LECTURE 10

From this lecture on, we turn to the geometric side of the localization theory. The main player will be (algebraic) D-modules on the flag variety G / B. In this lecture, we define D modules. There are many good references for this theory. For example, HTT is a thorough textbook, while $[\mathrm{B}$ is a short notes.

1. Recollection: (co)tangent sheaves

Recall the following definitions in algebraic geometry.
Definition 1.1. Let A be a k-algebra and M be an A-module. A k-derivation of A into M is a k-linear map $D: A \rightarrow M$ satisfying the Lebniz rule

$$
D(f \cdot g)=f \cdot D(g)+g \cdot D(f)
$$

Let $\operatorname{Der}(A, M)$ be the set of such k-derivations. This is naturally an A-module.
Definition 1.2. Let $\left(X, \mathcal{O}_{X}\right)$ be any k-ringed space and \mathcal{M} be an \mathcal{O}_{X}-module. A k-derivation of \mathcal{O}_{X} into \mathcal{M} is a k-linear morphism $D: \mathcal{O}_{X} \rightarrow \mathcal{M}$ such that for any open subscheme $U \subset X$, $D(U): \mathcal{O}(U) \rightarrow \mathcal{M}(U)$ is a k-derivation. Let $\operatorname{Der}\left(\mathcal{O}_{X}, \mathcal{M}\right)$ be the space of k-derivations.

Proposition-Definition 1.3. Let X be a k-scheme. The functor \mathcal{O}_{X}-mod $\rightarrow V e c t, \mathcal{M} \mapsto$ $\operatorname{Der}\left(\mathcal{O}_{X}, \mathcal{M}\right)$ is represented by a quasi-coherent \mathcal{O}_{X}-module Ω_{X}^{1}, i.e.

$$
\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{M}\right) \simeq \operatorname{Der}\left(\mathcal{O}_{X}, \mathcal{M}\right)
$$

We call Ω_{X}^{1} the sheaf of differentials, or the cotangent sheaf, of X over k.
The identity map on Ω_{X}^{1} corresponds to a k-derivation

$$
d: \mathcal{O}_{X} \rightarrow \Omega_{X}^{1}
$$

which is called the universal k-derivation of \mathcal{O}_{X}.
When $X=\operatorname{Spec}(A)$ is affine, let $\Omega_{A}^{1} \in A-\bmod$ be such that $\Omega_{X}^{1} \simeq \widetilde{\Omega_{A}^{1}}$. We call Ω_{A}^{1} the module of differentials of A over k.
Example 1.4. If $A=\operatorname{Sym}(V)$ for a k-vector space $V \in V$ ect, then $\Omega_{A}^{1} \simeq A \otimes_{k} V$ and $d: A \rightarrow \Omega_{A}^{1}$ sends $v \in V \subset \operatorname{Sym}(V)$ to $d v=1 \otimes v \in A \otimes_{k} V$.
Construction 1.5. Let $f: X \rightarrow Y$ be a morphism between k-schemes. For any \mathcal{O}_{X}-module \mathcal{M}, consider the composition

$$
\operatorname{Der}\left(\mathcal{O}_{X}, \mathcal{M}\right) \rightarrow \operatorname{Der}\left(f_{*} \mathcal{O}_{X}, f_{*} \mathcal{M}\right) \rightarrow \operatorname{Der}\left(\mathcal{O}_{Y}, f_{*} \mathcal{M}\right)
$$

that sends a k-derivation $D: \mathcal{O}_{X} \rightarrow \mathcal{M}$ to $\mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X} \xrightarrow{f_{*}(D)} f_{\star} \mathcal{M}$. By definition, we obtain maps

$$
\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{M}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, f_{*} \mathcal{M}\right) \simeq \operatorname{Hom}_{\mathcal{O}_{X}}\left(f^{*} \Omega_{Y}^{1}, \mathcal{M}\right)
$$

that are functorial in \mathcal{M}. This gives an \mathcal{O}_{X}-linear morphism

$$
\begin{equation*}
f^{*} \Omega_{Y}^{1} \rightarrow \Omega_{X}^{1} \tag{1.1}
\end{equation*}
$$

Date: Apr 29, 2024.

Lemma 1.6. If $f: X \rightarrow Y$ is an open embedding, or more generally an étale morphism, then $f^{*} \Omega_{Y}^{1} \rightarrow \Omega_{X}^{1}$ is an isomorphism.
Lemma 1.7. Let $f: X \rightarrow Y$ be a closed embedding corresponding to the ideal sheaf $\mathcal{I} \subset \mathcal{O}_{Y}$. Then we have

$$
\mathcal{I} / \mathcal{I}^{2} \xrightarrow{d} f^{*} \Omega_{Y}^{1} \rightarrow \Omega_{X}^{1} \rightarrow 0,
$$

where the map $\mathcal{I} / \mathcal{I}^{2} \rightarrow f^{*} \Omega_{Y}^{1} \simeq \Omega_{Y}^{1} / \mathcal{I} \Omega_{Y}^{1}$ is induced by $\mathcal{I} \rightarrow \mathcal{O}_{Y} \xrightarrow{d} \Omega_{Y}^{1}$.
Remark 1.8. Since any affine scheme is a closed subscheme of $\operatorname{Spec}(\operatorname{Sym}(V))$ for some $V \in \operatorname{Vect}$, the above lemmas, together with Example 1.4, allow us to calculate Ω_{X}^{1} for any k-scheme X.

Corollary 1.9. If X is (locally) of finite type over k, then Ω_{X}^{1} is (locally) coherent.
Corollary 1.10. If X is a smooth k-scheme of dimension n, then Ω_{X}^{1} is locally free of rank n.
From now on, we always assume X is a smooth k-scheme.
Construction 1.11. Let X be a smooth k-scheme. Define $\Omega_{X}^{n}:=\wedge_{\mathcal{O}_{X}}^{n}\left(\Omega_{X}^{1}\right)$, i.e., the antisymmetric quotient of $\Omega_{X}^{1} \otimes_{\mathcal{O}_{X}} \cdots \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}$. As in the study of differential geometry, there is a unique complex

$$
\mathcal{O}_{X} \xrightarrow{d} \Omega_{X}^{1} \xrightarrow{d} \Omega_{X}^{2} \xrightarrow{d} \cdots
$$

such that $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{m}(\alpha \wedge d \beta)$, where $\alpha \in \Omega_{X}^{m}(U)$ is a m-form. This is the de Rham complex of X.

