LECTURE 1

The main goal of this course is to study representations of semisimple Lie algebras via geometric methods. We restrict ourselves to the case when the base field k is algebraically closed and of characteristic 0 , such as the field \mathbb{C} of complex numbers.

1. Semisimple Lie Algebras

This is just a quick review of the definitions about finite-dimensional semisimple Lie algebras. See Hum, Chapter 0] for the abc's and $\overline{\operatorname{Ser}]}$ for a thorough textbook.
Definition 1.1. A Lie algebra (over k) is a vector space \mathfrak{g} equipped with a binary operation $[-,-]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, called the Lie bracket, such that:

- The Lie bracket is bilinear, i.e., factors as $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$.
- The Lie bracket is alternating: $[x, x]=0$.
- The Jacobi identity holds: $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$.

Let \mathfrak{g}_{1} and \mathfrak{g}_{2} be Lie algebras. A Lie algebra homomorphism between them is a k-linear $\operatorname{map} f: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ commuting with Lie brackets, i.e., $f([x, y])=[f(x), f(y)]$.

This defines a category Lie_{k} of Lie algebras.
Example 1.2. Any vector space V is equipped with a trivial Lie bracket: $[x, y]=0$. Such Lie algebras are called abelian Lie algebras.
Example 1.3. Let A be an associative algebra. Then the underlying vector space has a natural Lie algebra structure with Lie bracket given by $[x, y]:=x y-y x$. This defines a functor oblv : $\mathrm{Alg}_{k} \rightarrow \mathrm{Lie}_{k}$ from the category of associative algebras to that of Lie algebras.

Example 1.4. Let V be a vector space and $\mathfrak{g l}(V)$ be the vector space of endomorphisms of V. By Example 1.3, $\mathfrak{g l}(V)$ is naturally a Lie algebra with Lie bracket given by $[f, g]=f \circ g-g \circ f$. This is the general linear Lie algebra of V.

If V is finite-dimensional, let $\mathfrak{s l}(V) \subset \mathfrak{g l}(V)$ be the subspace of endomorphisms f such that the trace $\operatorname{tr}(f)=0$.

When $V=k^{\oplus n}$, we write $\mathfrak{g l}_{n}:=\mathfrak{g l}(V), \mathfrak{s l}_{n}:=\mathfrak{s l}(V)$. Note that $\mathfrak{g l}_{n}$ (resp. $\left.\mathfrak{s l}_{n}\right)$ can be identified with the space of $n \times n$ matrices (resp. whose traces are zero).
Fact 1.5. We have $[\mathfrak{g l}(V), \mathfrak{g l}(V)]=\mathfrak{s l}(V)$.
Definition 1.6. Let \mathfrak{g} be a Lie algebra. A representation of \mathfrak{g}, or \mathfrak{g}-module, is a vector space V equipped with a Lie algebra homomorphism $\mathfrak{g} \rightarrow \mathfrak{g l}(V)$. In other words, there is a bilinear map $(-\cdot-): \mathfrak{g} \times V \rightarrow V$ such that $[x, y] \cdot v=x \cdot(y \cdot v)-y \cdot(x \cdot v)$.

Let V_{1} and V_{2} be representations of \mathfrak{g}. A \mathfrak{g}-linear map between them is a k-linear map $f: V_{1} \rightarrow V_{2}$ such that the following diagram commutes:

Date: Feb 26, 2024.

This defines a category \mathfrak{g}-mod of representations of \mathfrak{g}.
Fact 1.7. The category \mathfrak{g}-mod is an abelian category. The forgetful functor $\mathfrak{g}-\bmod \rightarrow \operatorname{Vect}_{k}$ is exact.

Example 1.8. Let \mathfrak{g} be a Lie algebra. The map ad $: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g}), x \mapsto \operatorname{ad}_{x}:=[x,-]$ defines a \mathfrak{g}-module structure on \mathfrak{g} itself. This is called the adjoint representation.

Definition 1.9. Let \mathfrak{g} be a finite dimensional Lie algebra and $x \in \mathfrak{g}$ be an element. We say x is semisimple (resp. nilpotent) if the corresponding endomorphism $\operatorname{ad}_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ is so.

Definition 1.10. Let \mathfrak{g} be a Lie algebra. An ideal $\mathfrak{a} \subset \mathfrak{g}$ is a sub-representation of the adjoint representation. In other words, we require $[\mathfrak{g}, \mathfrak{a}] \subset \mathfrak{a}$.
Remark 1.11. Note that an ideal \mathfrak{a} is also a Lie subalgebra.
Example 1.12. Let \mathfrak{g} be a Lie algebra, then $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}$ is an ideal. We call it the derived Lie algebra of \mathfrak{g}.

