LECTURE 1

The main goal of this course is to study representations of semisimple Lie algebras via
geometric methods. We restrict ourselves to the case when the base field k is algebraically
closed and of characteristic 0, such as the field C of complex numbers.

1. SEMISIMPLE LIE ALGEBRAS

This is just a quick review of the definitions about finite-dimensional semisimple Lie algebras.
See [Hum|, Chapter 0] for the abc’s and [Ser| for a thorough textbook.

Definition 1.1. A Lie algebra (over k) is a vector space g equipped with a binary operation
[-,-]:g%xg— g, called the Lie bracket, such that:
e The Lie bracket is bilinear, i.e., factors as gxg—>g®g - g.
e The Lie bracket is alternating: [z, x] = 0.
e The Jacobi identity holds: [z, [y, 2]] + [y, [z, z]] + [z, [z,y]] = 0.
Let g1 and go be Lie algebras. A Lie algebra homomorphism between them is a k-linear
map f: g1 — go commuting with Lie brackets, i.e., f([z,y]) = [f(x), f(y)].
This defines a category Liey of Lie algebras.

Example 1.2. Any vector space V is equipped with a trivial Lie bracket: [z,y] =0. Such Lie
algebras are called abelian Lie algebras.

Example 1.3. Let A be an associative algebra. Then the underlying vector space has a
natural Lie algebra structure with Lie bracket given by [z,y] := zy — yx. This defines a functor
oblv : Alg; — Lie, from the category of associative algebras to that of Lie algebras.

Example 1.4. Let V be a vector space and gl(V') be the vector space of endomorphisms of V.
By Example gl(V) is naturally a Lie algebra with Lie bracket given by [f,g] = fog—go f.
This is the general linear Lie algebra of V.

If V is finite-dimensional, let s[(V) c gl(V') be the subspace of endomorphisms f such that
the trace tr(f) = 0.

When V = k®" we write gl,, := gl(V), sl,, := s[(V'). Note that gl,, (resp. sl,,) can be identified
with the space of n x n matrices (resp. whose traces are zero).

Fact 1.5. We have [gl(V'),gl(V)] =sl(V).

Definition 1.6. Let g be a Lie algebra. A representation of g, or g-module, is a vector
space V equipped with a Lie algebra homomorphism g — gl(V). In other words, there is a
bilinear map (---):gxV = V such that [z,y]-v=x-(y-v) -y (z-v).

Let V1 and V5 be representations of g. A g-linear map between them is a k-linear map
f: V1 = V5 such that the following diagram commutes:

gxVi ——W;

.dxfi if

gx Vo ——=Ts.
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This defines a category g—mod of representations of g.

Fact 1.7. The category g—mod is an abelian category. The forgetful functor g—mod — Vecty, is
exact.

Example 1.8. Let g be a Lie algebra. The map ad : g — gl(g), = — ad, := [z,—] defines a
g-module structure on g itself. This is called the adjoint representation.

Definition 1.9. Let g be a finite dimensional Lie algebra and x € g be an element. We say =
is semisimple (resp. nilpotent) if the corresponding endomorphism ad, : g - g is so.

Definition 1.10. Let g be a Lie algebra. An ideal a c g is a sub-representation of the adjoint
representation. In other words, we require [g,a] c a.

Remark 1.11. Note that an ideal a is also a Lie subalgebra.

Example 1.12. Let g be a Lie algebra, then [g,g] c g is an ideal. We call it the derived Lie
algebra of g.

Definition 1.13. Let g be a Lie algebra. We say g is simple if:

e It is not abelian;
e The adjoint representation is simple (a.k.a. irreducible), i.e., g has no ideal other than
0 and itself.

Example 1.14. The Lie algebra gl,, is not simple because [gl,,, gl,,] = sl,, is a proper ideal of
it. The Lie algebra sl,, is simple for n > 2.

Remark 1.15. Finite-dimensional simple Lie algebras (over k) are fully classified. A similar
classification for infinite-dimensional simple Lie algebras seems to be hopeless.

Definition 1.16. Let g;, i € I be Lie algebras indexed by a set I. The direct sum @&g; of the
underlying vector spaces has a natural Lie bracket given by [(2;)icr, (¥i)icr] = ([%i,9i])ier. The
obtained Lie algebra is called the direct sum of the Lie algebras g;.