Construction 1.12. Let X be a smooth k-scheme. We define the tangent sheaf \mathcal{T}_{X} of X over k to be the dual of Ω_{X}^{1}, i.e.,

$$
\mathcal{T}_{X}:=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)
$$

Note that \mathcal{T}_{X} is quasi-coherent, and for any open subset U, we have

$$
\mathcal{T}(U):=\operatorname{Der}\left(\mathcal{O}_{U}, \mathcal{O}_{U}\right)
$$

By definition, for $\partial \in \mathcal{T}(U)$ and $f \in \mathcal{O}(U)$, we have $\partial(f)=\langle\partial, d f\rangle$.
Corollary 1.13. We have equivalences between functors $\mathcal{O}_{X}-\bmod \rightarrow$ Vect:

Remark 1.14. The tangent space $T_{X, x}$ introduced in [Section 3, Lecture 3] can be identified with the stalk of \mathcal{T}_{X} at x.
Corollary 1.15. If X is a smooth k-scheme of dimension n, then \mathcal{T}_{X} is locally free of rank n.
Construction 1.16. Let $f: X \rightarrow Y$ be a morphism between smooth k-schemes. The morphism (1.1) induces an \mathcal{O}_{X}-linear morphism

$$
d f: \mathcal{T}_{X} \rightarrow f^{*} \mathcal{T}_{Y}
$$

Lemma 1.17. Let $X=X_{1} \times X_{2}$ be a smooth k-scheme. Then the \mathcal{O}_{X}-linear morphism

$$
\left(d \mathrm{pr}_{1}, d \mathrm{pr}_{2}\right): \mathcal{T}_{X} \rightarrow \mathrm{pr}_{1}^{*} \mathcal{T}_{X_{1}} \oplus \mathrm{pr}_{2}^{*} \mathcal{T}_{X_{2}}
$$

is an isomorphism.
Construction 1.18. Let X be a smooth k-scheme. For any open subset U of $X,\left[D_{1}, D_{2}\right]:=$ $D_{1} \circ D_{2}-D_{2} \circ D_{1}$ defines a Lie bracket on $\operatorname{Der}\left(\mathcal{O}_{U}, \mathcal{O}_{U}\right)$. By defition, \mathcal{O}_{U} is a representation of the obtained Lie algebra.

It follows that \mathcal{T}_{X} is a sheaf of Lie algebras on X, and \mathcal{O}_{X} is a \mathcal{T}_{X}-module.

Warning 1.19. The category \mathcal{O}_{X}-mod has a natural symmetric monoidal structure but \mathcal{T}_{X} is not a Lie algebra object in this symmetric monoidal category. In other words, the Lie bracket $[-,-]: \mathcal{T}_{X} \otimes_{k} \mathcal{T}_{X} \rightarrow \mathcal{T}_{X}$ does not factor through $\mathcal{T}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{T}_{X}$.
Construction 1.20. As in the study of differential geometry, for any local section $\partial \in \mathcal{T}(U)$, we can define the contraction operator

$$
i_{\partial}: \Omega_{X}^{n+1}(U) \rightarrow \Omega_{X}^{n}(U)
$$

and the Lie derivative

$$
\mathcal{L}_{\partial}: \Omega_{X}^{n}(U) \rightarrow \Omega_{X}^{n}(U)
$$

They satisfy all the identities in differential geometry. In particular, we have the Cartan's magic formula:

$$
\mathcal{L}_{\partial}(\omega)=i_{\partial}(d \omega)+d\left(i_{\partial} \omega\right)
$$

We have the following useful result, which allows us to apply the techniques in differential geometry to the study of \mathcal{T}_{X} and Ω_{X}. For a proof, see HTT, Theorem A.5.1].

Proposition-Definition 1.21. Let X be any n-dimensional smooth k-scheme and $p \in X$ be a closed point. Then there exists an affine open neighborhood U of p and functions $x_{i} \in \mathcal{O}(U)$, $i=1, \cdots, n$, such that
(i) $\left\{d x_{i}\right\}$ is a free basis of $\Omega^{1}(U)$ as an $\mathcal{O}(U)$-module;
(ii) Let $\left\{\partial_{i}\right\}$ be the dual basis of $\mathcal{T}(U)$, then $\left[\partial_{i}, \partial_{j}\right]=0$ and $\partial_{i}\left(x_{j}\right)=\delta_{i j}$.
(iii) The images of x_{i} in the local ring $\mathcal{O}_{X, p}$ generate the maximal ideal $\mathfrak{m}_{X, p}$.

We call such a system $\left\{x_{i}\right\}$ an étale coordinate system of X near p.
Remark 1.22. (ii) actually follows from (i).
Remark 1.23. The functions x_{i} define an étale map $X \rightarrow \mathbb{A}^{n}$ sending $p \in X$ to the origin $0 \in \mathbb{A}^{n}$.

2. Tangent sheaf vs. Lie algebra

Construction 2.1. Let X be a finite type k-scheme equipped with a right action of an algebraic group G. Let $\mathfrak{g}:=\operatorname{Lie}(G)$ be the Lie algebra of G. We construct a Lie algebra homomorphism

$$
a: \mathfrak{g} \rightarrow \mathcal{T}(X)
$$

as follows. Consider the action map act : $X \times G \rightarrow X$ and the $\mathcal{O}_{X \times G}$-linear morphisms

$$
\mathcal{O}_{X} \otimes \mathcal{T}_{G} \simeq \mathrm{pr}_{2}^{*} \mathcal{T}_{G} \hookrightarrow \mathcal{T}_{X \times G} \xrightarrow{\text { dact }} \mathrm{act}^{*} \mathcal{T}_{X}
$$

By restricting along $X \xrightarrow{\mathrm{Id} \times e} X \times G$, we otain \mathcal{O}_{X}-linear morphisms

$$
\mathcal{O}_{X} \otimes \mathfrak{g} \rightarrow \mathcal{T}_{X}
$$

which induces the desired k-linear map $a: \mathfrak{g} \rightarrow \mathcal{T}(X)$.
Remark 2.2. Using the language of differential geometry, for $x \in \mathfrak{g}, a(x)$ is the vector field of the flow $\operatorname{act}(-, \exp (t x)): X \rightarrow X$.
Lemma 2.3. The above map $a: \mathfrak{g} \rightarrow \mathcal{T}(X)$ is a Lie algebra homomorphism.
Proof. Unwinding the definitions, the corresponding map $\operatorname{Der}\left(\mathcal{O}_{G}, k_{e}\right) \rightarrow \operatorname{Der}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$ sends a k-derivation $\partial: \mathcal{O}_{G} \rightarrow k_{e}$ to the composition ${ }^{11}$

$$
a\left(\partial_{1}\right): \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \otimes \mathcal{O}_{G} \xrightarrow{\mathrm{Id} \otimes \partial} \mathcal{O}_{X} \otimes k_{e} \simeq \mathcal{O}_{X}
$$

