The main goal of this course is to study representations of semisimple Lie algebras via geometric methods. We restrict ourselves to the case when the base field k is algebraically closed and of characteristic 0, such as the field \mathbb{C} of complex numbers.

1. Semisimple Lie Algebras

This is just a quick review of the definitions about finite-dimensional semisimple Lie algebras. See [Hum, Chapter 0] for the abc's and [Ser] for a thorough textbook.

Definition 1.1. A Lie algebra (over k) is a vector space \mathfrak{g} equipped with a binary operation $[-,-]:\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the Lie bracket, such that:

- The Lie bracket is **bilinear**, i.e., factors as $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$.
- The Lie bracket is **alternating**: [x, x] = 0.
- The Jacobi identity holds: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras. A Lie algebra homomorphism between them is a k-linear map $f:\mathfrak{g}_1 \to \mathfrak{g}_2$ commuting with Lie brackets, i.e., f([x,y]) = [f(x), f(y)].

This defines a category Lie_k of Lie algebras.

Example 1.2. Any vector space V is equipped with a trivial Lie bracket: [x, y] = 0. Such Lie algebras are called **abelian Lie algebras**.

Example 1.3. Let A be an associative algebra. Then the underlying vector space has a natural Lie algebra structure with Lie bracket given by [x, y] := xy - yx. This defines a functor $\mathsf{oblv} : \mathsf{Alg}_k \to \mathsf{Lie}_k$ from the category of associative algebras to that of Lie algebras.

Example 1.4. Let V be a vector space and $\mathfrak{gl}(V)$ be the vector space of endomorphisms of V. By Example 1.3, $\mathfrak{gl}(V)$ is naturally a Lie algebra with Lie bracket given by $[f,g] = f \circ g - g \circ f$. This is the **general linear Lie algebra** of V.

If V is finite-dimensional, let $\mathfrak{sl}(V) \subset \mathfrak{gl}(V)$ be the subspace of endomorphisms f such that the trace tr(f) = 0.

When $V = k^{\oplus n}$, we write $\mathfrak{gl}_n := \mathfrak{gl}(V)$, $\mathfrak{sl}_n := \mathfrak{sl}(V)$. Note that \mathfrak{gl}_n (resp. \mathfrak{sl}_n) can be identified with the space of $n \times n$ matrices (resp. whose traces are zero).

Fact 1.5. We have $[\mathfrak{gl}(V),\mathfrak{gl}(V)] = \mathfrak{sl}(V)$.

Definition 1.6. Let \mathfrak{g} be a Lie algebra. A representation of \mathfrak{g} , or \mathfrak{g} -module, is a vector space V equipped with a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$. In other words, there is a bilinear map $(-\cdot -): \mathfrak{g} \times V \to V$ such that $[x, y] \cdot v = x \cdot (y \cdot v) - y \cdot (x \cdot v)$.

Let V_1 and V_2 be representations of \mathfrak{g} . A \mathfrak{g} -linear map between them is a k-linear map $f: V_1 \to V_2$ such that the following diagram commutes:

Date: Feb 26, 2024.

This defines a category g-mod of representations of g.

Fact 1.7. The category \mathfrak{g} -mod is an abelian category. The forgetful functor \mathfrak{g} -mod $\rightarrow \mathsf{Vect}_k$ is exact.

Example 1.8. Let \mathfrak{g} be a Lie algebra. The map $\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), x \mapsto \operatorname{ad}_x := [x, -]$ defines a \mathfrak{g} -module structure on \mathfrak{g} itself. This is called the **adjoint representation**.

Definition 1.9. Let \mathfrak{g} be a finite dimensional Lie algebra and $x \in \mathfrak{g}$ be an element. We say x is semisimple (resp. **nilpotent**) if the corresponding endomorphism $\operatorname{ad}_x : \mathfrak{g} \to \mathfrak{g}$ is so.

Definition 1.10. Let \mathfrak{g} be a Lie algebra. An ideal $\mathfrak{a} \subset \mathfrak{g}$ is a sub-representation of the adjoint representation. In other words, we require $[\mathfrak{g},\mathfrak{a}] \subset \mathfrak{a}$.

Remark 1.11. Note that an ideal \mathfrak{a} is also a Lie subalgebra.

Example 1.12. Let \mathfrak{g} be a Lie algebra, then $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{g}$ is an ideal. We call it the **derived Lie** algebra of \mathfrak{g} .

Definition 1.13. Let \mathfrak{g} be a Lie algebra. We say \mathfrak{g} is simple if:

- It is not abelian;
- The adjoint representation is simple (a.k.a. irreducible), i.e., $\mathfrak g$ has no ideal other than 0 and itself.