Warning 1.17. The direct sum @&g; is not the coproduct in the category Liey. Instead, if I is
a finite set, then it is the product of g; in this category.

Remark 1.18. Representation theory for g; @ go can be obtained from those for g; and g, in a
non-trivial mechanism{

Definition 1.19. Let g be a Lie algebra. We say g is semisimple if it is a direct sum of simple
Lie algebras.

Remark 1.20. The zero Lie algebra 0 is semisimple but not simple.

The main goal of this course is to study representations of finite-dimensional semisimple Lie
algebras.

Convention 1.21. From now on, unless otherwise stated, Lie algebras are assumed to be finite-
dimenstonal.

Ezercise 1.22. This is not a homework!

(1) Let g be a finite-dimensional semisimple Lie algebra. Show [g,g] = g.
e The opposite statement is generally not true. Below is a counterexample. Let §h be
a simple Lie algebra and V' be a nontrivial simple h-module. Define a bracket on the
vector space by the formula h & V by [(z,u), (y,v)] = ([z,y],z-v-y-u).

LThe abelian category (g1 @ g2)—mod is the tensor product of g1—mod and ga—mod.
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(2) Show this bracket defines a Lie algebra structure on h @ V. We denote this Lie algebra
by hx V.
(3) Show [hx V,hx V] =hx V but hx V is not semisimple.

2. RooT SPACE DECOMPOSITION

Convention 2.1. From now on, unless otherwise stated, g means a finite-dimensional semisim-
ple Lie algebra.

Definition 2.2. A Cartan subalgebra t of g is a maximal abelian subalgebra of it consisting
of semisimple elements.

Warning 2.3. A mazimal abelian subalgebra of g might not be a Cartan subalgebra. For exam-
ple, sly contains a mazximal abelian subalgebra spanned by e := (8 6) but e s not semisimpl.

Warning 2.4. Cartan subalgebras for general finite-dimensional Lie algebras are defined in a
different way and they are not abelian in general. That definition is equivalent to the above one
if g is semisimple.

Theorem 2.5. Cartan subalgebras of g have a same dimension, which is called the (semisim-
ple) rank of dﬂ

Example 2.6. The rank of sl,, is n—1. One Cartan subalgebra of it is the subspace of diagonal
matrices.

Notation 2.7. From now on, we fiz a Cartan subalgebra t of g. Let t* := Hom(t, k) be the dual
vector space of t. For any a € t*, let g, c g be the a-eigenspace for the adjoint t-action on g,
i.e.,

0o ={zeg|[h,z]=a(h)x for any h € t}.

Remark 2.8. Note that go = t (because t is maximal) and [gq,83] € ga+s (because of the Jacobi
identity).

Proposition 2.9 (Root Space Decompositiorﬁ). Let g be a finite-dimensional semisimple Lie
algebra with a fived Cartan subalgebra t. Then we have a direct sum decomposition

g=te @gav
aed

where ® c t*\0 is the finite set containing those nonzero « such that g, is nonempty. Moreover,
if o€ ®, then —a € ® and g, is 1-dimensional.

Proposition 2.10. There exists a (non-unique) subset ®* c & such that:

o We have a disjoint decomposition ® = ®* - ;
o Ifa,Bed" cmda+ﬂe<1ﬂ then o+ 3 € ®*.

Notation 2.11. From now on, we fiz such a subset ®*. Write &~ = —-d*,

Definition 2.12. (For above choices), elements in ® are called roots of g. Elements in &*
(resp. @7) are called positive roots (resp. negative roots). For a € ®*, we say « is a
(positive) simple root if it cannot be written as the sum of two positive roots. Let A c ®*
be the subset of simple roots.

2 T made this mistake during the lecture.

3 In fact, Cartan subalgebras are all conjugate to each other by a (non-unique) element of the corresponding
Lie group G of g.

4Some authors, including Humphreys, prefer the name Cartan decomposition. But there is a completely
different Cartan decomposition in the study of real Lie algerbas.

51 forgot to mention this condition in the class.



4 LECTURE 1

Proposition 2.13. The subset A c t* is a basis. In particular, any positive root can be uniquely
written as a linear combination of simple roots with non-negative coefficients.

