
LECTURE 12

In this lecture, we discuss about the localization theorem.

1. Flag variety

In this section, G can be any connected affine algebraic group over an algebraic closed field k.
Let B be a Borel subgroup of G, which is defined to be a maximal connected solvable subgroup.
Consider the right multiplication action of B on G on itself. We will review some basic facts
about the flag variety G/B.

Theorem 1.1. The quotient G/B exists and is a projective k-scheme.

Remark 1.2. The proof of this theorem in my prefered reference [M] is more involved than
those in the other literatures because Milne uses scheme theory and allows nilpotency in the
definition of algebraic groups. Below is a guideline to this proof.

● (Existence of quotient) In general, for any subgroup K of an algebraic group H over
any field k, the quotient H/K exists (see [M, Section 5.c]). Such k-scheme H/K is
called a homogeneous space under H. More precisely, the fppf sheafification of the
näıve functor CAlgk → Set, R ↦ H(R)/K(R) is represented by a k-scheme H/K, and
the map H → H/K exhibits H as a fppf K-torsor on H/K. When char(k) = 0, “fppf”
can be replaced by “étale”1.

● (Quasi-projective) In general, any homogeneous space H/K under H is quasi-projective
(see [M, Section 8.k]).

● The above two parts are more about scheme theory rather than representation theory.
● (Completeness) The quotient G/B is shown to be complete in [M, Section 17]. There

are several important representation theoretic ingredients in this proof: Chevalley’s
theorem2, Lie–Kolchin theorem3

Example 1.3. For G = SL2 or GL2 and the standard Borel subgroup B, G/B is isomorphic to
P1 such that the k-point pt ≃ B/B → G/B corresponds to the k-point ∞ ∈ P1.

Indeed, consider the standard 2-dimensional representation V of G. We view V as an affine
k-scheme and P(V ) as a projective k-scheme. We obtain a transitive action of G on P(V ) ≃ P1.
Consider the k-point ∞ ∈ P(V ) given by the vector ( 1

0 ) ∈ V . The stablizer subgroup at this
point is the standard Borel subgroup B. It follows that we have an isomorphism G/B ≃ P(V )
that sends gB to g ⋅ ∞.

Date: May 13, 2024.
1The contents of the above words are: for any R ∈ CAlgk, H(R) → (H/K)(R) factors as H(R) ↠

H(R)/K(R) ↪ (H/K)(R). And for any element in x ∈ (H/K)(R), there exists a finite presented faithfully
flat R-algebra R′ such that the image x′ of x under (H/K)(R) → (H/K)(R′) is contained in the image of

H(R′) → (H/K)(R′). In zero characteristic, we can require R′ to be an étale R-algebra.
2Every subgroup K of an affine algebraic group H can be realized as the stablizer of a 1-dimensional subspace

L in a finite-dimensional representation V . See [M, Section 4.h].
3Irreducible representations of a smooth connected solvable algebraic group B are 1-dimensional. See [M,

Section 16.d].
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Example 1.4. For G = SLn or GLn and the standard Borel subgroup B, G/B classifes complete
flags in k⊕n, i.e., subspaces 0 = V0 ⊂ V1 ⊂ ⋯ ⊂ Vn = k⊕n such that dim(Vk) = k. For this reason,
G/B is called the flag variety of G.

In this case, it is easy to write down homogenous coordinates to show G/B is projective.
See [M, Section 7.g].

Theorem 1.1, together with the Borel fixed point theorem4, imply the following results, which
were used in our previous lectures. See [M, Section 17].

Theorem 1.5. