LECTURE 11

Last time, for a smooth k-scheme X, we introduced the sheaf of differential operators Dx
on X and defined quasi-coherent D x-modules, known as D-module on X. In this lecture, we
introduce operations on D-modules. We will mainly focus on the formal aspect of this thoery,
known as the siz functors formalism for D-modules. For more details, see [B] and [HTT].

1. CONVENTIONS ON DERIVED CATEGORIES

For the purpose of this course, we do not need the full power of the derived categories of
D-modules. However, these categories are useful in other topics of geometric representation
theory, hence I choose to include the results about them in this lecture.

When talking about derived categories of D-modules, we always assume X is quasi-projective.
In this case, the abelian category D X—modé/cT has enough injective and locally projective objects,
and any object admits a resolution by locally projective D x-modules with length < 2dx, where
dx =dim(X) is the dimension (function) of X. The latter implies Ext'(—,-) ~ 0 for ¢ > 2dx.

We have the following triangulated categoies equipped with natural t-strcutures:

e D(D X—modfq/:), the derived category of quasi-coherent Dx-modules. This can be iden-
tified with the full subcategory of the derived category D(DX—modl/T) of all Dx-
modules containing those complices whose cohomologies are quasi-coherent.

. Db(DX—modlc/T), the bounded derived category of coherent Dx-modules. This can be
identified with the full subcategory of the bounded derived category Db(DX—modl/ )
of all Dx-modules containing those complices whose cohomologies are coherent.

When talking about functors between derived categories, even if such functors are left/right
derived functors, we drop the decorations “L/R” from the notations. For example, - ® — in
derived categories would mean — ®” — in classical literatures. We choose to do so because we
will enconter functors that are not derived functors.

Remark 1.1. The (essential) image of the fully faithful functor
D"(Dx-mod") > D(Dx-mod!l)
contains exactly the compact objects in the target, i.e., those objects M such that Hom(M, -)
commutes with filtered (homotopy) colimits.
2. FORGET AND INDUCE

Construction 2.1. We have adjoint functors

ind"/" Ox-modgc — DX—modé/cT - oblv!/"
such that

ind'(F):=Dx ® F, ind"(D):=F ® Dx.

Ox OX

Both functors are exact.
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3. TENSOR AND HOM

Construction 3.1. Let M, N ¢ DX—modéc and M',N" € Dx-mod; . Then there are natural
objects defined using the signed Lebniz rules:

Mo, N e ’Dx—modéc defined by 0-(m®n)=(0-m)®@n+m®(0-n);

M’ ®o N e Dx-mody. defined by (m'®n)-0=(m'-0)®n-m'® (d-n);

Homo (M,N) € Dx—modéC defined by (9-¢)(m) =0 -p(m) — (0 -m);

Homo (M N") € Dx—modéc defined by (0-¢)(m') = -p(m’) -0+ p(m-0);

Homo, (M, N") e Dx-mody. defined by (¢-9)(m) = ¢(m) -0+ d(m-9).

Remark 3.2. One way to memorize the above rules for left vs. right is using the known objects

Ox ¢ Y)X—modé|c and wy = Q% € DX—modgc. For example, Homo, (wx,wx) ~ Ox has a left

D-module structure, while Homo, (wx,Ox) ~ w}l in general has no D-module structures.

Remark 3.3. One way to memorize the signed Lebniz rules: (i) put a minus sign when acting
on a section of the source object in Home, (-, —); (ii) put a minus sign when moving 9 from
the one side of - to the other side.

Remark 3.4. The tensor operations make D X—modfqc a symmetric monoidal category such that
the forgetful functor DX—modfTlc -0 X—modé|C is naturally symmetric monoidal. The category
Dx-modg, is a module category of it.

The following result follows by unwinding the definitions:

Lemma 3.5. Let M€ ’DX—modf]C and M' € DX—modgc. We have adjoint functors
M 68;( - DX—modé/cr — DX—modé/cr :Homeo, (M, =)
/\/l'(562)>(—:2))(—modéc — Dx-mod, : Homo, (M’,-)

compatible with the similar adjunction between Ox -modules.

Recall wy is a line bundle. It follows formally that:

Corollary 3.6. The following functors are inverse to each other:
wx O® —: DX—modé|C pa— ’Z)X—modgC :Homoy, (wx, —).
X
Remark 3.7. In particular, for any right D-module N, we obtain a left D-module structure on
-1 !
wy N

Remark 3.8. We also have similar results for the derived category of D-modules and the cor-
responding derived functors. The left derived functor — ®», — has cohomological amplitude
[-dx,0] while the right derived functor Home, (-, —) has cohomological amplitude [0,dx].