[^0]Using the axioms of group actions, we can identify $a\left(\partial_{1}\right) \circ a\left(\partial_{2}\right)$ with

$$
\mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \otimes \mathcal{O}_{G} \xrightarrow{\mathrm{Id} \otimes \Delta} \mathcal{O}_{X} \otimes \mathcal{O}_{G} \otimes \mathcal{O}_{G} \xrightarrow{\mathrm{Id} \otimes \partial_{1} \otimes \partial_{2}} \mathcal{O}_{X} \otimes k_{e} \otimes k_{e} \simeq \mathcal{O}_{X}
$$

This implies

$$
\left[a\left(\partial_{1}\right), a\left(\partial_{2}\right)\right]=a\left(\partial_{1}\right) \circ a\left(\partial_{2}\right)-a\left(\partial_{2}\right) \circ a\left(\partial_{1}\right)=a\left(\left[\partial_{1}, \partial_{2}\right]\right)
$$

where the last equation is due to [Remark 4.5, Lecture 3].

Remark 2.4. Let X be a finite type k-scheme equipped with a left action of an algebraic group G. We can obtain a right G-action by precomposing with $g \mapsto g^{-1}$. It follows that we also have a Lie algebra homomorphism $a: \mathfrak{g} \rightarrow \mathcal{T}(X)$. Using the language of differential geometry, for $x \in \mathfrak{g}, a(x)$ is the vector field of the flow $\operatorname{act}(\exp (-t x),-): X \rightarrow X$.

Example 2.5. Consider the left and right multplication actions of G on itself. We obtain Lie algebra homomorphisms

$$
\mathfrak{g} \xrightarrow{a_{l}} \mathcal{T}(G) \stackrel{a_{r}}{\longleftrightarrow} \mathfrak{g} .
$$

By construction, the image of a_{r} consists of left invariant vector fields on G, while the image of a_{l} consists of right invariant ones.

It is easy to see that the images of $a_{l}: \mathfrak{g} \rightarrow \mathcal{T}(G)$ and $a_{r}: \mathfrak{g} \rightarrow \mathcal{T}(G)$ commute with respect to the Lie bracket, i.e., $\left[a_{l}(x), a_{r}(y)\right]=0$ for $x, y \in \mathfrak{g}$. Indeed, this follows by considering the $(G \times G)$-action on G given by $\left(g_{1}, g_{2}\right) \cdot x:=g_{1}^{-1} x g_{2}$.

It is easy to show the obtained \mathcal{O}_{G}-linear maps, which we denote by the same symbols,

$$
\mathcal{O}_{G} \otimes \mathfrak{g} \xrightarrow{a_{l}} \mathcal{T}_{G} \stackrel{a_{r}}{\longleftrightarrow} \mathcal{O}_{G} \otimes \mathfrak{g}
$$

are isomorphisms. Note that the stalks of the above maps at $e \in G$ are given by

$$
\mathfrak{g} \xrightarrow{\text { Id }} \mathfrak{g} \stackrel{\text { Id }}{\leftarrow} \mathfrak{g} .
$$

The following terminology is not standard ${ }^{2}$
Definition 2.6. Let X be a smooth k-scheme. A quasi-coherent \mathcal{T}_{X}-module is a quasicoherent \mathcal{O}_{X}-module \mathcal{M} equipped with a \mathcal{T}_{X}-module structure such that
(i) The map $\mathcal{T}_{X} \otimes_{k} \mathcal{M} \rightarrow \mathcal{M}$ is \mathcal{O}_{X}-linear, where $\mathcal{T}_{X} \otimes_{k} \mathcal{M}$ is viewed as an \mathcal{O}_{X}-module via the first factor.
(ii) The $\operatorname{map} \mathcal{O}_{X} \otimes_{k} \mathcal{M} \rightarrow \mathcal{M}$ is \mathcal{T}_{X}-linear, where $\mathcal{O}_{X} \otimes_{k} \mathcal{M}$ is viewed as an \mathcal{T}_{X}-module via the diagonal action.
Let $\mathcal{T}_{X}-\bmod _{\mathrm{qc}}$ be the category of quasi-coherent \mathcal{T}_{X}-module, where morphisms are defined in the obvious way.

Remark 2.7. Unwinding the definitions, (ii) means the action of \mathcal{T}_{X} on \mathcal{M} satisfies the Lebniz rule: for any local sections $\partial \in \mathcal{T}(U), m \in \mathcal{M}(U)$ and $f \in \mathcal{O}(U)$, we have

$$
\partial(f \cdot m)=f \cdot \partial(m)+\partial(f) \cdot m
$$

Example 2.8. The structure sheaf \mathcal{O}_{X}, equipped with the standard \mathcal{T}_{X}-action, is a quasicoherent \mathcal{T}_{X}-module.

Remark 2.9. It is easy to show $\mathcal{T}_{X}-\bmod _{\mathrm{qc}}$ is an abelian category and the forgetful functor $\mathcal{T}_{X}-\bmod _{\mathrm{qc}} \rightarrow \mathcal{O}_{X}-\bmod _{\mathrm{qc}}$ is exact.

[^1]Construction 2.10. Let X be a finite type k-scheme equipped with an action of an algebraic group G. We have a functor

$$
\Gamma: \mathcal{T}_{X}-\bmod _{\mathrm{qc}} \rightarrow \mathfrak{g}-\bmod , \mathcal{M} \mapsto \mathcal{M}(X)
$$

where $\mathcal{M}(X)$ is viewed as a \mathfrak{g}-module via the Lie algebra homomorphism $a: \mathfrak{g} \rightarrow \mathcal{T}(X)$.
Remark 2.11. One version of the localizaiton theory says for $X=G / B$, the above functor induces an equivalence

$$
\Gamma: \mathcal{T}_{X}-\bmod _{\mathrm{qc}} \stackrel{\simeq}{\rightarrow} \mathfrak{g}-\bmod _{\chi 0}
$$

where $\chi_{0}=\varpi(0)$ is the central character of M_{0}.