Definition 2.14. Define

b:=t® P ga, ni= D ga

aedt aedt
which are Lie subalgebras of g. We call b the Borel subalgebra of g (that corresponds to the
choice of ®*) and n the nilpotent radical of b.

Remark 2.15. In general, a Borel subalgebra b of any Lie algebra g is defined to be a max-
imal solvable subalgebra of it. Here solvable means the sequence D!(b) := b, D"*!(b) :=
[D™(b),D"(b)] satisfies D™(b) = 0 for n >> 0. It is known that all Borel subalgebras are
conjugate to each other.

The subalgebra n c b is called the nilpotent radical because it contains exactly nilpotent
elements in b, i.e., those elements z such that (ad;)°"™ =0 for n >> 0.

Note that we have t~ b/n.

Ezercise 2.16. This is not a homework! For g = sl,, and its standard Cartan subalgebra (Ex-
ample .
(1) Find an explicit description of ® and g,,.
(2) Show there is a unique choice of ®* such that the corresponding b is the subspace of
upper triangulated matrices.
(3) For the choice of ®* in (2), find all the simple roots and write each root as a linear
combination of these simple roots.

3. RoOT SYSTEM

Definition 3.1. Let E be a finite-dimensional Euclidean space and ® c E be a finite subset
such that 0 ¢ . We say (E,®) is a root system if the following is satisfied:

The subset ® spans FE;

For any a € ®, Ran ® = {xa};

For a, 8 € ®, the number 283; is an integer;

The subset ® is closed under reflection along any « € @, i.e., for a, 5 € ®, the element

8- QEi’zga is contained in ®.

Definition 3.2. Let (F,®) be a root system. The dual root system is defined to be (E*,®),
where E* is the dual Euclidean space of E and & consists of those & for a € ® defined by
a(-) =259

(a,)”

Exercise 3.3. This is not a homework! Show the double-dual of a root system is itself.

Let us return to the notations in the last section. Let Eg := Q® be the Q-vector space spaned
by ® (such that we have Eg ®qg k ~ t*). Write £ := Eg ®q RﬂWe are going to show (E,®) is a
root system. For this purpose, we need to define an inner product on E.

Definition 3.4. Let g be any finite-dimensional Lie algebra. The Killing form on g is the
bilinear form Kil : g x g - k, Kil(x,y) := tr(ad(z) o ad(y)).

Proposition 3.5. The Killing form is symmetric and (ad-)invariant, i.e.,
e Forxz,yeg, Kil(z,y) = Kil(y, z);
o Forx,y,zeg, Kil(ad,(z),y) + Kil(xz,ad,(y)) = 0.

6 In the lecture, I wrote E ®g k ~ t* which is only valid if we are given a homomorphism R — k.
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Proposition 3.6. If g is simple, then any symmetric invariant bilinear form on g is of the
form cKil for cek.

Warning 3.7. The similar claim is false if k is not algebraically closed.

Theorem 3.8 (Cartan—Killing Criterion). The Lie algebra g is semisimple iff its Killing form
is non-degenerate. Moreover, in this case, the restriction of Kil on t is also non-degenerate.

Construction 3.9. Since Killy is non-degenerate, it induces an isomorphism t = t* sending
x to the unique element x* such that *(-) = Kil(x,~). Consider the inverse t* = t of this
isomorphism, which also corresponds to a non-degenerate bilinear form on t*.

Lemma 3.10. The restriction of the above bilinear form on Eg c t* is Q-valued and positive-
definite. In particular, it induced a inner product on E = Eg ®g R.

Convention 3.11. From now on, we always view E as an Fucilidean space via the above inner
product.

Theorem 3.12. The pair (E,®) defined above is a Toot system.

Note that for any & € ®, viewed as an element in E* = Hom(E,R), its restriction on EgcE
is Q-valued. It follows that ® is contained in E§ (via the identification Ej ®q R ~ E*). Hence
we can also view ® as a subset of ¢ ~ Eg®qk.

Definition 3.13. For any root « € @, define the correponding coroot to be ¢ € bt
Remark 3.14. There is a (unique if stated properly) semisimple Lie algebra corresponding to
the dual root system (E*,®), known as the Langlands dual Lie algebra § of g.
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