Remark 3.9. When identifying the derived categories of left and right D-modules, it is more
convenient to use the complex wx[dx], which is also known as the dualizing compleqﬂ on X.
In other words, we use the equivalences

wX[dX]a@ —: D(Dx-mod}.) = D(Dx-mod..) : Homo, (wx[dx],~).
X

LThis notion makes sense even when X is singular.
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Construction 3.10. We define a symmetric monoidal structure — ®' — on D(DX—modgc) by

translating the symmetric monoidal structure — o, — of D(’DX—modch) via the above equiva-
lences. In other words, as Ox-modules, we have

!
M’@N’:M’&N’O@; wy [-dx].

4. EXTERNAL TENSOR

Construction 4.1. Let M, ¢ DXi—modé/cT. Then there are natural objects
M1’ My = My %Mg € DXlxXz_mOdé/cr

induced by the isomorphism Dx, ®;Dx, ~ Dx,xx,. This is called the external tensor product
of D-modules.

5. PULLBACKS
Let ¢: Y - X be a map between smooth k-schemes.

Construction 5.1. We will construct a commutative diagram

*

DX—modflc ? >Dy—modéc

Loblvl loblv"
*

Ox—modgc . Oy -modgc.
The functor

" Z)X—modi1c - Dy—modf1c
is called the (*-)pullback of left D-modules.

The construction is as follows. For M € Ox-modqc, recall ¢*(M) = Oy @410, ¢ M.
Suppose M is equipped with a left Dx -module structure, then there is a left Dy -module structure
on ¢* (M) defined by the Lebniz rule:

0-(fes)=0(f)®s+fd-s,
where

e 0 is a local section of Ty and O is the image of it under the map Ty — ¢*Tx = Oy ®yp-104
¢ Tx;

o f is a local section of Oy ;

e s is a local section of $~*M, and O - s is defined using the action of ¢ Tx on ¢~* M.

Remark 5.2. One can show the pullback of left D-modules are compatible with composition of
maps between smooth k-schemes.

Example 5.3. The pullback of the object Ox € DX—modf1C is Oy € ’Dy—modéc.
Construction 5.4. We write:

Dy_x=¢"Dx~0y ® ¢ 'Dx
¢~1O0x

and call it the transfer module.

The above construction gives a left Dy -module structure on Dy_x. On the other hand,
there is an obvious right ¢~ 1Dx-module structure on Dy_x. One can show there two actions
commute. In other words, Dy x is a (Dy,¢ *Dx)-bimodule.
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Note that for M e DX—modéc, we have

P*M=Dy_x ® ¢ M.
¢ 1Dx

Construction 5.5. Note that the functor ¢* : Dx—modéC - ’Dy—modf1C s right exact. We
abuse notation and let

¢ : D(Dx-mod,.) > D(Dy-modp.)
be the left derived functor of it. Note that it is compatible with the left derived functor ¢* :
D(Ox-modg.) > D(Oy-modyc) and the forgetful functors.
Remark 5.6. We have:

e If ¢ is flat, then ¢* is t-exact, i.e., preserves the heart.
o If ¢ is a closed embedding (which is automatically regular), then ¢* has cohomological
amplitude [-dx + dy,0].

Example 5.7. Let ¢ be a closed embedding. Since X and Y are smooth, ¢ is a regular
immersion. For any closed point p € Y, we can find an étale coordinate system x1,-, T,
of X mnear p such that Y is locally cut out by the ideal (2,11, -, 2m) (m = dim(Ox ) and
n =dim(Oy,)). Let y1,---, yn be the restriction of x1,---, z,, on Y. They form an étale coordinate
system of Y near p. Then near the point p € Y, we have

DY—>X = DY % k[a’n+17 Y 8771]
as left Dy-modules. In particular, Dy _ x is a locally free left Dy-module.

Construction 5.8. Let ¢' be the unique functor that makes the following diagram commute
D(DX—modéc) . D(Dy—modéc)
wx [dx]l"'
D(DX—modgc)

leY[dy]
> D(Dy—modgc),

¢

The obtained functor

¢': D(Dx-mod}.) - D(Dy-mody,)
is called the !-pullback of (complices of) right D-modules. It has cohomological amplitude
[-dy,dx —dy] and in general is not a derived functor.

