2024 Spring — Geometric Representation Theory (1)

HOMEWORK PROBLEMS

LECTURER: LIN CHEN TA: WENHAN DAI

HOMEWORK 6 (DUE ON MAY 27)

Problem 6.1 (Lecture 12, Exercise 3.9). Show that

$$\dim \mathscr{F}\ell_G^{=w} = \ell(w).$$

If you do not know the basics about reductive groups, prove this for semisimple G.

Solution. By [Lecture 12, Lemma 3.7] we have that

$$\mathscr{F}\ell_G^{=w} \simeq N/(\mathrm{Ad}_w(N) \cap N) \simeq \mathrm{Ad}_w(N) \cap N^-.$$

Recall that dim N is the number of positive roots, and the goal now is to also reformulate $\operatorname{Ad}_w(N) \cap N^-$ in terms of positive roots in Φ^+ . For this, provided the root space decomposition $\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, let $X_{\alpha} \in \mathfrak{g}_{\alpha}$ be the root vector corresponding to α ; this defines the root subgroup

$$U_{\alpha} \coloneqq \{ \exp(sX_{\alpha}) \colon s \in k \}.$$

Observe that each U_{α} is a 1-dimensional algebraic group over k, and we can view the generator of U_{α} as the map $u_{\alpha} \colon \mathbb{G}_{a} \to G, \ s \mapsto \exp(sX_{\alpha})$. Also, to consider the W-adjoint action on U_{α} , we compute $u_{w(\alpha)}(s) = \exp(sX_{w(\alpha)}) = \exp(s\operatorname{Ad}_{w}(X_{\alpha})) = (\operatorname{Ad}_{w}(u_{\alpha}))(s)$, and it follows that

$$\operatorname{Ad}_w(U_\alpha) = U_w(\alpha)$$

On the other hand, there are isomorphisms of k-schemes $N \simeq \prod_{\alpha \in \Phi^+} U_{\alpha}$ and $N^- \simeq \prod_{\alpha \in \Phi^-} U_{\alpha}$, so in particular $\operatorname{Ad}_w(N) \simeq \prod_{\alpha \in \Phi^+} U_{w(\alpha)}$. To conclude, we obtain

$$\operatorname{Ad}_{w}(N) \cap N^{-} \simeq \prod_{\alpha \in \Phi^{+}} U_{w(\alpha)} \cap \prod_{\beta \in \Phi^{+}} U_{-\beta} \simeq \prod_{\substack{\alpha \in \Phi^{+} \\ w(\alpha) \in \Phi^{-}}} U_{\alpha},$$

because $U_{w(\alpha)} \cap U_{-\beta} = \emptyset$ unless $w(\alpha) = -\beta \in \Phi^-$. Again, by dim $U_{\alpha} = 1$ we see

$$\lim \mathscr{F}\ell_G^{=w} = \#\{\alpha \in \Phi^+ \colon w(\alpha) \in \Phi^-\} = \ell(w),$$

where the last equality is by definition of $\ell(w)$.

Problem 6.2 (Lecture 12, Exercise 4.9). Deduce the BGG theorem from the localization theorem (see [Lecture 12, Theorem 4.7])¹.

Solution. Given $\lambda, \mu \in \mathfrak{t}^*$, there are w and w' such that $\lambda = w \cdot (-2\rho)$ and $\mu = w' \cdot (-2\rho)$. To deduce the BGG theorem, assume $[M_{\lambda} : L_{\mu}] \neq 0$ and it suffices to prove $w' \leq w$.

By localization theorem, we have

$$M_{\lambda} \longleftrightarrow \Delta_w, \quad L_{\mu} \longleftrightarrow \mathrm{IC}_{w'}.$$

Here $\Delta_w := i_{w,!} \mathcal{O}_{\mathscr{F}\ell_G^{=w}}$ with $i_w : \mathscr{F}\ell_G^{=w} \hookrightarrow \mathscr{F}\ell_G$. Since the Schubert cell $\mathscr{F}\ell_G^{=w}$ is a locally closed subset of $\mathscr{F}\ell_G$ and $\operatorname{supp}(\Delta_w) \subset \operatorname{supp}(\mathcal{O}_{\mathscr{F}\ell_G^{=w}})$ by property of !-pushforward, we see Δ_w is settheoretically supported on the closure of $\mathscr{F}\ell_G^{=w}$, which is $\mathscr{F}\ell_G^{\leq w}$. In particular, any subquotient of Δ_w is set-theoretically supported on $\mathscr{F}\ell_G^{\leq w}$. From the assumption $[M_\lambda : L_\mu] \neq 0$, we know $\operatorname{IC}_{w'}$ is isomorphic to a subquotient of Δ_w , and hence supported on $\mathscr{F}\ell_G^{\leq w}$.

