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HOMEWORK PROBLEMS

LECTURER: LIN CHEN
TA: WENHAN DAI

HOMEWORK 6 (DUE ON MAy 27)

Problem 6.1 (Lecture 12, Exercise 3.9). Show that
dim ZUGY = (w).
If you do not know the basics about reductive groups, prove this for semisimple G.

Solution. By [Lecture 12, Lemma 3.7] we have that
FUG" ~ N/(Ady(N)NN) ~ Ad,,(N)NN~.

Recall that dim IV is the number of positive roots, and the goal now is to also reformulate
Ad,(N)N N~ in terms of positive roots in ®*. For this, provided the root space decomposition
g =1t®P,cobas let Xo € go be the root vector corresponding to a; this defines the root
subgroup

Uy = {exp(sXy): s € k}.
Observe that each U, is a 1-dimensional algebraic group over k, and we can view the generator
of U, as the map uq: G, — G, s+ exp(sX,). Also, to consider the W-adjoint action on U,,
we compute Uy (q)(s) = exp(sXy(a)) = exp(s Ady(Xa)) = (Ady (ua))(s), and it follows that

Adw(Ua> = Uw(a) .

On the other hand, there are isomorphisms of k-schemes N ~ [[ .+ Ua and N~ =[] co- Ua,
so in particular Ad,(N) ~ ] co+ Uw(a)- To conclude, we obtain

Ady(N)NN™ = ] Upn [ U5~ ][ Ua

acgdt Be®+ acd™
w(a)ed™

because Uyy(q) NU_p = 0 unless w(a) = —3 € ®~. Again, by dim U, = 1 we see
dim ZUGY = #{a € ®T: w(a) € 27} = {(w),
where the last equality is by definition of ¢(w). O

Problem 6.2 (Lecture 12, Exercise 4.9). Deduce the BGG theorem from the localization the-
orem (see [Lecture 12, Theorem 4.7])'.

Solution. Given A, p € t*, there are w and w’ such that A = w - (—=2p) and p = w’ - (—2p). To
deduce the BGG theorem, assume [M) : L,] # 0 and it suffices to prove w’ < w.
By localization theorem, we have

My +— Ay, L, +—1C,.
Here Ay, = 1,10 Fo=w With gy, FUGY — Flg. Since the Schubert cell #4Z" is a locally closed
subset of F#¢g and supp(A,,) C supp(O u=w) by property of l-pushforward, we see A,, is set-
theoretically supported on the closure of #¢Z", which is .Z éw. In particular, any subquotient
of A,, is set-theoretically supported on .Z éw. From the assumption [M) : L,] # 0, we know
IC,, is isomorphic to a subquotient of A,,, and hence supported on 96%“’.

1Hint: Prove any subquotient of A,, is set-theoretically support on the Schubert variety ﬁféw.
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Provided the above, we get supp(A,) = ﬂféw/, and it suffices to show the Bruhat cell
Cy = .F 5“’/ is contained in supp(IC,,). Indeed, by definition we have IC,,, = im(A, — Vi );
on the other hand A,/|c,, = Vulc, = Oc,,, implying that IC,/|c,, = Oc,,. This proves
that IC,, is non-zero when restricted to 9@3“”, and hence w’ < w. It follows that u <~ X as
desired. (|

Problem 6.3 (Lecture 12, Exercise 4.10). Prove that when G = SLg, the homomorphism
a: U(g) = D(FLg) induces an isomorphism

U(g)xo = D(FLa)-
This is a special case of part (1) of localization theorem (see [Lecture 12, Theorem 4.7]).