Definition 1.13. Let \mathfrak{g} be a Lie algebra. We say \mathfrak{g} is simple if:

- It is not abelian;
- The adjoint representation is simple (a.k.a. irreducible), i.e., \mathfrak{g} has no ideal other than 0 and itself.

Example 1.14. The Lie algebra $\mathfrak{g l}_{n}$ is not simple because $\left[\mathfrak{g l}_{n}, \mathfrak{g l}_{n}\right]=\mathfrak{s l}_{n}$ is a proper ideal of it. The Lie algebra $\mathfrak{s l}_{n}$ is simple for $n \geq 2$.
Remark 1.15. Finite-dimensional simple Lie algebras (over k) are fully classified. A similar classification for infinite-dimensional simple Lie algebras seems to be hopeless.

Definition 1.16. Let $\mathfrak{g}_{i}, i \in I$ be Lie algebras indexed by a set I. The direct sum $\oplus \mathfrak{g}_{i}$ of the underlying vector spaces has a natural Lie bracket given by $\left[\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I}\right]:=\left(\left[x_{i}, y_{i}\right]\right)_{i \in I}$. The obtained Lie algebra is called the direct sum of the Lie algebras \mathfrak{g}_{i}.
Warning 1.17. The direct sum $\oplus \mathfrak{g}_{i}$ is not the coproduct in the category Lie $_{k}$. Instead, if I is a finite set, then it is the product of \mathfrak{g}_{i} in this category.
Remark 1.18. Representation theory for $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ can be obtained from those for \mathfrak{g}_{1} and \mathfrak{g}_{2} in a non-trivial mechanism ${ }^{11}$

Definition 1.19. Let \mathfrak{g} be a Lie algebra. We say \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras.

Remark 1.20. The zero Lie algebra 0 is semisimple but not simple.
The main goal of this course is to study representations of finite-dimensional semisimple Lie algebras.
Convention 1.21. From now on, unless otherwise stated, Lie algebras are assumed to be finitedimensional.

Exercise 1.22. This is not a homework!
(1) Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra. Show $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$.

- The opposite statement is generally not true. Below is a counterexample. Let \mathfrak{h} be a simple Lie algebra and V be a nontrivial simple \mathfrak{h}-module. Define a bracket on the vector space by the formula $\mathfrak{h} \oplus V$ by $[(x, u),(y, v)]:=([x, y], x \cdot v-y \cdot u)$.

[^0](2) Show this bracket defines a Lie algebra structure on $\mathfrak{h} \oplus V$. We denote this Lie algebra by $\mathfrak{h} \ltimes V$.
(3) Show $[\mathfrak{h} \ltimes V, \mathfrak{h} \ltimes V]=\mathfrak{h} \ltimes V$ but $\mathfrak{h} \ltimes V$ is not semisimple.

2. Root Space Decomposition

Convention 2.1. From now on, unless otherwise stated, \mathfrak{g} means a finite-dimensional semisimple Lie algebra.
Definition 2.2. A Cartan subalgebra \mathfrak{t} of \mathfrak{g} is a maximal abelian subalgebra of it consisting of semisimple elements.

Warning 2.3. A maximal abelian subalgebra of \mathfrak{g} might not be a Cartan subalgebra. For example, $\mathfrak{s l}_{2}$ contains a maximal abelian subalgebra spanned by $e:=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ but e is not semisimpl ${ }^{2}$.
Warning 2.4. Cartan subalgebras for general finite-dimensional Lie algebras are defined in a different way and they are not abelian in general. That definition is equivalent to the above one if \mathfrak{g} is semisimple.

Theorem 2.5. Cartan subalgebras of \mathfrak{g} have a same dimension, which is called the (semisimple) rank of q^{3}.
Example 2.6. The rank of $\mathfrak{s l}_{n}$ is $n-1$. One Cartan subalgebra of it is the subspace of diagonal matrices.

Notation 2.7. From now on, we fix a Cartan subalgebra \mathfrak{t} of \mathfrak{g}. Let \mathfrak{t}^{*} := $\operatorname{Hom}(\mathfrak{t}, k)$ be the dual vector space of \mathfrak{t}. For any $\alpha \in \mathfrak{t}^{*}$, let $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$ be the α-eigenspace for the adjoint \mathfrak{t}-action on \mathfrak{g}, i.e.,

$$
\mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \text { for any } h \in \mathfrak{t}\} .
$$

Remark 2.8. Note that $\mathfrak{g}_{0}=\mathfrak{t}$ (because \mathfrak{t} is maximal) and $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$ (because of the Jacobi identity).
Proposition 2.9 (Root Space Decomposition ${ }^{4}$. Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra with a fixed Cartan subalgebra \mathfrak{t}. Then we have a direct sum decomposition

$$
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

where $\Phi \subset \mathfrak{t}^{*} \backslash 0$ is the finite set containing those nonzero α such that \mathfrak{g}_{α} is nonempty. Moreover, if $\alpha \in \Phi$, then $-\alpha \in \Phi$ and \mathfrak{g}_{α} is 1-dimensional.