3. Differential operators

Just like the associative algebra $U(\mathfrak{g})$ plays a significant role in the study of \mathfrak{g}-modules, there is a sheaf of associative algebras, known as the sheaf of differential operators \mathcal{D}_{X}, that plays a similar role in the study of \mathcal{T}_{X}-modules ${ }^{3}$.
Definition 3.1. Let X be an affine smooth k-scheme. We define the notion of differential operator on X inductively.

A k-linear map $D: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ is a differential operator of order $-n(n>0)$ iff $D=0$.
A k-linear map $D: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ is a differential operator of order $n(n \geq 0)$ if for any function $f \in \mathcal{O}(X)$, the k-linear map $[D, f]:=D \circ f-f \circ D$, i.e.,

$$
g \mapsto D(f g)-f D(g)
$$

is a differential operator of order $n-1$.
Let $\mathrm{F}^{\leq n} \mathcal{D}(X)$ be the space of differential operators of order n on X, and $\mathcal{D}(X):=\cup_{n} \mathrm{~F}^{\leq n} \mathcal{D}(X)$ be the space of all differential operators on X.
Example 3.2. Multplication by any $f \in \mathcal{O}(X)$ is a differential operator of order 0 and the map $\mathcal{O}(X) \rightarrow \mathrm{F}^{\leq 0} \mathcal{D}(X) \simeq \operatorname{gr}^{0} \mathcal{D}(X)$ is an isomorphism.

Exercise 3.3. This is Homework 5, Problem 1. Let X be an affine smooth k-scheme. Prove: any k-derivation $\mathcal{O}(X) \rightarrow \mathcal{O}(X)$ is a differential operator of order 1, and the obtained map $\mathcal{O}(X) \oplus \mathcal{T}(X) \rightarrow \mathrm{F}^{\leq 1} \mathcal{D}(X)$ is an isomorphism.
Lemma 3.4. Let X be an affine smooth k-scheme, and $D_{1} \in \mathrm{~F}^{\leq m} \mathcal{D}(X), D_{2} \in \mathrm{~F}^{\leq n} \mathcal{D}(X)$ be differential operators. Prove:
(1) The composition $D_{1} \circ D_{2}$ is a differential operator of order $m+n$.
(2) The commutator $\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-D_{2} \circ D_{1}$ is a differential operator of order $m+n-1$. In other words, $\mathrm{F}^{\bullet} \mathcal{D}(X)$ is a filtered associative algebra such that $\mathrm{gr}^{\bullet} \mathcal{D}(X)$ is commutative.
Proof. Follow from the above exercise and induction.

Remark 3.5. For any k-linear map $D: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ and functions $u, v \in \mathcal{O}(X)$, we have

$$
\begin{equation*}
[D, u v]=[D, u] v+u[D, v] \tag{3.1}
\end{equation*}
$$

It follows that in Definition 3.1, we can replace "for any function $f \in \mathcal{O}(X)$ " by "for generators f of $\mathcal{O}(X)$ ".

Note that we also have

$$
\begin{equation*}
D(u v)=[D, u](v)+u D(v) \tag{3.2}
\end{equation*}
$$

[^2]Remark 3.6. For a disjoint union $V_{1} \sqcup V_{2}$ of affine smooth k-schemes, we have $\mathrm{F}^{\bullet} \mathcal{D}\left(V_{1} \sqcup V_{2}\right) \simeq$ $\mathrm{F}^{\bullet} \mathcal{D}\left(V_{1}\right) \oplus \mathrm{F}^{\bullet} \mathcal{D}\left(V_{2}\right)$.
Warning 3.7. Definition 3.1 makes sense even when X is singular, but the obtained algebra $\mathcal{D}(X)$ is ill-behaved and is not the correct algebra to consider. In modern point of view, for singular X, the "correct" $\mathcal{D}(X)$ should be a $D G$ algebra.

4. Sheaf of differential operators

In this section, for any smooth k-scheme, we construct a sheaf \mathcal{D}_{X} of filtered associative algebras such that for any affine open subscheme U, we have $\mathcal{D}_{X}(U) \simeq \mathcal{D}(U)$. The proofs in this section are technical and can be treated as blackboxes.

Throughout this section, let V be a connected affine smooth k-scheme and $f \in \mathcal{O}(V)$ be a nonzero function. Let $U \subset V$ be the affine open subscheme where $f \neq 0$, i.e. $\mathcal{O}(U) \simeq \mathcal{O}(V)_{f}$. Note that U is also connected. We identify $\mathcal{O}(V)$ as a subalgebra of $\mathcal{O}(U)$.

Lemma 4.1. Any differential operator $D \in \mathcal{D}(U)$ is determined by its restriction $\left.D\right|_{\mathcal{O}(V)}$: $\mathcal{O}(V) \rightarrow \mathcal{O}(U)$.

Proof. Let $D \in \mathrm{~F}^{\leq n} \mathcal{D}(U)$. We prove by induction in n. When $n<0$, there is nothing to prove. For $n \geq 0$, for any $g \in \mathcal{O}(V)$ and $m \geq 0$, we have

$$
\begin{equation*}
D(g)=D\left(f^{m} \cdot \frac{g}{f^{m}}\right)=f^{m} \cdot D\left(\frac{g}{f^{m}}\right)+\left[D, f^{m}\right]\left(\frac{g}{f^{m}}\right) . \tag{4.1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
D\left(\frac{g}{f^{m}}\right)=\frac{D(g)}{f^{m}}-\frac{\left[D, f^{m}\right]\left(\frac{g}{f^{m}}\right)}{f^{m}} \tag{4.2}
\end{equation*}
$$

Note that $\left[D, f^{m}\right] \in \mathrm{F}^{\leq n-1} \mathcal{D}(U)$ hence it is determined by $\left.\left[D, f^{m}\right]\right|_{\mathcal{O}(V)}=\left[\left.D\right|_{\mathcal{O}(V)}, f^{m}\right]$, which is determined by $\left.D\right|_{\mathcal{O}(V)}$. Now (4.2) implies D is also determined by $\left.D\right|_{\mathcal{O}(V)}$.

