Last time, for a smooth k-scheme X, we introduced the sheaf of differential operators  $\mathcal{D}_X$ on X and defined quasi-coherent  $\mathcal{D}_X$ -modules, known as  $\mathcal{D}$ -module on X. In this lecture, we introduce operations on  $\mathcal{D}$ -modules. We will mainly focus on the formal aspect of this theory, known as the six functors formalism for  $\mathcal{D}$ -modules. For more details, see [B] and [HTT].

### 1. Conventions on derived categories

For the purpose of this course, we do not need the full power of the derived categories of  $\mathcal{D}$ -modules. However, these categories are useful in other topics of geometric representation theory, hence I choose to include the results about them in this lecture.

When talking about derived categories of  $\mathcal{D}$ -modules, we always assume X is quasi-projective. In this case, the abelian category  $\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^{l/r}$  has enough injective and locally projective objects, and any object admits a resolution by locally projective  $\mathcal{D}_X$ -modules with length  $\leq 2d_X$ , where  $d_X = \dim(X)$  is the dimension (function) of X. The latter implies  $\mathsf{Ext}^i(-,-) \simeq 0$  for  $i > 2d_X$ .

We have the following triangulated categoies equipped with natural t-structures:

- $D(\mathcal{D}_X \mathsf{mod}_{\mathsf{qc}}^{l/r})$ , the derived category of quasi-coherent  $\mathcal{D}_X$ -modules. This can be identified with the full subcategory of the derived category  $D(\mathcal{D}_X - \mathsf{mod}^{l/r})$  of all  $\mathcal{D}_X$ modules containing those complices whose cohomologies are quasi-coherent.
- $D^b(\mathcal{D}_X \mathsf{mod}_{\mathsf{c}}^{l/r})$ , the bounded derived category of coherent  $\mathcal{D}_X$ -modules. This can be identified with the full subcategory of the bounded derived category  $D^b(\mathcal{D}_X \mathsf{mod}^{l/r})$  of all  $\mathcal{D}_X$ -modules containing those complices whose cohomologies are coherent.

When talking about functors between derived categories, even if such functors are left/right derived functors, we drop the decorations "L/R" from the notations. For example,  $- \otimes -$  in derived categories would mean  $- \otimes^{L} -$  in classical literatures. We choose to do so because we will enconter functors that are not derived functors.

*Remark* 1.1. The (essential) image of the fully faithful functor

$$D^b(\mathcal{D}_X - \mathsf{mod}_{\mathsf{c}}^{l/r}) \to D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^{l/r})$$

contains exactly the *compact* objects in the target, i.e., those objects  $\mathcal{M}$  such that  $\mathsf{Hom}(\mathcal{M}, -)$  commutes with filtered (homotopy) colimits.

# 2. Forget and induce

Construction 2.1. We have adjoint functors

$$\operatorname{\mathsf{ind}}^{l/r}:\mathcal{O}_X\operatorname{\mathsf{-mod}}_{\operatorname{\mathsf{qc}}}\xleftarrow{}\mathcal{D}_X\operatorname{\mathsf{-mod}}_{\operatorname{\mathsf{qc}}}^{l/r}:\operatorname{\mathsf{oblv}}^{l/r}$$

such that

$$\operatorname{ind}^{l}(\mathcal{F}) \coloneqq \mathcal{D}_{X} \underset{\mathcal{O}_{X}}{\otimes} \mathcal{F}, \operatorname{ind}^{r}(\mathcal{D}) \coloneqq \mathcal{F} \underset{\mathcal{O}_{X}}{\otimes} \mathcal{D}_{X}.$$

Both functors are exact.

Date: May 6, 2024.

### 3. Tensor and Hom

**Construction 3.1.** Let  $\mathcal{M}, \mathcal{N} \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l$  and  $\mathcal{M}', \mathcal{N}' \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r$ . Then there are natural objects defined using the signed Lebniz rules:

- M ⊗<sub>O<sub>X</sub></sub> N ∈ D<sub>X</sub>-mod<sup>l</sup><sub>qc</sub> defined by ∂ · (m ⊗ n) = (∂ · m) ⊗ n + m ⊗ (∂ · n);
  M' ⊗<sub>O<sub>X</sub></sub> N ∈ D<sub>X</sub>-mod<sup>r</sup><sub>qc</sub> defined by (m' ⊗ n) · ∂ = (m' · ∂) ⊗ n m' ⊗ (∂ · n);
- $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M},\mathcal{N}) \in \mathcal{D}_X \mathsf{mod}^l_{\mathsf{qc}} defined by (\partial \cdot \phi)(m) = \partial \cdot \phi(m) \phi(\partial \cdot m);$
- Hom<sub>O<sub>X</sub></sub> (M', N') ∈ D<sub>X</sub>-mod<sup>l</sup><sub>qc</sub> defined by (∂ · φ)(m') = -φ(m') · ∂ + φ(m · ∂);
  Hom<sub>O<sub>X</sub></sub> (M, N') ∈ D<sub>X</sub>-mod<sup>l</sup><sub>qc</sub> defined by (φ · ∂)(m) = φ(m) · ∂ + φ(m · ∂).