Proposition 2.10. There exists a (non-unique) subset $\Phi^{+} \subset \Phi$ such that:

- We have a disjoint decomposition $\Phi=\Phi^{+} \sqcup-\Phi^{+}$;
- If $\alpha, \beta \in \Phi^{+}$and $\alpha+\beta \in \Phi^{5}$, then $\alpha+\beta \in \Phi^{+}$.

Notation 2.11. From now on, we fix such a subset Φ^{+}. Write $\Phi^{-}=-\Phi^{+}$.
Definition 2.12. (For above choices), elements in Φ are called roots of \mathfrak{g}. Elements in Φ^{+} (resp. Φ^{-}) are called positive roots (resp. negative roots). For $\alpha \in \Phi^{+}$, we say α is a (positive) simple root if it cannot be written as the sum of two positive roots. Let $\Delta \subset \Phi^{+}$ be the subset of simple roots.

[^1]Proposition 2.13. The subset $\Delta \subset \mathfrak{t}^{*}$ is a basis. In particular, any positive root can be uniquely written as a linear combination of simple roots with non-negative coefficients.
Definition 2.14. Define

$$
\mathfrak{b}:=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}, \mathfrak{n}:=\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}
$$

which are Lie subalgebras of \mathfrak{g}. We call \mathfrak{b} the Borel subalgebra of \mathfrak{g} (that corresponds to the choice of Φ^{+}) and \mathfrak{n} the nilpotent radical of \mathfrak{b}.
Remark 2.15. In general, a Borel subalgebra \mathfrak{b} of any Lie algebra \mathfrak{g} is defined to be a maximal solvable subalgebra of it. Here solvable means the sequence $D^{1}(\mathfrak{b}):=\mathfrak{b}, D^{n+1}(\mathfrak{b}):=$ $\left[D^{n}(\mathfrak{b}), D^{n}(\mathfrak{b})\right]$ satisfies $D^{n}(\mathfrak{b})=0$ for $n \gg 0$. It is known that all Borel subalgebras are conjugate to each other.

The subalgebra $\mathfrak{n} \subset \mathfrak{b}$ is called the nilpotent radical because it contains exactly nilpotent elements in \mathfrak{b}, i.e., those elements x such that $\left(\operatorname{ad}_{x}\right)^{\circ n}=0$ for $n \gg 0$.

Note that we have $\mathfrak{t} \simeq \mathfrak{b} / \mathrm{n}$.
Exercise 2.16. This is not a homework! For $\mathfrak{g}=\mathfrak{s l}_{n}$ and its standard Cartan subalgebra (Example 2.6.
(1) Find an explicit description of Φ and \mathfrak{g}_{α}.
(2) Show there is a unique choice of Φ^{+}such that the corresponding \mathfrak{b} is the subspace of upper triangulated matrices.
(3) For the choice of Φ^{+}in (2), find all the simple roots and write each root as a linear combination of these simple roots.

3. Root system

Definition 3.1. Let E be a finite-dimensional Euclidean space and $\Phi \subset E$ be a finite subset such that $0 \notin \Phi$. We say (E, Φ) is a root system if the following is satisfied:

- The subset Φ spans E;
- For any $\alpha \in \Phi, \mathbb{R} \alpha \cap \Phi=\{ \pm \alpha\}$;
- For $\alpha, \beta \in \Phi$, the number $2 \frac{(\beta, \alpha)}{(\alpha, \alpha)}$ is an integer;
- The subset Φ is closed under reflection along any $\alpha \in \Phi$, i.e., for $\alpha, \beta \in \Phi$, the element $\beta-2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$ is contained in Φ.

Definition 3.2. Let (E, Φ) be a root system. The dual root system is defined to be $\left(E^{*}, \check{\Phi}\right)$, where E^{*} is the dual Euclidean space of E and $\check{\Phi}$ consists of those $\check{\alpha}$ for $\alpha \in \Phi$ defined by $\check{\alpha}(-)=2 \frac{(-, \alpha)}{(\alpha, \alpha)}$.
Exercise 3.3. This is not a homework! Show the double-dual of a root system is itself.
Let us return to the notations in the last section. Let $E_{\mathbb{Q}}:=\mathbb{Q} \Phi$ be the \mathbb{Q}-vector space spaned by Φ (such that we have $E_{\mathbb{Q}} \otimes_{\mathbb{Q}} k \simeq \mathfrak{t}^{*}$). Write $E:=E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}^{6}{ }^{6}$ We are going to show (E, Φ) is a root system. For this purpose, we need to define an inner product on E.
Definition 3.4. Let \mathfrak{g} be any finite-dimensional Lie algebra. The Killing form on \mathfrak{g} is the bilinear form Kil : $\mathfrak{g} \times \mathfrak{g} \rightarrow k, \operatorname{Kil}(x, y):=\operatorname{tr}(\operatorname{ad}(x) \circ \operatorname{ad}(y))$.