Lemma 4.2. For any differential operator $D_{0} \in \mathrm{~F}^{\leq n} \mathcal{D}(V)$, there is a unique differential operator $D \in \mathrm{~F}^{\leq n} \mathcal{D}(U)$ making the following diagram commute:

Proof. The uniqueness follows from Lemma 4.1. It remains to show the existence. We prove by induction in n. When $n<0$, there is nothing to prove. For $n \geq 0$ and any $m \geq 0$, by induction hypothesis, there is a unique differential operator $\left[D_{0}, f^{m}\right]^{\sharp} \in \mathrm{F}^{\leq n-1} \mathcal{D}(U)$ that extends $\left[D_{0}, f^{m}\right] \in \mathrm{F}^{\leq n-1} \mathcal{D}(V)$. Motivated by 4.2), for any $g \in \mathcal{O}(V)$, we define

$$
D\left(\frac{g}{f^{m}}\right):=\frac{D_{0}(g)}{f^{m}}-\frac{\left[D_{0}, f^{m}\right]^{\sharp}\left(\frac{g}{f^{m}}\right)}{f^{m}} .
$$

We need to show the map D is well-defined, i.e., $D\left(\frac{g}{f^{m}}\right)=D\left(\frac{f^{l} g}{f^{l+m}}\right)$ for any $l \geq 0$. Note that we have

$$
D_{0}\left(f^{l} g\right)=f^{l} D_{0}(g)+\left[D_{0}, f^{l}\right](g)
$$

We also have $\left[D_{0}, f^{l+m}\right]=\left[D_{0}, f^{l}\right] f^{m}+f^{m}\left[D_{0}, f^{l}\right]$. This implies

$$
\left[D_{0}, f^{l+m}\right]^{\sharp}=\left[D_{0}, f^{l}\right]^{\sharp} f^{m}+f^{m}\left[D_{0}, f^{l}\right]^{\sharp} .
$$

Combining the above two equations, a direct calculation shows $D\left(\frac{g}{f^{m}}\right)=D\left(\frac{f^{l} g}{f^{l+m}}\right)$ as desired.
It remains to show D is a differential operator of order n. By Remark 3.5, we only need to show $\left[D, f^{-1}\right.$] and $[D, h], h \in \mathcal{O}(V)$ are differential operators of order $n-1$. By (3.1), we have $0=\left[D, f f^{-1}\right]=f\left[D, f^{-1}\right]+[D, f] f^{-1}$. Hence $\left[D, f^{-1}\right]=-f^{-1}[D, f] f^{-1}$. Therefore we only need to show $D^{\prime}:=[D, h] \in \mathrm{F}^{\leq n-1} \mathcal{D}(U)$. Write $D_{0}^{\prime}:=\left[D_{0}, h\right] \in \mathrm{F}^{\leq n-1} \mathcal{D}(V)$. A direct calculations shows D^{\prime} can be obtained from D_{0}^{\prime} using the same formula that defines D from D_{0}, i.e.,

$$
D^{\prime}\left(\frac{g}{f^{m}}\right):=\frac{D_{0}^{\prime}(g)}{f^{m}}-\frac{\left[D_{0}^{\prime}, f^{m}\right]^{\sharp}\left(\frac{g}{f^{m}}\right)}{f^{m}} .
$$

Hence we win by induction in n (again).

Lemma 4.3. For any differential operator $D \in \mathrm{~F}^{\leq n} \mathcal{D}(U)$, there exists an integer $N \geq 0$ such that $f^{N} D$ and $D f^{N}$ send $\mathcal{O}(V)$ into $\mathcal{O}(V)$.

Proof. We prove by induction in n. When $n<0$, there is nothing to prove. For $n \geq 0$, let $g_{i} \in \mathcal{O}(V), i \in I$ be a finite set of generators. By induction hypothesis, there exists an integer $N \geq 0$ such that $f^{N}\left[D, g_{i}\right]$ and $\left[D, g_{i}\right] f^{N}$ preserve $\mathcal{O}(V)$ for any $i \in I$. By (3.1), $f^{N}[D, g]$ and $[D, g] f^{N}$ preserve $\mathcal{O}(V)$ for any $g \in \mathcal{O}(V)$. By enlarging N, we can assume $f^{N} D(1) \in \mathcal{O}(V)$. Hence by (3.2), $f^{N} D(g)=f^{N}[D, g](1)+f^{N} g D(1) \in \mathcal{O}(V)$ and $D\left(f^{2 N} g\right)=\left[D, f^{N}\right]\left(f^{N} g\right)+$ $f^{N} D\left(f^{N} g\right) \in \mathcal{O}(V)$.

Construction 4.4. Let $\mathrm{F}^{\bullet} \mathcal{D}(V) \rightarrow \mathrm{F}^{\bullet} \mathcal{D}(U)$ be the map defined by Lemma 4.2. Recall $\mathcal{D}(U)$ is an $\mathcal{O}(U)$-bimodule and $\mathcal{D}(V)$ is an $\mathcal{O}(V)$-bimodule. It is easy to see the above map is compatible with the homomorphism $\mathcal{O}(V) \rightarrow \mathcal{O}(U)$. It follows that we have maps

$$
\begin{equation*}
\mathcal{O}(U) \underset{\mathcal{O}(V)}{\otimes} \mathrm{F}^{\bullet} \mathcal{D}(V) \rightarrow \mathrm{F}^{\bullet} \mathcal{D}(U) \leftarrow \mathrm{F}^{\bullet} \mathcal{D}(V) \underset{\mathcal{O}(V)}{\otimes} \mathcal{O}(U) \tag{4.3}
\end{equation*}
$$

such that the rightward map is left $\mathcal{O}(U)$-linear while the leftward map is right $\mathcal{O}(U)$-linear.
Lemma 4.5. The maps 4.3 are isomorphisms.
Proof. We first show the maps are injective. Note that any element in $\mathcal{O}(U) \otimes_{\mathcal{O}(V)} \mathrm{F}^{\bullet} \mathcal{D}(V)$ is a pure tensor $f^{-m} \otimes D_{0}$ for some $m \geq 0$ and $D_{0} \in \mathrm{~F}^{n} \mathcal{D}(V)$. The rightward map sends it to $f^{-m} D_{0} \in \mathrm{~F}^{n} \mathcal{D}(U)$. If $f^{-m} D_{0}=0$, then $D_{0}=0$ because $\mathcal{O}(V)$ is integral. This proves the rightward map is injective. A similar argument shows the leftward map is injective.