¹Hint: Prove any subquotient of Δ_w is set-theoretically support on the Schubert variety $\mathscr{F}\ell_{G}^{\leq w}$.

HOMEWORK PROBLEMS

Provided the above, we get $\operatorname{supp}(\Delta_{w'}) = \mathscr{F}\ell_G^{\leq w'}$, and it suffices to show the Bruhat cell $C_{w'} \coloneqq \mathscr{F}\ell_G^{\equiv w'}$ is contained in $\operatorname{supp}(\operatorname{IC}_{w'})$. Indeed, by definition we have $\operatorname{IC}_{w'} = \operatorname{im}(\Delta_{w'} \to \nabla_{w'})$; on the other hand $\Delta_{w'}|_{C_{w'}} = \nabla_{w'}|_{C_{w'}} = \mathcal{O}_{C_{w'}}$, implying that $\operatorname{IC}_{w'}|_{C_{w'}} = \mathcal{O}_{C_{w'}}$. This proves that $\operatorname{IC}_{w'}$ is non-zero when restricted to $\mathscr{F}\ell_G^{\equiv w'}$, and hence $w' \leq w$. It follows that $\mu \preceq_{\subset} \lambda$ as desired.

Problem 6.3 (Lecture 12, Exercise 4.10). Prove that when $G = SL_2$, the homomorphism $\alpha: U(\mathfrak{g}) \to \mathcal{D}(\mathscr{F}\ell_G)$ induces an isomorphism

$$U(\mathfrak{g})_{\chi_0} \simeq \mathcal{D}(\mathscr{F}\ell_G).$$

This is a special case of part (1) of localization theorem (see [Lecture 12, Theorem 4.7]).

Solution. When $G = \operatorname{SL}_2$, we have $\mathscr{F}\ell_G = \mathbb{P}^1$ and need to consider $\alpha \colon U(\mathfrak{g}) = U(\mathfrak{sl}_2) \longrightarrow \mathcal{D}(\mathbb{P}^1)$. Let e, f, h be a standard basis of $\mathfrak{g} = \mathfrak{sl}_2$. Recall that $Z(U(\mathfrak{g}))$ is generated by the Casimir element $\Omega = ef + fe + h^2/2 \in U(\mathfrak{g})$. Let $U = \{(x : 1) \colon x \in k\}$ be a standard affine open in \mathbb{P}^1 . For each coordinate parameter u of U, by computing

$$\alpha(\mathbf{g}) \cdot u = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp(t\mathbf{g})(\exp(-t\mathbf{g})u), \quad \mathbf{g} \in \{e, f, h\},$$

we see, depending on the choice of u,

$$\alpha(e) = -\partial_u, \quad \alpha(f) = u^2 \partial_u, \quad \alpha(h) = -2u \partial_u$$

It follows that

$$\begin{aligned} \alpha(\Omega) &= \alpha(ef + fe + h^2/2) \\ &= (-\partial_u)u^2\partial_u + u^2\partial_u(-\partial_u) + (2u\partial_u)^2/2 \\ &= -2u\partial_u - u^2\partial_u^2 - u^2\partial_u^2 + 2u\partial_u + 2u^2\partial_u^2 \\ &= 0. \end{aligned}$$

Since the central character χ_0 corresponds to $Z(U(\mathfrak{g})) = k[\Omega]$ and $\alpha(\Omega) = 0$, the map α factors through $U(\mathfrak{g})_{\chi_0}$. So we get

$$\alpha_{\chi_0} \colon U(\mathfrak{g})_{\chi_0} \longrightarrow \mathcal{D}(\mathscr{F}\ell_G)$$