Remark 3.2. One way to memorize the above rules for left vs. right is using the known objects  $\mathcal{O}_X \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l$  and  $\omega_X \coloneqq \Omega_X^n \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r$ . For example,  $\mathcal{H}om_{\mathcal{O}_X}(\omega_X, \omega_X) \simeq \mathcal{O}_X$  has a left  $\mathcal{D}$ -module structure, while  $\mathcal{H}om_{\mathcal{O}_X}(\omega_X, \mathcal{O}_X) \simeq \omega_X^{-1}$  in general has no  $\mathcal{D}$ -module structures.

Remark 3.3. One way to memorize the signed Lebniz rules: (i) put a minus sign when acting on a section of the source object in  $\mathcal{H}om_{\mathcal{O}_X}(-,-)$ ; (ii) put a minus sign when moving  $\partial$  from the one side of  $\cdot$  to the other side.

Remark 3.4. The tensor operations make  $\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l$  a symmetric monoidal category such that the forgetful functor  $\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l \to \mathcal{O}_X - \mathsf{mod}_{\mathsf{qc}}^l$  is naturally symmetric monoidal. The category  $\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r$  is a module category of it.

The following result follows by unwinding the definitions:

**Lemma 3.5.** Let  $\mathcal{M} \in \mathcal{D}_X - \mathsf{mod}^l_{\mathsf{ac}}$  and  $\mathcal{M}' \in \mathcal{D}_X - \mathsf{mod}^r_{\mathsf{ac}}$ . We have adjoint functors

$$\mathcal{M} \underset{\mathcal{O}_X}{\otimes} -: \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^{l/r} \iff \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^{l/r} : \mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, -)$$
$$\mathcal{M}' \underset{\mathcal{O}_X}{\otimes} -: \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l \iff \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r : \mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}', -)$$

compatible with the similar adjunction between  $\mathcal{O}_X$ -modules.

Recall  $\omega_X$  is a line bundle. It follows formally that:

**Corollary 3.6.** The following functors are inverse to each other:

$$\omega_X \underset{\mathcal{O}_X}{\otimes} -: \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l \longleftrightarrow \mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r : \mathcal{H}om_{\mathcal{O}_X}(\omega_X, -).$$

Remark 3.7. In particular, for any right  $\mathcal{D}$ -module  $\mathcal{N}'$ , we obtain a left  $\mathcal{D}$ -module structure on  $\omega_X^{-1} \otimes \mathcal{N}'.$ 

Remark 3.8. We also have similar results for the derived category of  $\mathcal{D}$ -modules and the corresponding derived functors. The left derived functor  $-\otimes_{\mathcal{O}_X}$  - has cohomological amplitude  $[-d_X, 0]$  while the right derived functor  $\mathcal{H}om_{\mathcal{O}_X}(-, -)$  has cohomological amplitude  $[0, d_X]$ .

Remark 3.9. When identifying the derived categories of left and right  $\mathcal{D}$ -modules, it is more convenient to use the complex  $\omega_X[d_X]$ , which is also known as the *dualizing complex*<sup>1</sup> on X. In other words, we use the equivalences

$$\omega_X[d_X] \underset{\mathcal{O}_X}{\otimes} -: D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l) \longleftrightarrow D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r) : \mathcal{H}om_{\mathcal{O}_X}(\omega_X[d_X], -)$$

<sup>&</sup>lt;sup>1</sup>This notion makes sense even when X is singular.

**Construction 3.10.** We define a symmetric monoidal structure  $-\otimes^{!} - on D(\mathcal{D}_{X} - \mathsf{mod}_{qc}^{r})$  by translating the symmetric monoidal structure  $-\otimes_{\mathcal{O}_{X}} - of D(\mathcal{D}_{X} - \mathsf{mod}_{qc}^{l})$  via the above equivalences. In other words, as  $\mathcal{O}_{X}$ -modules, we have

$$\mathcal{M}' \overset{!}{\otimes} \mathcal{N}' \simeq \mathcal{M}' \underset{\mathcal{O}_X}{\otimes} \mathcal{N}' \underset{\mathcal{O}_X}{\otimes} \omega_X^{-1} [-d_X].$$

4. External tensor

**Construction 4.1.** Let  $\mathcal{M}_i \in \mathcal{D}_{X_i}$ -mod<sup>l/r</sup>. Then there are natural objects

$$\mathcal{M}_1 \boxtimes \mathcal{M}_2 \coloneqq \mathcal{M}_1 \otimes \mathcal{M}_2 \in \mathcal{D}_{X_1 \times X_2} - \mathsf{mod}_{\mathsf{qc}}^{l/r}$$

induced by the isomorphism  $\mathcal{D}_{X_1} \otimes_k \mathcal{D}_{X_2} \simeq \mathcal{D}_{X_1 \times X_2}$ . This is called the **external tensor product** of  $\mathcal{D}$ -modules.

### 5. Pullbacks

Let  $\phi: Y \to X$  be a map between smooth k-schemes.

**Construction 5.1.** We will construct a commutative diagram

$$\mathcal{D}_X - \operatorname{mod}_{qc}^l \xrightarrow{\phi^*} \mathcal{D}_Y - \operatorname{mod}_{qc}^l \\ \bigvee_{q \in I}^{\operatorname{oblv}^l} \xrightarrow{\phi^*} \mathcal{O}_Y - \operatorname{mod}_{qc}.$$

The functor

$$\phi^*: \mathcal{D}_X - \mathsf{mod}^l_{\mathsf{qc}} \to \mathcal{D}_Y - \mathsf{mod}^l_{\mathsf{qc}}$$

is called the (\*-)pullback of left D-modules.