Proposition 3.5. The Killing form is symmetric and (ad-)invariant, i.e.,

- For $x, y \in \mathfrak{g}, \operatorname{Kil}(x, y)=\operatorname{Kil}(y, x)$;
- For $x, y, z \in \mathfrak{g}, \operatorname{Kil}\left(\operatorname{ad}_{z}(x), y\right)+\operatorname{Kil}\left(x, \operatorname{ad}_{z}(y)\right)=0$.

[^2]Proposition 3.6. If \mathfrak{g} is simple, then any symmetric invariant bilinear form on \mathfrak{g} is of the form c Kil for $c \in k$.

Warning 3.7. The similar claim is false if k is not algebraically closed.
Theorem 3.8 (Cartan-Killing Criterion). The Lie algebra \mathfrak{g} is semisimple iff its Killing form is non-degenerate. Moreover, in this case, the restriction of Kil on \mathfrak{t} is also non-degenerate.

Construction 3.9. Since $\mathrm{Kil}_{\mathfrak{t}}$ is non-degenerate, it induces an isomorphism $\mathfrak{t} \xrightarrow{\sim} \mathfrak{t}^{*}$ sending x to the unique element x^{*} such that $x^{*}(-)=\operatorname{Kil}(x,-)$. Consider the inverse $\mathfrak{t}^{*} \xrightarrow{\sim} \mathfrak{t}$ of this isomorphism, which also corresponds to a non-degenerate bilinear form on \mathfrak{t}^{*}.

Lemma 3.10. The restriction of the above bilinear form on $E_{\mathbb{Q}} \subset \mathfrak{t}^{*}$ is \mathbb{Q}-valued and positivedefinite. In particular, it induced a inner product on $E=E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$.

Convention 3.11. From now on, we always view E as an Eucilidean space via the above inner product.

Theorem 3.12. The pair (E, Φ) defined above is a root system.
Note that for any $\check{\alpha} \in \check{\Phi}$, viewed as an element in $E^{*}=\operatorname{Hom}(E, \mathbb{R})$, its restriction on $E_{\mathbb{Q}} \subset E$ is \mathbb{Q}-valued. It follows that $\check{\Phi}$ is contained in $E_{\mathbb{Q}}^{*}\left(\right.$ via the identification $\left.E_{\mathbb{Q}}^{*} \otimes_{\mathbb{Q}} \mathbb{R} \simeq E^{*}\right)$. Hence we can also view $\bar{\Phi}$ as a subset of $\mathfrak{t} \simeq E_{\mathbb{Q}}^{*} \otimes_{\mathbb{Q}} k$.

Definition 3.13. For any root $\alpha \in \Phi$, define the correponding coroot to be $\check{\alpha} \in \check{\Phi} \subset \mathfrak{t}$.
Remark 3.14. There is a (unique if stated properly) semisimple Lie algebra corresponding to the dual root system $\left(E^{*}, \breve{\Phi}\right)$, known as the Langlands dual Lie algebra \mathfrak{g} of \mathfrak{g}.

References

[Hum] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.
[Ser] Serre, Jean-Pierre. Complex semisimple Lie algebras. Springer Science \& Business Media, 2000.

[^0]: ${ }^{1}$ The abelian category $\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}\right)$-mod is the tensor product of $\mathfrak{g}_{1}-\bmod$ and $\mathfrak{g}_{2}-\bmod$.

[^1]: ${ }^{2}$ I made this mistake during the lecture.
 ${ }^{3}$ In fact, Cartan subalgebras are all conjugate to each other by a (non-unique) element of the corresponding Lie group G of \mathfrak{g}.
 ${ }^{4}$ Some authors, including Humphreys, prefer the name Cartan decomposition. But there is a completely different Cartan decomposition in the study of real Lie algerbas.
 ${ }^{5}$ I forgot to mention this condition in the class.

[^2]: ${ }^{6}$ In the lecture, I wrote $E \otimes_{\mathbb{R}} k \simeq \mathfrak{t}^{*}$ which is only valid if we are given a homomorphism $\mathbb{R} \rightarrow k$.