To prove the maps are surjective, let $D \in \mathrm{~F}^{\leq n} \mathcal{D}(U)$. By Lemma 4.3. there exists $N \geq 0$ such that $D_{0}:=f^{N} D$ and $D_{0}^{\prime}:=D f^{N}$ preserve $\mathcal{O}(V)$. We view D_{0} and D_{0}^{\prime} as elements in $\mathrm{F}^{\leq n} \mathcal{D}(V)$. By Lemma 4.1, the rightward (resp. leftward) map sends $f^{-N} \otimes D_{0}$ (resp. $D_{0}^{\prime} \otimes f^{-N}$) to D.

Construction 4.6. Let X be a smooth k-scheme. By Lemma 4.5 and Remark 3.6, for any n, there exists a unique sheaf $\mathrm{F}^{\leq n} \mathcal{D}_{X}$ such that:

- For any affine open subscheme $U \subset X$,

$$
\mathrm{F}^{\leq n} \mathcal{D}_{X}(U):=\mathrm{F}^{\leq n} \mathcal{D}(U)
$$

- For $U \subset V \subset X$ as before, the connecting map $\mathrm{F}^{\leq n} \mathcal{D}_{X}(V) \rightarrow \mathrm{F}^{\leq n} \mathcal{D}_{X}(U)$ is given by the map $\mathrm{F}^{\leq n} \mathcal{D}(U) \rightarrow \mathrm{F}^{\leq n} \mathcal{D}(V)$ in Construction 4.4.
We call $\mathrm{F}^{\leq n} \mathcal{D}_{X}$ the sheaf of differential operators of order n on X.
Define the sheaf of differential operators on X to be

$$
\mathcal{D}_{X}:=\cup_{n} \mathrm{~F}^{\leq n} \mathcal{D}_{X}
$$

Note that $\mathrm{F}^{\bullet} \mathcal{D}_{X}$ is naturally a sheaf of filtered associtive k-algebras such that $\mathrm{gr}^{\bullet} \mathcal{D}_{X}$ is commutative.

Remark 4.7. Unwinding the definitions, for any open subscheme $V \subset X, \mathcal{D}_{X}(V)$ can be identified with the algebra of k-linear morphisms $\mathcal{O}_{V} \rightarrow \mathcal{O}_{V}$ such that for any affine open subscheme $U \subset V$, the obtained map $\mathcal{O}(U) \rightarrow \mathcal{O}(U)$ is a differential operator.
Corollary 4.8. Let X be a smooth k-scheme. We have natural isomorphisms $\mathcal{O}_{X} \simeq \mathrm{~F}^{\leq 0} \mathcal{D}_{X}$ and $\mathcal{O}_{X} \oplus \mathcal{T}_{X} \simeq \mathrm{~F}^{\leq 1} \mathcal{D}_{X}$.

Corollary 4.9. Let X be a smooth k-scheme. Then \mathcal{D}_{X} is naturally an \mathcal{O}_{X}-bimodule, and it is quasi-coherent for both the left and right \mathcal{O}_{X}-module structures.

5. The PBW theorem for \mathcal{D}_{X}

Construction 5.1. Let X be a smooth k-scheme. By Corollary 4.8, we have a homomorphism $\mathcal{O}_{X} \rightarrow \operatorname{gr}^{0} \mathcal{D}_{X}$ and a morphism $\mathcal{T}_{X} \rightarrow \operatorname{gr}^{1} \mathcal{D}_{X}$ between their modules. By the universal property of symmetric algebras, we obtain a graded homomorphism

$$
\begin{equation*}
\operatorname{Sym}_{\mathcal{O}_{X}}\left(\mathcal{T}_{X}\right) \rightarrow \mathrm{gr}^{\bullet} \mathcal{D}_{X} \tag{5.1}
\end{equation*}
$$

The proof of the following theorem can be treated as a blackbox ${ }^{4}$
Theorem 5.2 (PBW for $\left.\mathcal{D}_{X}\right)$. The above graded homomorphism is an isomorphism.
Proof. We can assume X is affine and connected. Hence we only need to show

$$
\operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X)) \rightarrow \operatorname{gr}^{n} \mathcal{D}(X)
$$

is an isomorphism. We prove by induction in n. For $n<0$, there is nothing to prove. For $n \geq 0$ and $D \in \mathrm{~F}^{\leq n} \mathcal{D}(X)$, consider the composition

$$
\mathcal{O}(X) \xrightarrow{[D,-]} \mathrm{F}^{\leq n-1} \mathcal{D}(X) \rightarrow \operatorname{gr}^{n-1} \mathcal{D}(X)
$$

By (3.1), this is a k-derivation of $\mathcal{O}(X)$ into $\mathrm{gr}^{n-1} \mathcal{D}(X)$, where the latter is viewed as an $\mathcal{O}(X)$ module via the homomorphism $\mathcal{O}(X) \rightarrow \operatorname{gr}^{0} \mathcal{D}(X)$. Moreover, this k-derivation only depends on the image of D in $\operatorname{gr}^{n} \mathcal{D}(X)$. In other words, we have a k-linear map

$$
\operatorname{gr}^{n} \mathcal{D}(X) \rightarrow \operatorname{Der}_{k}\left(\mathcal{O}(X), \operatorname{gr}^{n-1} \mathcal{D}(X)\right), D \mapsto[D,-]
$$

Note that $[g D, f]=g[D, f]$ for any $f, g \in \mathcal{O}(X)$. It follows that the above map is $\mathcal{O}(X)$-linear. By induction hypothesis and Corollary 1.13 , we have

$$
\operatorname{Der}_{k}\left(\mathcal{O}(X), \operatorname{gr}^{n-1} \mathcal{D}(X)\right) \simeq \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{gr}^{n-1} \mathcal{D}(X) \simeq \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X))
$$

Composing with the multplication map

$$
\mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X)) \rightarrow \operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X))
$$

we obtain an $\mathcal{O}(X)$-linear map

$$
\operatorname{gr}^{n} \mathcal{D}(X) \rightarrow \operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X))
$$

By considering affine open subschemes, we obtain an \mathcal{O}_{X}-linear morphism

$$
\operatorname{gr}^{n} \mathcal{D}_{X} \rightarrow \operatorname{Sym}_{\mathcal{O}_{X}}^{m}\left(\mathcal{T}_{X}\right)
$$