The construction is as follows. For  $\mathcal{M} \in \mathcal{O}_X - \mathsf{mod}_{qc}$ , recall  $\phi^*(\mathcal{M}) \coloneqq \mathcal{O}_Y \otimes_{\phi^{-1}\mathcal{O}_X} \phi^{-1}\mathcal{M}$ . Suppose  $\mathcal{M}$  is equipped with a left  $\mathcal{D}_X$ -module structure, then there is a left  $\mathcal{D}_Y$ -module structure on  $\phi^*(\mathcal{M})$  defined by the Lebniz rule:

$$\partial \cdot (f \otimes s) \coloneqq \partial (f) \otimes s + f \overline{\partial} \cdot s,$$

where

- $\partial$  is a local section of  $\mathcal{T}_Y$  and  $\overline{\partial}$  is the image of it under the map  $\mathcal{T}_Y \to \phi^* \mathcal{T}_X = \mathcal{O}_Y \otimes_{\phi^{-1} \mathcal{O}_X} \phi^{-1} \mathcal{T}_X$ ;
- f is a local section of  $\mathcal{O}_Y$ ;
- s is a local section of  $\phi^{-1}\mathcal{M}$ , and  $\overline{\partial} \cdot s$  is defined using the action of  $\phi^{-1}\mathcal{T}_X$  on  $\phi^{-1}\mathcal{M}$ .

*Remark* 5.2. One can show the pullback of left  $\mathcal{D}$ -modules are compatible with composition of maps between smooth k-schemes.

**Example 5.3.** The pullback of the object  $\mathcal{O}_X \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{ac}}^l$  is  $\mathcal{O}_Y \in \mathcal{D}_Y - \mathsf{mod}_{\mathsf{ac}}^l$ .

Construction 5.4. We write:

$$\mathcal{D}_{Y \to X} \coloneqq \phi^* \mathcal{D}_X \simeq \mathcal{O}_Y \underset{\phi^{-1} \mathcal{O}_X}{\otimes} \phi^{-1} \mathcal{D}_X$$

and call it the transfer module.

The above construction gives a left  $\mathcal{D}_Y$ -module structure on  $\mathcal{D}_{Y \to X}$ . On the other hand, there is an obvious right  $\phi^{-1}\mathcal{D}_X$ -module structure on  $\mathcal{D}_{Y \to X}$ . One can show there two actions commute. In other words,  $\mathcal{D}_{Y \to X}$  is a  $(\mathcal{D}_Y, \phi^{-1}\mathcal{D}_X)$ -bimodule. Note that for  $\mathcal{M} \in \mathcal{D}_X - \mathsf{mod}_{\mathsf{ac}}^l$ , we have

$$\phi^* \mathcal{M} \simeq \mathcal{D}_{Y \to X} \underset{\phi^{-1} \mathcal{D}_X}{\otimes} \phi^{-1} \mathcal{M}.$$

**Construction 5.5.** Note that the functor  $\phi^* : \mathcal{D}_X - \text{mod}_{qc}^l \to \mathcal{D}_Y - \text{mod}_{qc}^l$  is right exact. We abuse notation and let

$$\phi^*: D(\mathcal{D}_X - \mathsf{mod}^l_{\mathsf{qc}}) \to D(\mathcal{D}_Y - \mathsf{mod}^l_{\mathsf{qc}})$$

be the left derived functor of it. Note that it is compatible with the left derived functor  $\phi^*$ :  $D(\mathcal{O}_X - \mathsf{mod}_{qc}) \rightarrow D(\mathcal{O}_Y - \mathsf{mod}_{qc})$  and the forgetful functors.

*Remark* 5.6. We have:

- If  $\phi$  is flat, then  $\phi^*$  is t-exact, i.e., preserves the heart.
- If  $\phi$  is a closed embedding (which is automatically regular), then  $\phi^*$  has cohomological amplitude  $[-d_X + d_Y, 0]$ .

**Example 5.7.** Let  $\phi$  be a closed embedding. Since X and Y are smooth,  $\phi$  is a regular immersion. For any closed point  $p \in Y$ , we can find an étale coordinate system  $x_1, \dots, x_m$  of X near p such that Y is locally cut out by the ideal  $(x_{n+1}, \dots, x_m)$   $(m = \dim(\mathcal{O}_{X,y})$  and  $n = \dim(\mathcal{O}_{Y,y})$ . Let  $y_1, \dots, y_n$  be the restriction of  $x_1, \dots, x_n$  on Y. They form an étale coordinate system of Y near p. Then near the point  $p \in Y$ , we have

$$\mathcal{D}_{Y \to X} \simeq \mathcal{D}_Y \bigotimes_{r} k[\partial_{n+1}, \cdots, \partial_m]$$

as left  $\mathcal{D}_Y$ -modules. In particular,  $\mathcal{D}_{Y \to X}$  is a locally free left  $\mathcal{D}_Y$ -module.

**Construction 5.8.** Let  $\phi^!$  be the unique functor that makes the following diagram commute

$$D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^l) \xrightarrow{\phi^*} D(\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^l)$$
$$\omega_X[d_X] \bigg| \simeq \qquad \simeq \bigg| \omega_Y[d_Y]$$
$$D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r) \xrightarrow{\phi^!} D(\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^r),$$

The obtained functor

$$\phi^! : D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r) \to D(\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^r)$$

is called the *!-pullback of (complices of) right*  $\mathcal{D}$ *-modules.* It has cohomological amplitude  $[-d_Y, d_X - d_Y]$  and in general is not a derived functor.