Example 1.14. The Lie algebra \mathfrak{gl}_n is not simple because $[\mathfrak{gl}_n, \mathfrak{gl}_n] = \mathfrak{sl}_n$ is a proper ideal of it. The Lie algebra \mathfrak{sl}_n is simple for $n \ge 2$.

Remark 1.15. Finite-dimensional simple Lie algebras (over k) are fully classified. A similar classification for infinite-dimensional simple Lie algebras seems to be hopeless.

Definition 1.16. Let \mathfrak{g}_i , $i \in I$ be Lie algebras indexed by a set I. The direct sum $\oplus \mathfrak{g}_i$ of the underlying vector spaces has a natural Lie bracket given by $[(x_i)_{i \in I}, (y_i)_{i \in I}] := ([x_i, y_i])_{i \in I}$. The obtained Lie algebra is called the **direct sum** of the Lie algebras \mathfrak{g}_i .

Warning 1.17. The direct sum $\oplus \mathfrak{g}_i$ is not the coproduct in the category Lie_k. Instead, if I is a finite set, then it is the product of \mathfrak{g}_i in this category.

Remark 1.18. Representation theory for $\mathfrak{g}_1 \oplus \mathfrak{g}_2$ can be obtained from those for \mathfrak{g}_1 and \mathfrak{g}_2 in a non-trivial mechanism¹.

Definition 1.19. Let \mathfrak{g} be a Lie algebra. We say \mathfrak{g} is **semisimple** if it is a direct sum of simple Lie algebras.

Remark 1.20. The zero Lie algebra 0 is semisimple but not simple.

The main goal of this course is to study representations of finite-dimensional semisimple Lie algebras.

Convention 1.21. From now on, unless otherwise stated, Lie algebras are assumed to be finitedimensional.

Exercise 1.22. This is not a homework!

- (1) Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra. Show $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$.
 - The opposite statement is generally *not* true. Below is a counterexample. Let \mathfrak{h} be a simple Lie algebra and V be a nontrivial simple \mathfrak{h} -module. Define a bracket on the vector space by the formula $\mathfrak{h} \oplus V$ by $[(x, u), (y, v)] := ([x, y], x \cdot v y \cdot u)$.

¹The abelian category $(\mathfrak{g}_1 \oplus \mathfrak{g}_2)$ -mod is the *tensor product* of \mathfrak{g}_1 -mod and \mathfrak{g}_2 -mod.

- (2) Show this bracket defines a Lie algebra structure on $\mathfrak{h} \oplus V$. We denote this Lie algebra by $\mathfrak{h} \ltimes V$.
- (3) Show $[\mathfrak{h} \ltimes V, \mathfrak{h} \ltimes V] = \mathfrak{h} \ltimes V$ but $\mathfrak{h} \ltimes V$ is not semisimple.

2. Root Space Decomposition

Convention 2.1. From now on, unless otherwise stated, \mathfrak{g} means a finite-dimensional semisimple Lie algebra.

Definition 2.2. A **Cartan subalgebra** \mathfrak{t} of \mathfrak{g} is a maximal abelian subalgebra of it consisting of semisimple elements.

Warning 2.3. A maximal abelian subalgebra of \mathfrak{g} might not be a Cartan subalgebra. For example, \mathfrak{sl}_2 contains a maximal abelian subalgebra spanned by $e := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ but e is not semisimple².

Warning 2.4. Cartan subalgebras for general finite-dimensional Lie algebras are defined in a different way and they are not abelian in general. That definition is equivalent to the above one if \mathfrak{g} is semisimple.

Theorem 2.5. Cartan subalgebras of \mathfrak{g} have a same dimension, which is called the (semisimple) rank of \mathfrak{g}^3 .

Example 2.6. The rank of \mathfrak{sl}_n is n-1. One Cartan subalgebra of it is the subspace of diagonal matrices.

Notation 2.7. From now on, we fix a Cartan subalgebra \mathfrak{t} of \mathfrak{g} . Let $\mathfrak{t}^* \coloneqq \mathsf{Hom}(\mathfrak{t}, k)$ be the dual vector space of \mathfrak{t} . For any $\alpha \in \mathfrak{t}^*$, let $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$ be the α -eigenspace for the adjoint \mathfrak{t} -action on \mathfrak{g} , *i.e.*,

$$\mathfrak{g}_{\alpha} \coloneqq \{x \in \mathfrak{g} \mid [h, x] = \alpha(h)x \text{ for any } h \in \mathfrak{t}\}.$$

Remark 2.8. Note that $\mathfrak{g}_0 = \mathfrak{t}$ (because \mathfrak{t} is maximal) and $[\mathfrak{g}_\alpha, \mathfrak{g}_\beta] \subset \mathfrak{g}_{\alpha+\beta}$ (because of the Jacobi identity).