Note that both sides of α_{χ_0} admits graded structure, and we claim that

$$\operatorname{gr}^{1}(U(\mathfrak{g})_{\chi_{0}}) = \mathfrak{g} \longrightarrow \mathcal{T}(\mathscr{F}\ell_{G}) = \operatorname{gr}^{1}\mathcal{D}(\mathscr{F}\ell_{G})$$

is surjective. If this is true, then α_{χ_0} is surjective as well. Indeed, the claim follows from that $\mathcal{T}(\mathscr{F}\ell_G) = \mathcal{O}_{\mathscr{F}\ell_G}(2)$, whose global section is generated by $\alpha(e), \alpha(f), \alpha(h)$, meaning that α is surjective when restricted to \mathfrak{g} . Thus we have proved the claim as well as the surjectivity of α_{χ_0} . Now it remains to check the injectivity. For this, we have the embedding $\operatorname{gr}^{\bullet}\mathcal{D}(\mathscr{F}\ell_G) \hookrightarrow (\operatorname{Sym}^{\bullet}\mathcal{T})(\mathscr{F}\ell_G)$ that is an identity on degree 1 part. Also, the diagram below commutes:

Here the map $\operatorname{gr}^{\bullet}(U(\mathfrak{g})_{\chi_0}) \twoheadrightarrow (\operatorname{Sym}^{\bullet} \mathcal{T})(\mathscr{F}\ell_G)$ is surjective because we have shown α_{χ_0} is surjective on degree 1 part. To show this map is injective, we only need for all $n \ge 1$ that

$$\dim \operatorname{gr}^n(U(\mathfrak{g})_{\chi_0}) = \dim \left(\operatorname{Sym}^n \mathcal{T}\right)(\mathscr{F}\ell_G).$$

Note that $\operatorname{Sym}^n \mathcal{T} = \operatorname{Sym}^n \mathcal{O}(2) = \mathcal{O}_{\mathbb{P}^1}(2n)^2$, so the right-hand side equals $\dim \Gamma(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2n)) = 2n+1$. To compute the left-hand side, using PBW theorem, $\operatorname{gr}^n(U(\mathfrak{g})_{\chi_0})$ has a basis $\{e^i f^{n-i} : 0 \leq i \leq n\} \cup \{e^i f^{n-i-1}h : 0 \leq i \leq n-1\}$, so it also has dimension 2n+1. This completes the proof that α_{χ_0} is injective, and hence an isomorphism. \Box

²See the proof of Problem 6.5 for details in this standard fact.

Problem 6.4 (Lecture 13, Exercise 1.5). Let $e \in X \simeq G/B$ be the closed point corresponding to the chosen Borel subgroup B. We aim to prove that, as stated in the localization theorem, we can produce the (left) Verma module $M_{-2\rho}$ with highest weight -2ρ if using the left \mathcal{D} -module corresponding to δ_e . Let $\delta_e^1 \simeq \delta_e \otimes \omega_X^{-1}$ be the left \mathcal{D} -module corresponding to δ_e . Consider the left $U(\mathfrak{g})$ -module $V \coloneqq \Gamma(X, \delta_e^1)$.

(1) Prove: There is a *canonical* isomorphism

$$\delta_e^{\mathbf{l}} \simeq \mathcal{D}_X \otimes_{\mathcal{O}_X} \ell,$$

where ℓ is the fiber of ω_X^{-1} at e, viewed as a skyscraper sheaf.

- (2) Let $\ell \hookrightarrow V$ be the injection induced by taking global sections for the embedding $\mathcal{O}_X \otimes_{\mathcal{O}_X} \ell \hookrightarrow \mathcal{D}_X \otimes_{\mathcal{O}_X} \ell$. Prove³: This line in V is a weight subspace of weight -2ρ .
- (3) Prove⁴: The subalgebra $\mathfrak{b} \subset \mathfrak{g}$ stabilizes the line $\ell \subset V^{2\rho}$.
- (4) Construct a $U(\mathfrak{g})$ -linear map

$$M_{-2o} \longrightarrow V$$

and prove it is an isomorphism.

Solution. (1) By Problem 5.4, there is an isomorphism $\delta_e \simeq k_e \otimes_{\mathcal{O}_X} \mathcal{D}_X$ of right \mathcal{D}_X -modules. On the other hand, by definition we have the commutative diagram

which leads to $k_e \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \omega_X^{-1} \simeq \mathcal{D}_X \otimes_{\mathcal{O}_X} k_e \otimes_{\mathcal{O}_X} \omega_X^{-1}$. If we write $i: e \hookrightarrow X$, then by construction we have an isomorphism $\ell \simeq i_* i^* \omega_X^{-1}$ of \mathcal{O}_X -modules. Thus,

$$\begin{split} \delta_{e}^{l} &\simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*}k \otimes_{\mathcal{O}_{X}} \omega_{X}^{-1} \qquad \text{(by argument above)} \\ &\simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*}(k \otimes_{\mathcal{O}_{e}} i^{*}\omega_{X}^{-1}) \qquad \text{(by projection formula)} \\ &= \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} i_{*}i^{*}\omega_{X}^{-1} \qquad \text{(by } \mathcal{O}_{e} = k) \\ &\simeq \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \ell. \qquad \text{(by prescribed description of } \ell) \end{split}$$