*Remark* 5.9. We have:

- If  $\phi$  is flat, then  $\phi^!$  is t-exact up to a shift.
- If  $\phi$  is a closed embedding, then  $\phi^!$  has cohomological amplitude  $[0, d_X d_Y]$ .

**Example 5.10.** By definition,  $\phi^!(\omega_X[d_X]) \simeq \omega_Y[d_Y]$ .

**Example 5.11.** If  $j: U \to X$  is an open embedding, then  $j^!$  is t-exact and the corresponding functor  $\mathcal{D}_X - \mathsf{mod}^r_{\mathsf{qc}} \to \mathcal{D}_U - \mathsf{mod}^r_{\mathsf{qc}}$  is the restriction functor. Indeed, this follows from  $\omega_X|_U \simeq \omega_U$ . In this case, we write  $j^! = j^*$ .

**Warning 5.12.** In general, for a right  $\mathcal{D}_X$ -module  $\mathcal{M}$ , there is no  $\mathcal{D}$ -module structure on its  $\mathcal{O}$ -module pullback  $\phi^* \mathcal{M}$ .

**Fact 5.13.** If  $\phi: Y \to X$  is a closed embedding, then  $\phi^!$  is equivalent to the right derived functor of a functor

$$\phi^!: \mathcal{D}_X - \mathsf{mod}_{\mathsf{ac}}^r \to \mathcal{D}_Y - \mathsf{mod}_{\mathsf{ac}}^r.$$

4

**Construction 5.14.** Let  $\phi : Y \to X$  be a closed embedding. The functor  $\phi^! : \mathcal{D}_X - \mathsf{mod}_{qc}^r \to \mathcal{D}_Y - \mathsf{mod}_{qc}^r$  can be described as follows.

Recall we have adjoint functors

$$\phi_*: \mathcal{O}_Y \operatorname{\mathsf{-mod}_{gc}} \longleftrightarrow \mathcal{O}_X \operatorname{\mathsf{-mod}_{gc}} : \phi^!$$

where for a quasi-coherent  $\mathcal{O}_X$ -module  $\mathcal{M}$  and any open subset  $U \subset X$ , a section m of  $\phi^!(\mathcal{M})$  on  $U \cap Y$  corresponds to a section  $\tilde{m}$  of  $\mathcal{M}$  on U annihilated by the ideal  $\mathcal{I}_Y := \ker(\mathcal{O}_X \to \phi_*\mathcal{O}_Y)$ . Suppose  $\mathcal{M}$  is equipped with a right  $\mathcal{D}_X$ -module structure. For any local section  $\partial$  of  $\mathcal{T}_Y$ , we can extend it to a local section  $\tilde{\partial}$  of  $\mathcal{T}_X$ . Now for a local section m of  $\phi^!(\mathcal{M})$ , we define  $m \cdot \partial$  such that

$$\widetilde{m \cdot \partial} = \widetilde{m} \cdot \widetilde{\partial}.$$

One can show the local section  $m \cdot \partial$  is well-defined and does not depend on the choice of  $\widetilde{\partial}$ . Moreover, this defines a right  $\mathcal{D}_Y$ -module structure on  $\phi^!(\mathcal{M})$ .  $\phi^!(\mathcal{M})$ .

Remark 5.15. For any map  $\phi: Y \to X$  between finite type k-schemes, one can define a functor

$$\phi^{!}: D(\mathcal{O}_{X} - \mathsf{mod}_{\mathsf{qc}}) \to D(\mathcal{O}_{Y} - \mathsf{mod}_{\mathsf{qc}})$$

as follows.

If  $\phi$  is an open embedding, take  $\phi^! \coloneqq \phi^*$ . If  $\phi$  is proper, take  $\phi^!$  to be the right adjoint of (the right derived functor)  $\phi_*$ . For the general case, choose a Nagata compactification  $Y \xrightarrow{j} \overline{Y} \xrightarrow{\phi} X$  such that j is an open embedding and  $\overline{\phi}$  is proper, and take  $\phi^! \coloneqq j! \circ \overline{\phi}^!$ . One can show the functor  $\phi^!$  does not depend on the choice of the compactification, and these functors are compatible with compositions of maps. In fact, the construction  $\phi \mapsto \phi^!$  can be uniquely characterized by these properties (if stated properly).