Solution. When G = SLy, we have #{c = P! and need to consider a: U(g) = U(sly) — D(P').
Let e, f, h be a standard basis of g = sly. Recall that Z(U(g)) is generated by the Casimir element
Q=cf+ fe+h?/2€U(g). Let U ={(z:1): z € k} be a standard affine open in P1. For each
coordinate parameter u of U, by computing

a(g) u= % L exp(tg)(exp(—tg)u), g€ {e, f,h},
we see, depending on the choice of u,
ale) = =0y, aoff) =u?0,, a(h) = —2ud,.
It follows that
a(Q) = alef + fe+h*/2)
= (=0u)u?0y + 10, (—0y) + (2u0,)? /2
= —2ud, — u?0? — u?0? + 2ud, + 2u?0?
=0.
Since the central character xo corresponds to Z(U(g)) = k[Q] and a(Q) = 0, the map « factors
through U(g)y,. So we get
ayy: U(8)yo — D(Flg).
Note that both sides of «,, admits graded structure, and we claim that
gr'(U(g)y,) = 9 — T(Flg) = gr' D(Flg)

is surjective. If this is true, then a, is surjective as well. Indeed, the claim follows from that
T(Flg) = Oz, (2), whose global section is generated by a(e), a(f), «(h), meaning that « is
surjective when restricted to g. Thus we have proved the claim as well as the surjectivity of
ay,. Now it remains to check the injectivity. For this, we have the embedding gr*D(F#lg) —
(Sym® T)(ZF£¢) that is an identity on degree 1 part. Also, the diagram below commutes:

g (U(g)y,) ——2— gr*D(Flg)

T~ |
(Sym* T)( 7).

Here the map gr*(U(g)y,) — (Sym® T)(%{q) is surjective because we have shown a,, is sur-
jective on degree 1 part. To show this map is injective, we only need for all n > 1 that
dim gr(U(g)y,) = dim (Sym" T)(Fq).

Note that Sym” 7 = Sym” O(2) = Op:1(2n)?, so the right-hand side equals dim T'(P!, Op1 (2n)) =
2n+1. To compute the left-hand side, using PBW theorem, gr™ (U (g),, ) has a basis {e’ f*~%: 0 <
i <n}pU{e’f""""1h: 0 <i<n— 1}, so it also has dimension 2n + 1. This completes the proof
that a,, is injective, and hence an isomorphism. a

2See the proof of Problem 6.5 for details in this standard fact.
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Problem 6.4 (Lecture 13, Exercise 1.5). Let e € X ~ G/B be the closed point corresponding
to the chosen Borel subgroup B. We aim to prove that, as stated in the localization theorem, we
can produce the (left) Verma module M_s, with highest weight —2p if using the left D-module
corresponding to .. Let 0 ~ 6, ® w)_(l be the left D-module corresponding to d.. Consider the
left U(g)-module V :=T'(X,6}).
(1) Prove: There is a canonical isomorphism
61@ = ZDX ®(’)x Ea
where £ is the fiber of w;{l at e, viewed as a skyscraper sheaf.
(2) Let £ — V be the injection induced by taking global sections for the embedding Ox ®o
{— Dx R0, {. Prove®: This line in V is a weight subspace of weight —2p.

(3) Prove®: The subalgebra b C g stabilizes the line £ C V27,
(4) Construct a U(g)-linear map

M_2p —V
and prove it is an isomorphism.
Solution. (1) By Problem 5.4, there is an isomorphism 6, ~ k. ®o, Dx of right Dx-modules.

On the other hand, by definition we have the commutative diagram

_ 1
D(Ox-modqe) 29X “X, (0 -modqe)

inerv Jvindl
-1

D(Ox-modyc) DEoxvx D(Ox-modgc)

which leads to k. ®o, Dx ®oy w}l ~ Dy Qo ke @0y w;(l. If we write i: e — X, then by
construction we have an isomorphism /¢ ~ i*i*w}l of Ox-modules. Thus,

6t~ Dy Roy ik ®oy Wy (by argument above)
~Dyx oy ix(k @0, i*w;(l) (by projection formula)
=Dx R0y ixi*wy' (by O, = k)
~Dx Qo {. (by prescribed description of ¢)

(2) By construction we have £ ~ A%Tx . ~ A%~. Let v be a generator of this line ¢, then v
must be of form A .4 va. For each h € b, we have by definition of h-action that

hw)= > N vaAhlg)= > BHh)- N\ va= > B(h)-v.