(2) By construction we have $\ell \simeq \wedge^d \mathcal{T}_{X,e} \simeq \wedge^d \mathfrak{n}^-$. Let v be a generator of this line ℓ , then v must be of form $\bigwedge_{\alpha \in \Phi^-} v_{\alpha}$. For each $h \in \mathfrak{h}$, we have by definition of \mathfrak{h} -action that

$$h(v) = \sum_{\beta \in \Phi^-} \bigwedge_{\alpha \in \Phi^- - \{\beta\}} v_\alpha \wedge h(v_\beta) = \sum_{\beta \in \Phi^-} \beta(h) \cdot \bigwedge_{\alpha \in \Phi^-} v_\alpha = \sum_{\beta \in \Phi^-} \beta(h) \cdot v.$$

Note that $\sum_{\beta \in \Phi^-} \beta(h) = -2\rho(h)$, so $\ell \subset V$ is a weight subspace of weight -2ρ .

(3) Recall that the PBW theorem for \mathcal{D}_X dictates $\operatorname{gr}^{\bullet}\mathcal{D}_X \cong \operatorname{Sym}_{\mathcal{O}_X}^{\bullet}\mathcal{T}_X$, which further gives rise to a canonical filtration on V, where $\mathsf{F}^{\leqslant i}V$ is the image of ℓ under the action of $\mathsf{F}^{\leqslant i}\mathcal{D}_X$. Recall that the \mathfrak{g} -action is realized by \mathcal{D}_X through the map $\mathfrak{g} \to \mathcal{T}_X \to \mathsf{F}^{\leqslant 1}\mathcal{D}_X \hookrightarrow \mathcal{D}_X$. Restricting this to $\mathfrak{b} \subset \mathfrak{g}$, the map $\mathfrak{b} \otimes \ell \to V$ factors through $\mathsf{F}^{\leqslant 1}V$ (as the canonical map $U(\mathfrak{g}) \to \mathcal{D}_X$ is compatible with the filtration). To show that ℓ is stabilized by \mathfrak{b} , it suffices to show that via the prescribed map $\mathfrak{b} \hookrightarrow \mathfrak{g} \to \mathcal{D}_X$, the image of $\mathfrak{b} \otimes \ell$ lies in $\mathcal{O}_X \otimes_{\mathcal{O}_X} \ell$. For this, we only need to show the composition

$$\mathfrak{b}\otimes\ell\longrightarrow\mathsf{F}^{\leqslant 1}V\longrightarrow\mathrm{gr}^1 V$$

³Hint: $\ell \simeq \wedge^d \mathcal{T}_{X,e}$ and $\mathcal{T}_{X,e} \simeq \mathfrak{n}^-$.

⁴Hint: Consider the PBW filtration of \mathcal{D}_X and the induced filtration on V. Show that $\mathfrak{b} \otimes \ell \to V$ factors through $\mathsf{F}^{\leq 1}V$ and the composition $\mathfrak{b} \otimes \ell \to \mathsf{F}^{\leq 1}V \to \mathrm{gr}^1 V$ is zero.

is zero; but we observe $\operatorname{gr}^1 V = (\operatorname{gr}^1 \mathcal{D}_X)(\ell) = \mathcal{T}_X(\ell) \simeq \mathfrak{n}^- \otimes \ell$, which means the desired composition is induced by the map $\mathfrak{b} \to \mathfrak{n}^-$.