When X and Y are smooth, the !-pullback functors of  $\mathcal{O}$ -modules and right  $\mathcal{D}$ -modules are compatible via the forgeful functors. In other words, we have a commutative diagram

$$(5.1) \qquad D(\mathcal{O}_{Y}-\mathsf{mod}_{\mathsf{qc}}) \xleftarrow{\phi^{!}} D(\mathcal{O}_{X}-\mathsf{mod}_{\mathsf{qc}})$$

$$\uparrow^{\mathsf{oblv}^{r}} \qquad \uparrow^{\mathsf{oblv}^{r}}$$

$$D(\mathcal{D}_{Y}-\mathsf{mod}_{\mathsf{qc}}^{r}) \xleftarrow{\phi^{!}} D(\mathcal{D}_{X}-\mathsf{mod}_{\mathsf{qc}}^{r})$$

Fact 5.16. In the (derived) setting of Construction 3.1, we have

$$\begin{split} \phi^{*}(\mathcal{M}\underset{\mathcal{O}_{X}}{\otimes}\mathcal{N}) &\simeq & \phi^{*}(\mathcal{M})\underset{\mathcal{O}_{Y}}{\otimes}\phi^{*}(\mathcal{N}), \\ \phi^{!}(\mathcal{M}'\underset{\mathcal{O}_{X}}{\otimes}\mathcal{N}) &\simeq & \phi^{!}(\mathcal{M}')\underset{\mathcal{O}_{Y}}{\otimes}\phi^{*}(\mathcal{N}), \\ \phi^{*}\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{M},\mathcal{N}) &\simeq & \mathcal{H}om_{\mathcal{O}_{Y}}(\phi^{*}\mathcal{M},\phi^{*}\mathcal{N}) \\ \phi^{*}\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{M}',\mathcal{N}') &\simeq & \mathcal{H}om_{\mathcal{O}_{Y}}(\phi^{!}\mathcal{M}',\phi^{!}\mathcal{N}') \\ \phi^{!}\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{M},\mathcal{N}') &\simeq & \mathcal{H}om_{\mathcal{O}_{Y}}(\phi^{*}\mathcal{M},\phi^{!}\mathcal{N}') \end{split}$$

**Fact 5.17.** For  $\operatorname{pr}_i : X_1 \times X_2 \to X_i$ , we have

$$\mathcal{M}_1 \boxtimes \mathcal{M}_2 \simeq \operatorname{pr}_1^*(\mathcal{M}_1) \underset{\mathcal{O}_{X_1 \times X_2}}{\otimes} \operatorname{pr}_2^*(\mathcal{M}_2)$$
$$\mathcal{M}_1' \boxtimes \mathcal{M}_2' \simeq \operatorname{pr}_1^!(\mathcal{M}_1) \overset{!}{\otimes} \operatorname{pr}_2^!(\mathcal{M}_2).$$

#### 6. Pushforwards

**Construction 6.1.** Let  $\phi: Y \to X$  be a map between smooth k-schemes. Recall the transfer module

$$\mathcal{D}_{Y \to X} \coloneqq \phi^* \mathcal{D}_X \simeq \mathcal{O}_Y \underset{\phi^{-1} \mathcal{O}_X}{\otimes} \phi^{-1} \mathcal{D}_X$$

is a bimodule for  $(\mathcal{D}_Y, \phi^{-1}\mathcal{D}_X)$ . We define a functor

$$\phi_{*,\mathsf{dR}}: D(\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^r) \to D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r), \ \mathcal{N} \mapsto \phi_*(\mathcal{N} \underset{\mathcal{D}_Y}{\otimes} \mathcal{D}_{Y \to X}),$$

where

- The (left derived) tensor product functor ⊗<sub>DY</sub> D<sub>Y→X</sub> sends a complex of right D<sub>Y</sub>modules to a complex of right φ<sup>-1</sup>D<sub>X</sub>-modules.
- The (right derived) functor  $\phi_*$  sends a complex of right  $\phi^{-1}\mathcal{D}_X$ -modules to a complex of right  $\mathcal{D}_X$ -modules via the homomorphism  $\mathcal{D}_X \to \phi_*(\phi^{-1}\mathcal{D}_X)$ .

We call  $\phi_{*,dR}$  the direct image functor, or de Rham pushforward functor, of (complices) of right  $\mathcal{D}$ -modules.

*Remark* 6.2. One can show the direct image functors of right  $\mathcal{D}$ -modules are compatible with composition of maps between smooth k-schemes.

Remark 6.3. The functor  $\phi_{*,dR}$  is called the *de Rham* pushforward functor because for  $\pi: X \to \mathsf{pt}, \pi_{*,dR}(\omega_X[-d_X])$  can be identified with the de Rham complex of X. For this reason, we also write

$$\Gamma_{\mathsf{dR}}(X,-) \coloneqq \pi_{*,\mathsf{dR}}(-).$$

You are strongly encouraged to look at its proof in [G, Sect. 5.17].

Remark 6.4. Some authors use the notation  $\phi_{\star}$  for  $\phi_{\star,dR}$ .

*Remark* 6.5. The cohomological amplitude of  $\phi_{*,dR}$  is  $[-d_Y, d_Y]$ . Better estimation exist in the following cases:

- If  $\phi$  is affine, then the bounds can be  $[-d_Y, 0]$ .
- If  $\phi$  is smooth, then the bounds can be  $[-d_Y + d_X, d_Y]$ .
- If  $\phi$  is a closed embedding, then the functor is t-exact.

**Warning 6.6.** One can define a functor between the abelian categories using the same formula. However, that functor would not be  $\mathcal{H}^0(\phi_{*,dR})$  and is of less interests.

**Example 6.7.** If  $j: U \to X$  is an open embedding, then  $\mathcal{D}_{U\to X} \simeq j^* \mathcal{D}_X \simeq \mathcal{D}_U$ . It follows that  $j_{*,dR}\mathcal{M} \simeq j_*\mathcal{M}$ . In other words, there is a right  $\mathcal{D}_X$ -module structure on the  $\mathcal{O}$ -module direct image of  $\mathcal{M}$ . In this case, we write  $j_{*,dR} = j_*$ .