Be®~ acd~—{B} Bed- aed- Bed-
Note that > scq- B(h) = —2p(h), so £ C V is a weight subspace of weight —2p.

(3) Recall that the PBW theorem for Dx dictates gr*Dx = Symg¢,  Tx, which further gives
rise to a canonical filtration on V, where FS?V is the image of £ under the action of FS*Dy. Recall
that the g-action is realized by Dx through the map g — Tx — FS'Dx < Dy. Restricting
this to b C g, the map b ® ¢ — V factors through FS'V (as the canonical map U(g) — Dx is
compatible with the filtration). To show that ¢ is stabilized by b, it suffices to show that via
the prescribed map b < g — Dx, the image of b ® £ lies in Ox ®p, ¢. For this, we only need
to show the composition

bRl — FSIV — grlV

SHint: £~ ANTx e and Tx e > n.
4Hint: Consider the PBW filtration of Dx and the induced filtration on V. Show that b ® £ — V factors
through FS'V and the composition b ® £ — FS1V — grlV is zero.
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is zero; but we observe gr'V = (gr'Dx)(¢) = Tx (¢) ~ n~ ® ¢, which means the desired compo-
sition is induced by the map b — n~.

(4) Choose a set-theoretical map M_5, — V such that the highest weight vector v_,, € M_5,
is mapped to a generator v € £ of £ C V. By part (3), £ = kv is stabilized by b, so the map

M_s, =k_2, @y U(g) — V

is U(g)-linear. To show this is an isomorphism, it suffices to show the bijectivity. The surjectivity
follows from that V' is generated by Dx from ¢ and U(g) — Dx is surjective. As for the
injectivity, suppose t € U(n™) is such that ¢-v = 0 in V, then we must have ¢t - v_5, = 0 in
M_5, because the map is U(g)-linear. This completes the proof that M_s, ~ V. O

Problem 6.5 (Lecture 13, Exercise 3.12). For G = SLo, prove p: N'— A is the blow-up of A’
at the point 0 € N.

Solution. For g = sly, we have N' = {X € sly: det X = 0}. If we write X = (¢ %) € Ma(k)
satisfying the condition det X = —a? — bc = 0, we can realize the nilpotent cone N as the affine
k-scheme
N = Speckla,b,c]/(a® + be).
Recall that the blow-up of N at 0 is Proj(R(Z)), where R(Z) = @D,.>0Z" is the Rees algebra
with Z the defining ideal of 0 € A/, generated by images of a, b, ¢ satisfying a? + bc = 0.
On the other hand, by definition of Springer resolution, at 0 € N we have

N ~ T*(G/B) = T*P' ~ Specp: (Symfgn,)1 Ter)-

Here the last isomorphism is given by [Lecture 13, Construction 2.4]. To compute the relative
spectrum on the right-hand side, we use Tp1 = Op1(2)° to get

Symg, Ter = Symd, , Opi(2) = @) Sym" Op:i (2) = @) Op1(20).
n=0 n>=0
Combining these up, to show that N is the blow-up of A at 0, it remains to check Proj(R(Z)) ~
Specp: (D,,50 Op1(2n)) as k-schemes. But this is true because each section of R(Z) generates a

regular function in a, b, ¢, and the degree of a is reduced by 2k € Z for some k via the relation
2
a® +bc=0. a

S5For an explanation, notice that deg(7p1) + deg(Op1) = x(P!) = 2 with deg(Op1) = 0, so Tp1 = Op1(2).
Alternatively, we can construct the tangent bundle 7p1 explicitly as follows. Cover P! by standard affine opens
Up={(1:z1): 21 € k} and Ur = {(zo : 1): zo € k} and write down the transition function on Uy N U; as
T = xal. It follows that d(xal)/dx = —1/22, which also proves Tp1 = Op1(2).