Remark 5.9. We have:

o If ¢ is flat, then ¢' is t-exact up to a shift.
e If ¢ is a closed embedding, then ¢' has cohomological amplitude [0,dx —dy].

Example 5.10. By definition, ¢'(wx[dx]) ~ wy [dy].

Example 5.11. If j: U - X is an open embedding, then j' is t-exact and the corresponding
functor Dx-modg. - Dy-mody is the restriction functor. Indeed, this follows from wx |y ~ wy.

In this case, we write j' = j*.

Warning 5.12. In general, for a right Dx-module M, there is no D-module structure on its
O-module pullback ¢* M.

Fact 5.13. If¢:Y — X is a closed embedding, then ¢' is equivalent to the right derived functor
of a functor
¢ Dx-mod,,

T
< & Dy—-mod.
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Construction 5.14. Let ¢ : Y — X be a closed embedding. The functor ¢' : Z)X—modgC -
Dy-modg. can be described as follows.
Recall we have adjoint functors

@+ + Oy—modqc m—= Ox-modq : gf)!

where for a quasi-coherent O x -module M and any open subset U c X, a section m of gi)!(/\/l) on
UnY corresponds to a section M of M on U annihilated by the ideal Ty := ker(Ox — ¢.Oy).
Suppose M is equipped with a right Dx-module structure. For any local section 0 of Ty, we
can extend it to a local section & of Tx. Now for a local section m of ¢ (M), we define m -0
such that

m-0=im-0.
One can show the local section m -0 is well-defined and does not depend on the choice of d.
Moreover, this defines a right Dy -module structure on ¢'(M). ¢'(M).
Remark 5.15. For any map ¢ :Y — X between finite type k-schemes, one can define a functor

¢': D(Ox-modg.) - D(Oy -modqc)

as follows.
If ¢ is an open embedding, take ¢' := ¢*. If ¢ is proper, take ¢' to be the right adjoint of (the

right derived functor) ¢.. For the general case, choose a Nagata compactification ¥’ Ly 2 X

such that j is an open embedding and ¢ is proper, and take ¢' := 5' og!. One can show the functor
¢' does not depend on the choice of the compactification, and these functors are compatible
with compositions of maps. In fact, the construction ¢ — ¢' can be uniquely characterized by
these properties (if stated properly).

When X and Y are smooth, the -pullback functors of @-modules and right D-modules are
compatible via the forgeful functors. In other words, we have a commutative diagram

(5.1) D(Oy-modqc) TD(OX—modqc)

]oblvr ] oblv”

D(Dy-mody,) T D(Dx-modg.)

Fact 5.16. In the (derived) setting of Construction[3.1], we have
¢*(M(58;(N) = ¢*(M)(g<;¢*(/\/),
PM @ N) = (M) @ "N,
¢*Homo (M, N) = Homo, (¢*"M,¢"N),

¢ Homo, (M N = Home, (¢'M',$'N"),
¢ Homo (M,N') = Homo, (¢* M, ¢'N).

Fact 5.17. For pr,: X1 x Xo - X;, we have
Mir My =~ prf(/\/ll)o ® pry(Ms)

X1xXo

M’IM'Q ~ prll(M1)épr!2(M2)~
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6. PUSHFORWARDS

Construction 6.1. Let ¢ : Y — X be a map between smooth k-schemes. Recall the transfer
module

Dy_.x=¢"Dx~0y ® ¢ 'Dx
¢ 1O0x

is a bimodule for (Dy,¢ 'Dx). We define a functor
¢x.ar : D(Dy-modg.) -~ D(Dx-modg.), N+ @(/\/Z;@ Dy_x),
Y

where

e The (left derived) tensor product functor — @p, Dy_x sends a complex of right Dy -
modules to a complex of right ¢~ Dx -modules.
e The (right derived) functor ¢, sends a complex of right ¢"'Dx-modules to a complex
of Tight Dx-modules via the homomorphism Dx — ¢.(¢ 1 Dx).
We call . gr the direct image functor, or de Rham pushforward functor, of (complices)
of right D-modules.

Remark 6.2. One can show the direct image functors of right D-modules are compatible with
composition of maps between smooth k-schemes.

Remark 6.3. The functor ¢« gr is called the de Rham pushforward functor because for 7: X —
pt, T« dr(wx[-dx]) can be identified with the de Rham complex of X. For this reason, we also
write
FdR()(v _) = 7Tx—,dR(_)'
You are strongly encouraged to look at its proof in |G| Sect. 5.17].

Remark 6.4. Some authors use the notation ¢, for ¢, gr.