*Exercise* 6.8. This is Homework 5, Problem 4. Let  $x : pt \to X$  be a closed point of X. We write  $\delta_x := x_{*,dR}(k)$ . Prove:

- (1)  $\delta_x \simeq k_x \otimes_{\mathcal{O}_X} \mathcal{D}_X$  as a right  $\mathcal{D}_X$ -module.
- (2)  $\delta_x$  is set-theoretically supported on at x, i.e., for the complement open  $U \coloneqq X x$ , we have  $\delta_x|_U = 0$ .
- (3) There exists a unique section  $\text{Dirac}_x$  of  $\delta_x$  such that  $\text{Dirac}_x \cdot f = f(x)\text{Dirac}_x$  for any local section f of  $\mathcal{O}_X$  defined near x.
- (4)  $\delta_x$  is generated by  $\text{Dirac}_x$  as a right  $\mathcal{D}_X$ -module.

*Remark* 6.9. The section  $\mathsf{Dirac}_x$  should be viewed as the incarnation of the Dirac function in the theory of  $\mathcal{D}$ -modules.

Lemma 6.10. The following diagram commutes:

(6.1) 
$$D(\mathcal{O}_{Y}-\operatorname{mod}_{qc}) \xrightarrow{\phi_{*}} D(\mathcal{O}_{X}-\operatorname{mod}_{qc})$$
$$\underset{\operatorname{ind}^{r}}{\operatorname{ind}^{r}} \bigvee \underset{D(\mathcal{D}_{Y}-\operatorname{mod}_{qc}^{r})}{\overset{\phi_{*,dR}}{\longrightarrow}} D(\mathcal{D}_{X}-\operatorname{mod}_{qc}^{r})$$

Sketch. For  $\mathcal{F} \in D(\mathcal{O}_Y - \mathsf{mod}_{qc})$ , we have

$$\phi_{*,\mathsf{dR}} \circ \mathsf{ind}^r(\mathcal{F}) \simeq \phi_*(\mathcal{F} \underset{\mathcal{O}_Y}{\otimes} \mathcal{D}_Y \underset{\mathcal{D}_Y}{\otimes} \mathcal{D}_{Y \to X}) \simeq \phi_*(\mathcal{F} \underset{\mathcal{O}_Y}{\otimes} \phi^* \mathcal{D}_X) \simeq \phi_*\mathcal{F} \underset{\mathcal{O}_X}{\otimes} \mathcal{D}_X \simeq \mathsf{ind}^r \circ \phi_*(\mathcal{F})$$

where the second last isomorphism is the (derived) projection formula.

We state the following results without proof.

**Proposition 6.11.** If  $\phi: Y \to X$  is proper, then we have adjoint functors

 $\phi_{*,\mathsf{dR}}: D(\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^r) \longleftrightarrow D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r): \phi^!.$ 

*Remark* 6.12. If  $\phi: Y \to X$  is proper, then the square (5.1) can be obtained from (6.1) by passing to right adjoints.

**Proposition 6.13.** If  $\phi: Y \to X$  is smooth, then we have adjoint functors

$$\phi^{!}[-2d_{Y}+2d_{X}]: D(\mathcal{D}_{Y}-\mathsf{mod}_{\mathsf{qc}}^{r}) \rightleftharpoons D(\mathcal{D}_{X}-\mathsf{mod}_{\mathsf{qc}}^{r}): \phi_{*,\mathsf{dR}}.$$

**Example 6.14.** If  $j: U \to X$  is a closed embedding, then  $j^! \simeq j^*$  is left adjoint to  $j_{*,dR} = j_*$ . Note that the right adjoint functor is fully faithful.

**Construction 6.15.** As in the case of pullback functors, we can define the **direct image** functor of left *D*-modules:

$$D(\mathcal{D}_{Y}-\mathsf{mod}_{\mathsf{qc}}^{l}) \xrightarrow{\phi_{*,\mathsf{dR}}} D(\mathcal{D}_{X}-\mathsf{mod}_{\mathsf{qc}}^{l})$$
$$\omega_{Y}[d_{Y}] \downarrow \simeq \qquad \simeq \downarrow \omega_{X}[d_{X}]$$
$$D(\mathcal{D}_{Y}-\mathsf{mod}_{\mathsf{qc}}^{r}) \xrightarrow{\phi_{*,\mathsf{dR}}} D(\mathcal{D}_{X}-\mathsf{mod}_{\mathsf{qc}}^{r}).$$

7. Kashiwara's Lemma

If  $\phi: Y \to X$  is a closed embedding, then the tensor product functor  $- \otimes_{\mathcal{D}_Y} \mathcal{D}_{Y \to X}$  is t-exact because  $\mathcal{D}_{Y \to X}$  is locally free as a  $\mathcal{D}_Y$ -module. On the other hand, the functor  $\phi_*$  is also t-exact because  $\phi$  is affine. Therefore the functor  $\phi_{*,dR}$  is t-exact.

**Theorem 7.1** (Kashiwara's lemma). Let  $\phi : Y \to X$  be a closed embedding between smooth k-schemes, then the exact functor

$$\phi_{*,dR}: \mathcal{D}_Y - \mathsf{mod}_{\mathsf{ac}}^r \to \mathcal{D}_X - \mathsf{mod}_{\mathsf{ac}}^r$$

is fully faithful and its essential image contains exactly right  $\mathcal{D}_X$ -modules that are settheoretically supported on Y.