[^3]We claim it is inverse to (5.1) up to multplication by n.
A direct calculation shows

$$
\operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X)) \rightarrow \operatorname{gr}^{n} \mathcal{D}(X) \rightarrow \operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X))
$$

is given by multplication by n. Indeed, for $\partial_{1}, \cdots, \partial_{n} \in \mathcal{T}(X)$, we have

$$
\left[\partial_{1} \cdots \partial_{n}, f\right] \equiv \sum_{i=1}^{n} \partial_{i}(f) \partial_{1} \cdots \widehat{\partial}_{i} \cdots \partial_{n} \in \mathrm{gr}^{\leq n-1} \mathcal{D}(X)
$$

Hence $\partial_{1} \cdots \partial_{n}$ is sent to the element

$$
\sum_{i=1}^{n} \partial_{i} \otimes \partial_{1} \cdots \widehat{\partial_{i}} \cdots \partial_{n} \in \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X))
$$

which is sent to $n \partial_{1} \cdots \partial_{n} \in \operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X))$ as desired.
It remains to show

$$
\begin{equation*}
\operatorname{gr}^{n} \mathcal{D}_{X} \rightarrow \operatorname{Sym}_{\mathcal{O}_{X}}^{m}\left(\mathcal{T}_{X}\right) \rightarrow \operatorname{gr}^{n} \mathcal{D}_{X} \tag{5.2}
\end{equation*}
$$

is given by multplication by n. Note that the problem is Zariski local in X, hence we can assume X admits an étale coordinate system x_{1}, \cdots, x_{d}. Now let $D \in \mathrm{~F}^{\leq n} \mathcal{D}_{X}$ and

$$
\sum_{i=1}^{d} \partial_{i} \otimes D_{i} \in \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{gr}^{n-1} \mathcal{D}(X)
$$

be its image. By definition, for any function $f \in \mathcal{O}(X)$, we have

$$
[D, f] \equiv \sum_{i=1}^{d} \partial_{i}(f) D_{i} \in \operatorname{gr}^{n-1} \mathcal{D}(X)
$$

Taking $f=x_{i}$, we obtain $D_{i} \equiv\left[D, x_{i}\right]$. Therefore for any $f \in \mathcal{O}(X)$,

$$
\begin{equation*}
[D, f] \equiv \sum_{i=1}^{d} \partial_{i}(f)\left[D, x_{i}\right] \in \operatorname{gr}^{n-1} \mathcal{D}(X) \tag{5.3}
\end{equation*}
$$

and the composition (5.2) sends D to $\sum_{i=1}^{d} \partial_{i}\left[D, x_{i}\right]$. It remains to show

$$
n D \equiv \sum_{i=1}^{d} \partial_{i}\left[D, x_{i}\right] \in \operatorname{gr}^{n} \mathcal{D}(X)
$$

To prove this, we use induction in n (again). For $n \leq 0$, the claim is obvious. For $n>0$, we only need to show

$$
\begin{equation*}
n[D, f] \equiv \sum_{i=1}^{d}\left[\partial_{i}\left[D, x_{i}\right], f\right] \in \operatorname{gr}^{n-1} \mathcal{D}(X) \tag{5.4}
\end{equation*}
$$

for any $f \in \mathcal{O}(X)$.
A direct calculation shows

$$
\begin{equation*}
\left[\partial_{i}\left[D, x_{i}\right], f\right]=\partial_{i}\left[[D, f], x_{i}\right]+\partial_{i}(f)\left[D, x_{i}\right] \tag{5.5}
\end{equation*}
$$

By induction hypothesis, we have

$$
\begin{equation*}
(n-1)[D, f] \equiv \sum_{i=1}^{d} \partial_{i}\left[[D, f], x_{i}\right] \in \operatorname{gr}^{n-1} \mathcal{D}(X) \tag{5.6}
\end{equation*}
$$

Now (5.3)+5.6) implies (5.4) by (5.5).

Corollary 5.3. Let X be a affine smooth k-scheme, then the associative algebra $\mathcal{D}(X)$ is generated by the images of $\mathcal{O}(X)$ and $\mathcal{T}(X)$ subject to the following relations:

$$
f_{1} \star f_{2}=f_{1} f_{2}, \partial_{1} \star \partial_{2}-\partial_{2} \star \partial_{1}=\left[\partial_{1}, \partial_{2}\right], f \star \partial=f \partial, \partial \star f-f \star \partial=\partial(f)
$$

for $f, f_{1}, f_{2} \in \mathcal{O}(X)$ and $\partial, \partial_{1}, \partial_{2} \in \mathcal{T}(X)$. Here \star (temporarily) denotes the multplication in $\mathcal{D}(X)$.

Example 5.4. For $X=\mathbb{A}^{d}$, we have $\mathcal{D}(X)=k\left[x_{1}, \cdots, x_{d}, \partial_{1}, \cdots, \partial_{d}\right]$ such that $\left[x_{i}, x_{j}\right]=\left[\partial_{i}, \partial_{j}\right]=$ 0 and $\left[\partial_{i}, x_{j}\right]=\delta_{i, j}$. This is known as the Weyl algebra.

6. Definition of D-modules

Definition 6.1. Let X be a smooth k-scheme. A left (resp. right) \mathcal{D}_{X}-module is a sheaf \mathcal{M} of k-vector spaces equipped with a left (resp. right) action by \mathcal{D}_{X}.

Let $\mathcal{D}_{X}-\bmod ^{l}\left(\right.$ resp. $\left.\mathcal{D}_{X}-\bmod ^{r}\right)$ be the category of left (resp. right) \mathcal{D}_{X}-modules, where morphisms are defined in the obvious way.

Construction 6.2. Let X be a smooth k-scheme. Restricting along the homomorphism $\mathcal{O}_{X} \rightarrow$ \mathcal{D}_{X}, we obtain forgetful functors

$$
\text { oblv }^{l}: \mathcal{D}_{X}-\bmod ^{l} \rightarrow \mathcal{O}_{X}-\bmod , \text { oblv }^{r}: \mathcal{D}_{X}-\bmod ^{r} \rightarrow \mathcal{O}_{X}-\bmod
$$

We say a left (resp. right) \mathcal{D}_{X}-module \mathcal{M} is quasi-coherent if the underlying \mathcal{O}_{X}-module is quasi-coherent.

Let $\mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{l}\left(\right.$ resp. $\left.\mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{r}\right)$ be the category of left (resp. right) \mathcal{D}_{X}-modules.
Remark 6.3. It is easy to see the above categories are abelian categories and the forgetful functors are exact.