Proposition 2.9 (Root Space Decomposition⁴). Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra with a fixed Cartan subalgebra \mathfrak{t} . Then we have a direct sum decomposition

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha},$$

where $\Phi \subset \mathfrak{t}^* \setminus 0$ is the finite set containing those nonzero α such that \mathfrak{g}_{α} is nonempty. Moreover, if $\alpha \in \Phi$, then $-\alpha \in \Phi$ and \mathfrak{g}_{α} is 1-dimensional.

Proposition 2.10. There exists a (non-unique) subset $\Phi^+ \subset \Phi$ such that:

- We have a disjoint decomposition $\Phi = \Phi^+ \sqcup -\Phi^+$;
- If $\alpha, \beta \in \Phi^+$ and $\alpha + \beta \in \Phi^5$, then $\alpha + \beta \in \Phi^+$.

Notation 2.11. From now on, we fix such a subset Φ^+ . Write $\Phi^- = -\Phi^+$.

Definition 2.12. (For above choices), elements in Φ are called **roots** of \mathfrak{g} . Elements in Φ^+ (resp. Φ^-) are called **positive roots** (resp. **negative roots**). For $\alpha \in \Phi^+$, we say α is a **(positive) simple root** if it cannot be written as the sum of two positive roots. Let $\Delta \subset \Phi^+$ be the subset of simple roots.

 $^{^2}$ I made this mistake during the lecture.

 $^{^3}$ In fact, Cartan subalgebras are all conjugate to each other by a (non-unique) element of the corresponding Lie group G of $\mathfrak{g}.$

⁴Some authors, including Humphreys, prefer the name *Cartan decomposition*. But there is a completely different Cartan decomposition in the study of real Lie algerbas.

⁵I forgot to mention this condition in the class.

Proposition 2.13. The subset $\Delta \subset \mathfrak{t}^*$ is a basis. In particular, any positive root can be uniquely written as a linear combination of simple roots with non-negative coefficients.

Definition 2.14. Define

$$\mathfrak{b}\coloneqq\mathfrak{t}\oplus\bigoplus_{\alpha\in\Phi^+}\mathfrak{g}_\alpha,\ \mathfrak{n}\coloneqq\bigoplus_{\alpha\in\Phi^+}\mathfrak{g}_\alpha$$

which are Lie subalgebras of \mathfrak{g} . We call \mathfrak{b} the **Borel subalgebra** of \mathfrak{g} (that corresponds to the choice of Φ^+) and \mathfrak{n} the **nilpotent radical** of \mathfrak{b} .

Remark 2.15. In general, a Borel subalgebra \mathfrak{b} of any Lie algebra \mathfrak{g} is defined to be a maximal solvable subalgebra of it. Here solvable means the sequence $D^1(\mathfrak{b}) := \mathfrak{b}, D^{n+1}(\mathfrak{b}) := [D^n(\mathfrak{b}), D^n(\mathfrak{b})]$ satisfies $D^n(\mathfrak{b}) = 0$ for $n \gg 0$. It is known that all Borel subalgebras are conjugate to each other.

The subalgebra $\mathfrak{n} \subset \mathfrak{b}$ is called the nilpotent radical because it contains exactly nilpotent elements in \mathfrak{b} , i.e., those elements x such that $(\mathsf{ad}_x)^{\circ n} = 0$ for n >> 0.

Note that we have $\mathfrak{t} \simeq \mathfrak{b}/\mathfrak{n}$.

Exercise 2.16. This is not a homework! For $\mathfrak{g} = \mathfrak{sl}_n$ and its standard Cartan subalgebra (Example 2.6).

- (1) Find an explicit description of Φ and \mathfrak{g}_{α} .
- (2) Show there is a unique choice of Φ^+ such that the corresponding \mathfrak{b} is the subspace of upper triangulated matrices.
- (3) For the choice of Φ^+ in (2), find all the simple roots and write each root as a linear combination of these simple roots.