Remark 7.2. Using Kashiwara's lemma, we can define  $\mathcal{D}_Y - \mathsf{mod}_{\mathsf{qc}}^r$  even for finite type singular k-scheme Y. Namely, if Y is affine, we can embed Y into a smooth ambidient k-scheme X and define a right  $\mathcal{D}$ -module on Y to be a right  $\mathcal{D}$ -module on X that is set-theoretically supported on the image of Y. One can show the obtained abelian category does not depend on the choice of the embedding. When Y is not affine, we can define the category by gluing.

Moreover, all the previous constructions about right  $\mathcal{D}$ -modules can be generalized to the singular case.

A more canonical construction of  $\mathcal{D}_Y - \mathsf{mod}_{qc}^r$  or even  $\mathcal{D}_Y - \mathsf{mod}_{qc}^l$  for singular k-schemes is to use the theory of (Grothendieck's) crystals.

Another application of Kashiwara's lemma is the following result. See [G, Sect. 5.12] for a proof.

**Corollary 7.3.** Let X be a smooth k-scheme, then any  $\mathcal{O}_X$ -coherent  $\mathcal{D}_X$ -module is locally free as an  $\mathcal{O}_X$ -module.

### 8. BASE-CHANGE ISOMORPHISM AND PROJECTION FORMULA

Fact 8.1. Let



be a Cartesian square of finite type k-schemes. Then we have equivalences

$$g^! \circ \phi_{*,\mathsf{dR}} \simeq \phi'_{*,\mathsf{dR}} \circ f^!$$

between functors  $D(\mathcal{D}_Y - \mathsf{mod}^r_{\mathsf{qc}}) \to D(\mathcal{D}_{X'} - \mathsf{mod}^r_{\mathsf{qc}})$ .

**Fact 8.2.** Let  $\phi: Y \to X$  be any morphism between finite type k-schemes. Then we have

$$\phi_{*,\mathsf{dR}}(-\overset{!}{\otimes}\phi^{!}(\bullet))\simeq\phi_{*,\mathsf{dR}}(-)\overset{!}{\otimes}\bullet.$$

*Exercise* 8.3. This is Homework 5, Problem 5. Let  $x : \mathsf{pt} \to X$  be a closed point of X. Prove<sup>2</sup>  $\delta_x \otimes^! \delta_x \simeq \delta_x$ .

**Corollary 8.4.** Let  $U \xrightarrow{j} X \xleftarrow{i} Y$  be finite type k-schemes such that *i* is a closed embedding and *j* is its complementary open embedding. Then for any  $\mathcal{M} \in D(\mathcal{D}_X - \mathsf{mod}_{qc}^r)$ , we have a distinguished triangle

$$i_{*,dR} \circ i^! \mathcal{M} \to \mathcal{M} \to j_{*,dR} \circ j^! \mathcal{M} \xrightarrow{+1}$$

Sketch. Consider the cone  $\mathcal{N}$  of the morphism  $\mathcal{M} \to j_{*,dR} \circ j^* \mathcal{M}$  provided by the adjoint pair  $(j^!, j_{*,dR})$ . Note that  $j^! \mathcal{N}$  is isomorphic the cone of  $j^! \mathcal{M} \to j^! \circ j_{*,dR} \circ j^* \mathcal{M}$ . And the latter morphism is an isomorphism because  $j_{*,dR} = j_*$  is fully faithful (see Example 6.14). Hence  $\mathcal{N}$  is a complex of right  $\mathcal{D}_X$ -modules that are set-theoretically supported on Y. By Kashiwara's lemma, we have  $\mathcal{N} \simeq i_{*,dR} \circ i^! (\mathcal{N})$ . Note that  $i_{*,dR} \circ i^! \mathcal{N}$  is isomorphic to the cone of  $i_{*,dR} \circ i^! \mathcal{M} \to i_{*,dR} \circ i^! \circ j_{*,dR} \circ j^! \mathcal{M}$ , and the target is isomorphic to 0 by the base-change isomorphism. It follows that  $i_{*,dR} \circ i^! \mathcal{N} \simeq i_{*,dR} \circ i^! \mathcal{M}[1]$  as desired.

8

<sup>&</sup>lt;sup>2</sup>A formal proof exists, but you are encouraged to do some direct calculations to see  $\mathcal{H}^i(\delta_x \otimes_{\mathcal{O}_X} \delta_x) = 0$ unless  $i = -d_X$  and  $\mathcal{H}^{-d}(\delta_x \otimes_{\mathcal{O}_X} \delta_x) = \delta_x$ .

#### 9. DUALITY

The duality functor is only defined on *coherent*  $\mathcal{D}$ -modules.