Remark 6.5. The cohomological amplitude of ¢, gr is [-dy,dy ]. Better estimation exist in the
following cases:

o If ¢ is affine, then the bounds can be [-dy,0].

e If ¢ is smooth, then the bounds can be [-dy +dx,dy].

e If ¢ is a closed embedding, then the functor is t-exact.

Warning 6.6. One can define a functor between the abelian categories using the same formula.
However, that functor would not be Ho(qb*’dR) and is of less interests.

Example 6.7. If j: U - X is an open embedding, then Dy_x ~ j*Dx ~ Dy. It follows that
Jx,dRM = j. M. In other words, there is a right Dx-module structure on the O-module direct
image of M. In this case, we write j. 4r = Jj«-

Ezercise 6.8. This is Homework 5, Problem 4. Let x : pt > X be a closed point of X. We write
0z = T4 gr(k). Prove:
(1) 6, ~ k, ®0, Dx as a right Dx-module.
(2) ¢, is set-theoretically supported on at z, i.e., for the complement open U := X -z, we
have |y = 0.
(3) There exists a unique section Dirac, of §, such that Dirac, - f = f(z)Dirac, for any local
section f of Ox defined near x.
(4) ¢, is generated by Dirac, as a right Dx-module.

Remark 6.9. The section Dirac, should be viewed as the incarnation of the Dirac function in
the theory of D-modules.
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Lemma 6.10. The following diagram commutes:

(6.1) D(Oy-modqc) L>D((9X—modqc)

indrl indrl
b ,dR

D(Dy-modg.) —— D(Dx-modg,)

Sketch. For F € D(Oy—-modgc), we have
¢>+,dR o de(]:) ~ ¢*(.7:O® Dy D® 'Dy_)X) ~ (b*(]:'é@) ¢*'Dx) ~ (f)*j:'o@) Dx ~ ind” o ¢*(.7:)

where the second last isomorphism is the (derived) projection formula.

We state the following results without proof.

Proposition 6.11. If ¢:Y — X is proper, then we have adjoint functors
¢ar : D(Dy-modj.) = D(Dx-mody.) : ¢".
Remark 6.12. If ¢ : Y - X is proper, then the square can be obtained from by
passing to right adjoints.
Proposition 6.13. If ¢: Y — X is smooth, then we have adjoint functors
¢'[-2dy +2dx]: D(Dy-modj.) = D(Dx-mody.) : ¢s.dr.

Example 6.14. If j : U - X is a closed embedding, then j' ~ j* is left adjoint to J#,dR = Jx-
Note that the right adjoint functor is fully faithful.

Construction 6.15. As in the case of pullback functors, we can define the direct image
Junctor of left D-modules:

D(Dy-mod., ) " D(Dx-mod],)

wy[dY]L: ﬁth[dx]

D(Dy-mod) =% D(Dx-modL,).

7. KASHIWARA’S LEMMA

If $:Y - X is a closed embedding, then the tensor product functor - ®p, Dy_ x is t-exact
because Dy _ x is locally free as a Dy-module. On the other hand, the functor ¢, is also t-exact
because ¢ is affine. Therefore the functor ¢. qr is t-exact.

Theorem 7.1 (Kashiwara’s lemma). Let ¢ : Y — X be a closed embedding between smooth
k-schemes, then the exact functor

¢>(-,dR . Dy—modgc g DX—modgc

s fully faithful and its essential image contains exactly right Dx-modules that are set-
theoretically supported on'Y .

Remark 7.2. Using Kashiwara’s lemma, we can define ’Dy—modgC even for finite type singular
k-scheme Y. Namely, if Y is affine, we can embed Y into a smooth ambidient k-scheme X and
define a right D-module on Y to be a right D-module on X that is set-theoretically supported
on the image of Y. One can show the obtained abelian category does not depend on the choice
of the embedding. When Y is not affine, we can define the category by gluing.
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Moreover, all the previous constructions about right D-modules can be generalized to the
singular case.

A more canonical construction of Dy —mody, or even Dy—modfT|C for singular k-schemes is to
use the theory of (Grothendieck’s) crystals.

Another application of Kashiwara’s lemma is the following result. See |G, Sect. 5.12] for a
proof.

Corollary 7.3. Let X be a smooth k-scheme, then any Ox -coherent Dx -module is locally free
as an Ox-module.
8. BASE-CHANGE ISOMORPHISM AND PROJECTION FORMULA

P,

Y —X

Fact 8.1. Let

be a Cartesian square of finite type k-schemes. Then we have equivalences
9! °© Dy dR (b;,dR o f!
between functors D(Dy-mody.) - D(Dx:~modg,).

