b c=0$.

On the other hand, by definition of Springer resolution, at $0 \in \mathcal{N}$ we have

$$
\widetilde{\mathcal{N}} \simeq T^{*}(G / B)=T^{*} \mathbb{P}^{1} \simeq \operatorname{Spec}_{\mathbb{P}^{1}}\left(\operatorname{Sym}_{\mathcal{O}_{\mathbb{P}^{1}}} \mathcal{T}_{\mathbb{P}^{1}}\right)
$$

Here the last isomorphism is given by [Lecture 13, Construction 2.4]. To compute the relative spectrum on the right-hand side, we use $\mathcal{T}_{\mathbb{P}^{1}}=\mathcal{O}_{\mathbb{P}^{1}}(2)^{5}$ to get

$$
\operatorname{Sym}_{\mathcal{O}_{\mathbb{P}^{1}}}^{\bullet} \mathcal{T}_{\mathbb{P}^{1}}=\operatorname{Sym}_{\mathcal{O}_{\mathbb{P}^{1}}} \mathcal{O}_{\mathbb{P}^{1}}(2)=\bigoplus_{n \geqslant 0} \operatorname{Sym}^{n} \mathcal{O}_{\mathbb{P}^{1}}(2)=\bigoplus_{n \geqslant 0} \mathcal{O}_{\mathbb{P}^{1}}(2 n)
$$

Combining these up, to show that \widetilde{N} is the blow-up of \mathcal{N} at 0 , it remains to check $\operatorname{Proj}(\mathcal{R}(\mathcal{I})) \simeq$ $\operatorname{Spec}_{\mathbb{P}^{1}}\left(\bigoplus_{n \geqslant 0} \mathcal{O}_{\mathbb{P}^{1}}(2 n)\right)$ as k-schemes. But this is true because each section of $\mathcal{R}(\mathcal{I})$ generates a regular function in a, b, c, and the degree of a is reduced by $2 k \in \mathbb{Z}$ for some k via the relation $a^{2}+b c=0$.

[^3]
[^0]: ${ }^{1}$ Hint: Prove any subquotient of Δ_{w} is set-theoretically support on the Schubert variety $\mathscr{F} \ell \leq w$.

[^1]: ${ }^{2}$ See the proof of Problem 6.5 for details in this standard fact.

[^2]: ${ }^{3}$ Hint: $\ell \simeq \wedge^{d} \mathcal{T}_{X, e}$ and $\mathcal{T}_{X, e} \simeq \mathfrak{n}^{-}$.
 ${ }^{4}$ Hint: Consider the PBW filtration of \mathcal{D}_{X} and the induced filtration on V. Show that $\mathfrak{b} \otimes \ell \rightarrow V$ factors through $\mathrm{F} \leqslant 1 V$ and the composition $\mathfrak{b} \otimes \ell \rightarrow \mathrm{F}^{\leqslant 1} V \rightarrow \mathrm{gr}^{1} V$ is zero.

[^3]: ${ }^{5}$ For an explanation, notice that $\operatorname{deg}\left(\mathcal{T}_{\mathbb{P}^{1}}\right)+\operatorname{deg}\left(\mathcal{O}_{\mathbb{P}^{1}}\right)=\chi\left(\mathbb{P}^{1}\right)=2$ with $\operatorname{deg}\left(\mathcal{O}_{\mathbb{P}^{1}}\right)=0$, so $\mathcal{T}_{\mathbb{P}^{1}}=\mathcal{O}_{\mathbb{P}^{1}}(2)$. Alternatively, we can construct the tangent bundle $\mathcal{T}_{\mathbb{P}^{1}}$ explicitly as follows. Cover \mathbb{P}^{1} by standard affine opens $U_{0}=\left\{\left(1: x_{1}\right): x_{1} \in k\right\}$ and $U_{1}=\left\{\left(x_{0}: 1\right): x_{0} \in k\right\}$ and write down the transition function on $U_{0} \cap U_{1}$ as $x_{1}=x_{0}^{-1}$. It follows that $d\left(x_{0}^{-1}\right) / d x=-1 / x^{2}$, which also proves $\mathcal{T}_{\mathbb{P}^{1}}=\mathcal{O}_{\mathbb{P}^{1}}(2)$.