**Fact 9.1.** For any  $\mathcal{M} \in D^b(\mathcal{D}_X - \mathsf{mod}_{\mathsf{c}}^r)$ , there exists a unique object  $\mathbb{D}\mathcal{M} \in D^b(\mathcal{D}_X - \mathsf{mod}_{\mathsf{c}}^r)$  such that

$$\Gamma_{\mathsf{dR}}(X, \mathcal{M} \overset{!}{\otimes} -) \simeq \mathsf{Hom}(\mathbb{D}\mathcal{M}, -)$$

as functors  $D(\mathcal{D}_X - \mathsf{mod}_{\mathsf{qc}}^r) \to \mathsf{Vect}$ . The obtained functor

$$\mathbb{D}: D^b(\mathcal{D}_X - \mathsf{mod}^r_{\mathsf{c}})^{\mathsf{op}} \to D^b(\mathcal{D}_X - \mathsf{mod}^r_{\mathsf{c}})$$

is an anti-involution, i.e.,  $\mathbb{D} \circ \mathbb{D} \simeq \mathsf{Id}$ .

Remark 9.2. The construction of  $\mathbb{D}\mathcal{M}$  can be treated as a blackbox. For completeness,

$$\mathbb{D}\mathcal{M} \simeq \mathcal{H}om_{\mathcal{D}_X^r}(\mathcal{M}, \omega_X \underset{\mathcal{O}_X}{\otimes} \mathcal{D}_X[d])$$

where

- $\omega_X \otimes_{\mathcal{O}_X} \mathcal{D}_X$  has two right  $\mathcal{D}_X$ -module structures;
- The first one comes from the right multiplication of  $\mathcal{D}_X$  on itself. We use this right  $\mathcal{D}_X^r$ -structure to define the inner  $\mathcal{H}om_{\mathcal{D}_X^r}$  object.
- The second one comes from the right  $\mathcal{D}_X$ -module structure on the tensor product of a right  $\mathcal{D}_X$ -module (i.e.  $\omega_X$ ) and a left  $\mathcal{D}_X$ -module (i.e.  $\mathcal{D}_X$ ).
- The second right  $\mathcal{D}_X$ -module structure survives after taking the inner  $\mathcal{H}om_{\mathcal{D}_X^r}$ , and the RHS is viewed as a right  $\mathcal{D}_X$ -module using this structure.

**Example 9.3.** If X is smooth, then  $\mathbb{D}(\omega_X) \simeq \omega_X$ .

**Construction 9.4.** Let  $\phi: Y \to X$  be a map between finite type k-schemes. The standard functors  $\phi^{!}$  and  $\phi_{*,dR}$  in general do not preserve coherent complices. Hence we only have partially defined functors

$$\phi_! := \mathbb{D} \circ \phi_{*,\mathsf{dR}} \circ \mathbb{D}, \ \phi_{\mathsf{dR}}^* := \mathbb{D} \circ \phi^! \circ \mathbb{D}.$$

They are called the !-direct image functor and the de Rham pullback functor.

**Fact 9.5.** Let  $\phi: Y \to X$  be a map between finite type k-schemes. Then  $\phi_1$  is equivalent to the partially defined left adjoint of  $\phi^1$ . More precisely, we have

$$\operatorname{Hom}(\phi_!\mathcal{M},-)\simeq\operatorname{Hom}(\mathcal{M},\phi^!(-))$$

whenever  $\phi_! \mathcal{M}$  is well-defined. Similarly,  $\phi^*_{dR}$  is equivalent to the partially defined left adjoint of  $\phi_{*,dR}$ .

Remark 9.6. If  $\phi$  is proper, then  $\phi_! \simeq \phi_{*,dR}$ . If  $\phi$  is smooth, then  $\phi_{dR}^* \simeq \phi^! [-2d_Y + 2d_X]$ .

# 10. HOLONOMIC D-MODULES

We do not give the standard definition of holonomic D-modules. Instead, we characterize them as follows:

**Fact 10.1.** Let  $\mathcal{M} \in \mathcal{D}_X - \text{mod}_c^r$ , then  $\mathcal{M}$  is holonomic iff  $\mathbb{D}\mathcal{M} \in \mathcal{D}_X - \text{mod}_c^r$  (rather than just in the derived category).

**Fact 10.2.** Let  $\mathcal{M} \in D^b(\mathcal{D}_X - \mathsf{mod}_c^r)$ , then  $\mathcal{M}$  has holonomic cohomologies, i.e.,  $\mathcal{H}^{\bullet}(\mathcal{M})$  are holonomic, iff for any closed point  $i: x \to X$ , the complex  $i^! \mathcal{M} \in D^b(\mathcal{D}_{\mathsf{pt}} - \mathsf{mod}_c^r) \simeq D^b(\mathsf{Vect})$  has finite dimensional cohomologies.

Notation 10.3. Let  $\mathcal{D}_X - \mathsf{mod}_{\mathsf{hol}}^r$  be the abelian category of holonomic right  $\mathcal{D}_X$ -modules and  $D^b(\mathcal{D}_X - \mathsf{mod}_{\mathsf{hol}}^r)$  be the bounded derived category.

**Fact 10.4.**  $D^b(\mathcal{D}_X - \mathsf{mod}^r_{\mathsf{hol}})$  is equivalent to the full subcategory of  $D^b(\mathcal{D}_X - \mathsf{mod}^r_{\mathsf{c}})$  containing complices with holonomic cohomologies.

Fact 10.5. All the functors defined so far preserve bounded holonomic complices.

## References

- Bernstein, Joseph. Algebraic theory of D-modules, 1984, abailable at https://gauss.math.yale.edu/ ~il282/Bernstein\_D\_mod.pdf.
- [G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people. mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.
- [HTT] Hotta, Ryoshi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory. Vol. 236. Springer Science & Business Media, 2007.