Fact 8.2. Let ¢:Y — X be any morphism between finite type k-schemes. Then we have

buar(~® 6()) = duar(-) ® .

Ezercise 8.3. This is Homework 5, Problem 5. Let = : pt = X be a closed point of X. Proveﬂ
0p ® 0y = 0,

Corollary 8.4. Let U EN X <Y be finite type k-schemes such that i is a closed embedding
and j is its complementary open embedding. Then for any M € D(’Z)X—modgc), we have a
distinguished triangle

. . . .l +1
ixdrot M > M = jqroj M —.

Sketch. Consider the cone N of the morphism M — j, 4r o j*M provided by the adjoint
pair (5',7.qr). Note that j'A is isomorphic the cone of j'M — j' o j,q4r 0 j*M. And the
latter morphism is an isomorphism because j.q4r = j. is fully faithful (see Example .
Hence N is a complex of right Dx-modules that are set-theoretically supported on Y. By
Kashiwara’s lemma, we have N ~ i, 4g 04'(N). Note that i, gg o'\ is isomorphic to the cone
of i, 4r © i'M - T4.dR © ito J#,dR © j'M, and the target is isomorphic to 0 by the base-change
isomorphism. It follows that 7. 4r © PN~ ix.dR © i* M[1] as desired.

O

2A formal proof exists, but you are encouraged to do some direct calculations to see H'(5y ®0y 6z) =0
unless ¢ = -dx and ’H‘d(6z ®0x 0z) = ba.
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9. DuALITY

The duality functor is only defined on coherent D-modules.
Fact 9.1. For any M € D®(Dx-mod!), there exists a unique object DM € D*(Dx-mod?) such
that

!
FdR(X,M ® —) ~ Hom(]D)M, —)
as functors D(Dx-modg.) — Vect. The obtained functor
D : D*(Dx-mod!)° — D’(Dx-mod’)

is an anti-involution, i.e., Do ~ Id.

Remark 9.2. The construction of DM can be treated as a blackbox. For completeness,

DM :’Hompg((./\/t,wx (58 Dx[d]),

where

® wx ®p, Dx has two right Dx-module structures;

e The first one comes from the right multiplication of Dx on itself. We use this right
D’ -structure to define the inner Hompr, object.

e The second one comes from the right Dx-module structure on the tensor product of a
right Dx-module (i.e. wx) and a left Dx-module (i.e. Dx).

e The second right Dx-module structure survives after taking the inner Hompr,_, and the
RHS is viewed as a right Dx-module using this structure.

Example 9.3. If X is smooth, then D(wx) ~ wx.

Construction 9.4. Let ¢:Y — X be a map between finite type k-schemes. The standard func-
tors ¢' and ®+.dr I general do not preserve coherent complices. Hence we only have partially
defined functors

¢r:=Dod,aroD, gjri=Dog¢ oD.
They are called the !-direct image functor and the de Rham pullback functor.

Fact 9.5. Let ¢:Y = X be a map between finite type k-schemes. Then ¢, is equivalent to the
partially defined left adjoint of ¢'. More precisely, we have

Hom (¢ M, -) =~ Hom(M, ¢'(-))

whenever ;M is well-defined. Similarly, ¢jg is equivalent to the partially defined left adjoint
of Px.dr-

Remark 9.6. If ¢ is proper, then ¢ ~ ¢ gr. If ¢ is smooth, then ¢jg =~ #'[-2dy +2dx].

10. HoLoNoMIC D-MODULES

We do not give the standard definition of holonomic D-modules. Instead, we characterize
them as follows:

Fact 10.1. Let M € Dx-mod, then M is holonomic iff DM € Dx—-mod; (rather than just
in the derived category).

Fact 10.2. Let M € D*(Dx-mod.), then M has holonomic cohomologies, i.c., H*(M)
are holonomic, iff for any closed point i : x — X, the complex i'M € Db(Dpe—mod) ~ D°(Vect)
has finite dimensional cohomologies.
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Notation 10.3. Let Dx-mod,,, be the abelian category of holonomic right Dx-modules and
D(Dx-mod(,) be the bounded derived category.

Fact 10.4. D’(Dx-mod[,,) is equivalent to the full subcategory of D*(Dx-mod.) containing
complices with holonomic cohomologies.

Fact 10.5. All the functors defined so far preserve bounded holonomic complices.
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