3. ROOT SYSTEM

Definition 3.1. Let *E* be a finite-dimensional Euclidean space and $\Phi \subset E$ be a finite subset such that $0 \notin \Phi$. We say (E, Φ) is a **root system** if the following is satisfied:

- The subset Φ spans E;
- For any $\alpha \in \Phi$, $\mathbb{R}\alpha \cap \Phi = \{\pm \alpha\}$;
- For $\alpha, \beta \in \Phi$, the number $2\frac{(\beta, \alpha)}{(\alpha, \alpha)}$ is an integer;
- The subset Φ is closed under reflection along any $\alpha \in \Phi$, i.e., for $\alpha, \beta \in \Phi$, the element $\beta 2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$ is contained in Φ .

Definition 3.2. Let (E, Φ) be a root system. The **dual root system** is defined to be (E^*, Φ) , where E^* is the dual Euclidean space of E and Φ consists of those α for $\alpha \in \Phi$ defined by $\check{\alpha}(-) = 2\frac{(-,\alpha)}{(\alpha,\alpha)}$.

Exercise 3.3. This is not a homework! Show the double-dual of a root system is itself.

Let us return to the notations in the last section. Let $E_{\mathbb{Q}} \coloneqq \mathbb{Q}\Phi$ be the \mathbb{Q} -vector space spaned by Φ (such that we have $E_{\mathbb{Q}} \otimes_{\mathbb{Q}} k \simeq \mathfrak{t}^*$). Write $E \coloneqq E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}^6$ We are going to show (E, Φ) is a root system. For this purpose, we need to define an inner product on E.

Definition 3.4. Let \mathfrak{g} be any finite-dimensional Lie algebra. The Killing form on \mathfrak{g} is the bilinear form Kil: $\mathfrak{g} \times \mathfrak{g} \to k$, Kil $(x, y) \coloneqq tr(ad(x) \circ ad(y))$.

Proposition 3.5. The Killing form is symmetric and (ad-)invariant, i.e.,

- For $x, y \in \mathfrak{g}$, Kil(x, y) = Kil(y, x);
- For $x, y, z \in \mathfrak{g}$, $Kil(ad_z(x), y) + Kil(x, ad_z(y)) = 0$.

⁶ In the lecture, I wrote $E \otimes_{\mathbb{R}} k \simeq \mathfrak{t}^*$ which is only valid if we are given a homomorphism $\mathbb{R} \to k$.

Proposition 3.6. If \mathfrak{g} is simple, then any symmetric invariant bilinear form on \mathfrak{g} is of the form cKil for $c \in k$.

Warning 3.7. The similar claim is false if k is not algebraically closed.

Theorem 3.8 (Cartan–Killing Criterion). The Lie algebra \mathfrak{g} is semisimple iff its Killing form is non-degenerate. Moreover, in this case, the restriction of Kil on \mathfrak{t} is also non-degenerate.

Construction 3.9. Since $\operatorname{Kil}_{\mathfrak{t}}$ is non-degenerate, it induces an isomorphism $\mathfrak{t} \to \mathfrak{t}^*$ sending x to the unique element x^* such that $x^*(-) = \operatorname{Kil}(x, -)$. Consider the inverse $\mathfrak{t}^* \to \mathfrak{t}$ of this isomorphism, which also corresponds to a non-degenerate bilinear form on \mathfrak{t}^* .

Lemma 3.10. The restriction of the above bilinear form on $E_{\mathbb{Q}} \subset \mathfrak{t}^*$ is \mathbb{Q} -valued and positivedefinite. In particular, it induced a inner product on $E = E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$.

Convention 3.11. From now on, we always view E as an Euclidean space via the above inner product.

Theorem 3.12. The pair (E, Φ) defined above is a root system.

Note that for any $\check{\alpha} \in \check{\Phi}$, viewed as an element in $E^* = \text{Hom}(E, \mathbb{R})$, its restriction on $E_{\mathbb{Q}} \subset E$ is \mathbb{Q} -valued. It follows that $\check{\Phi}$ is contained in $E^*_{\mathbb{Q}}$ (via the identification $E^*_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R} \simeq E^*$). Hence we can also view $\check{\Phi}$ as a subset of $\mathfrak{t} \simeq E^*_{\mathbb{Q}} \otimes_{\mathbb{Q}} k$.

Definition 3.13. For any root $\alpha \in \Phi$, define the corresponding **coroot** to be $\check{\alpha} \in \check{\Phi} \subset \mathfrak{t}$.

Remark 3.14. There is a (unique if stated properly) semisimple Lie algebra corresponding to the dual root system $(E^*, \check{\Phi})$, known as the *Langlands dual* Lie algebra \check{\mathfrak{g}} of \mathfrak{g} .

References

[Ser] Serre, Jean-Pierre. Complex semisimple Lie algebras. Springer Science & Business Media, 2000.

[[]Hum] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.