The following result follows from the PBW theorem:
Proposition 6.4. Restricting along $\mathcal{T}_{X} \rightarrow \mathcal{D}_{X}$ defines an equivalence

$$
\mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{l} \simeq \mathcal{T}_{X}-\bmod _{\mathrm{qc}}
$$

Remark 6.5. In fact, we could have defined a notion of quasi-coherent right \mathcal{T}_{X}-modules such that they form an abelian category equivalent to $\mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{r}$. We did not introduce this notion because people are less familiar with right modules of Lie algebras.

7. Examples of D-modules

Example 7.1. The sheaf \mathcal{D}_{X} itself is a left and a right \mathcal{D}_{X}-module.
Example 7.2. The sheaf \mathcal{O}_{X} is a left \mathcal{D}_{X}-module with the action given by $D \cdot f:=D(f)$.
Exercise 7.3. This is Homework 5, Problem 2. Let X be a smooth k-scheme of dimension n. Prove: there is a unique right \mathcal{D}_{X}-module structure on Ω_{X}^{n} such that for local sections $f \in \mathcal{O}(U)$, $\partial \in \mathcal{T}(U)$ and $\omega \in \Omega^{n}(U)$, the right action is given by

$$
\omega \cdot f=f \omega, \omega \cdot \partial=-\mathcal{L}_{\partial}(\omega)
$$

Example 7.4. For $X=\mathbb{A}^{1}=\operatorname{Spec}(k[x])$, we define a left D-module $\mathcal{M}_{e^{x}}$ whose underlying $\mathcal{O}_{X^{-}}$ module is isomorphic to \mathcal{O}_{X}, with a generator denoted by " e^{x} ". The \mathcal{T}_{X}-action is determined by the formular $\partial_{x} \cdot e^{x}=e^{x}$. It is easy to see $\mathcal{M}_{e^{x}} \simeq \mathcal{D}_{X} / \mathcal{D}_{X} \cdot\left(\partial_{x}-1\right)$, where $\mathcal{D}_{X} \cdot\left(\partial_{x}-1\right)$ is the left ideal of \mathcal{D}_{X} generated by the section $\partial_{x}-1$.

Example 7.5. For $X=\mathbb{A}^{1}-0=\operatorname{Spec}\left(k\left[x^{ \pm}\right]\right)$and $\lambda \in k$, we define a left D-module $\mathcal{M}_{x^{\lambda}}$ whose underlying \mathcal{O}_{X}-module is isomorphic to \mathcal{O}_{X}, with a generator denoted by " $x^{\lambda "}$. The \mathcal{T}_{X}-action is determined by the formular $\partial_{x} \cdot x^{\lambda}=\lambda x^{-1} \cdot x^{\lambda}$. It is easy to see $\mathcal{M}_{x^{\lambda}} \simeq \mathcal{D}_{X} / \mathcal{D}_{X} \cdot\left(\partial_{x}-\lambda x^{-1}\right)$, where $\mathcal{D}_{X} \cdot\left(\partial_{x}-\lambda x^{-1}\right)$ is the left ideal of \mathcal{D}_{X} generated by the section $\partial_{x}-\lambda x^{-1}$.
Exercise 7.6. This is Homework 5, Problem 3. In Example 7.5 prove $\mathcal{M}_{x^{\lambda}}$ is isomorphic to \mathcal{O}_{X} as left \mathcal{D}_{X}-modules iff $\lambda \in \mathbb{Z}$.

$$
\text { 8. } \mathcal{D}_{X} \text { vs. } U(\mathfrak{g})
$$

Construction 8.1. Let X be a smooth k-scheme equipped with an action by an algebraic group G. Consider the Lie algebra homomorphisms

$$
\mathfrak{g} \xrightarrow{a} \mathcal{T}(X) \rightarrow \mathcal{D}(X)
$$

where $\mathcal{D}(X)$ is viewed as a Lie algebra via the forgetful functor $\mathrm{Alg} \rightarrow$ Lie. By the universal property of $U(\mathfrak{g})$, we obtain a homomorphism

$$
U(\mathfrak{g}) \xrightarrow{a} \mathcal{D}(X)
$$

By construction, this homomorphism is compatible with the PBW filtrations on both sides.
This induces a functor

$$
\Gamma: \mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{l} \rightarrow U(\mathfrak{g})-\bmod , \mathcal{M} \mapsto \mathcal{M}(X)
$$

By construction, the following diagram commutes:

Remark 8.2. The localizaiton theory says for $X=G / B$, the homomorphism $U(\mathfrak{g}) \xrightarrow{a} \mathcal{D}(X)$ induces an isomorphism

$$
a: U(\mathfrak{g})_{\chi_{0}}:=U(\mathfrak{g}) \underset{Z(\mathfrak{g})}{\otimes} k_{\chi_{0}} \xrightarrow{\cong} \mathcal{D}(X)
$$

and the functor Γ induces an equivalence

$$
\Gamma: \mathcal{D}_{X}-\bmod _{\mathrm{qc}}^{l} \xrightarrow{\simeq} U(\mathfrak{g})-\bmod _{\chi_{0}} .
$$

References
[B] Bernstein, Joseph. Algebraic theory of D-modules, 1984, abailable at https://gauss.math.yale.edu/ ~il282/Bernstein_D_mod.pdf
[G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people. mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf
[H] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.
[HTT] Hotta, Ryoshi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory. Vol. 236. Springer Science \& Business Media, 2007.

[^0]: ${ }^{1}$ For non-affine G, we use the morphism between \mathcal{O}_{X}-modules: $\mathcal{O}_{X} \rightarrow \operatorname{act}_{*}\left(\mathcal{O}_{G} \otimes \mathcal{O}_{X}\right) \xrightarrow{\partial \otimes \mathrm{ld}} \operatorname{act}_{*}\left(k_{e} \otimes \mathcal{O}_{X}\right) \simeq$ \mathcal{O}_{X}.

[^1]: ${ }^{2}$ The standard terminology would be: \mathcal{M} is a module for the Lie algebroid \mathcal{T}_{X}.

[^2]: ${ }^{3}$ The sheaf \mathcal{D}_{X} is so useful that \mathcal{D}_{X}-modules were introduced much earlier than \mathcal{T}_{X}-modules. The latter point of view was ignored until the study of general Lie algebroids.

[^3]: ${ }^{4}$ In fact, for the purpose of this course, we can define \mathcal{D}_{X} to be the subsheaf of $\mathcal{H o m}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$ generated by the images \mathcal{O}_{X} and \mathcal{T}_{X} under compositions. Then the PBW theorem becomes obvious. However, it is not obvious to show this definition coincides with ours.