(4) Choose a set-theoretical map $M_{-2\rho} \to V$ such that the highest weight vector $v_{-2\rho} \in M_{-2\rho}$ is mapped to a generator $v \in \ell$ of $\ell \subset V$. By part (3), $\ell = kv$ is stabilized by \mathfrak{b} , so the map

$$M_{-2\rho} = k_{-2\rho} \otimes_{U(\mathfrak{b})} U(\mathfrak{g}) \longrightarrow V$$

is $U(\mathfrak{g})$ -linear. To show this is an isomorphism, it suffices to show the bijectivity. The surjectivity follows from that V is generated by \mathcal{D}_X from ℓ and $U(\mathfrak{g}) \twoheadrightarrow \mathcal{D}_X$ is surjective. As for the injectivity, suppose $t \in U(\mathfrak{n}^-)$ is such that $t \cdot v = 0$ in V, then we must have $t \cdot v_{-2\rho} = 0$ in $M_{-2\rho}$ because the map is $U(\mathfrak{g})$ -linear. This completes the proof that $M_{-2\rho} \simeq V$.

Problem 6.5 (Lecture 13, Exercise 3.12). For $G = SL_2$, prove $\mathfrak{p} \colon \widetilde{\mathcal{N}} \to \mathcal{N}$ is the blow-up of \mathcal{N} at the point $0 \in \mathcal{N}$.

Solution. For $\mathfrak{g} = \mathfrak{sl}_2$, we have $\mathcal{N} = \{X \in \mathfrak{sl}_2 : \det X = 0\}$. If we write $X = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathcal{M}_2(k)$ satisfying the condition det $X = -a^2 - bc = 0$, we can realize the nilpotent cone \mathcal{N} as the affine k-scheme

$$\mathcal{N} = \operatorname{Spec} k[a, b, c] / (a^2 + bc).$$

Recall that the blow-up of \mathcal{N} at 0 is $\operatorname{Proj}(\mathcal{R}(\mathcal{I}))$, where $\mathcal{R}(\mathcal{I}) = \bigoplus_{n \ge 0} \mathcal{I}^n$ is the Rees algebra with \mathcal{I} the defining ideal of $0 \in \mathcal{N}$, generated by images of a, b, c satisfying $a^2 + bc = 0$.

On the other hand, by definition of Springer resolution, at $0 \in \mathcal{N}$ we have

$$\widetilde{\mathcal{N}} \simeq T^*(G/B) = T^* \mathbb{P}^1 \simeq \operatorname{Spec}_{\mathbb{P}^1}(\operatorname{Sym}^{\bullet}_{\mathcal{O}_{\mathbb{P}^1}} \mathcal{T}_{\mathbb{P}^1}).$$

Here the last isomorphism is given by [Lecture 13, Construction 2.4]. To compute the relative spectrum on the right-hand side, we use $\mathcal{T}_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(2)^5$ to get

$$\operatorname{Sym}_{\mathcal{O}_{\mathbb{P}^1}}^{\bullet} \mathcal{T}_{\mathbb{P}^1} = \operatorname{Sym}_{\mathcal{O}_{\mathbb{P}^1}}^{\bullet} \mathcal{O}_{\mathbb{P}^1}(2) = \bigoplus_{n \ge 0} \operatorname{Sym}^n \mathcal{O}_{\mathbb{P}^1}(2) = \bigoplus_{n \ge 0} \mathcal{O}_{\mathbb{P}^1}(2n).$$

Combining these up, to show that \widetilde{N} is the blow-up of \mathcal{N} at 0, it remains to check $\operatorname{Proj}(\mathcal{R}(\mathcal{I})) \simeq$ $\operatorname{Spec}_{\mathbb{P}^1}(\bigoplus_{n \ge 0} \mathcal{O}_{\mathbb{P}^1}(2n))$ as k-schemes. But this is true because each section of $\mathcal{R}(\mathcal{I})$ generates a regular function in a, b, c, and the degree of a is reduced by $2k \in \mathbb{Z}$ for some k via the relation $a^2 + bc = 0$.

⁵For an explanation, notice that $\deg(\mathcal{T}_{\mathbb{P}^1}) + \deg(\mathcal{O}_{\mathbb{P}^1}) = \chi(\mathbb{P}^1) = 2$ with $\deg(\mathcal{O}_{\mathbb{P}^1}) = 0$, so $\mathcal{T}_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(2)$. Alternatively, we can construct the tangent bundle $\mathcal{T}_{\mathbb{P}^1}$ explicitly as follows. Cover \mathbb{P}^1 by standard affine opens $U_0 = \{(1 : x_1) : x_1 \in k\}$ and $U_1 = \{(x_0 : 1) : x_0 \in k\}$ and write down the transition function on $U_0 \cap U_1$ as $x_1 = x_0^{-1}$. It follows that $d(x_0^{-1})/dx = -1/x^2$, which also proves $\mathcal{T}_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(2)$.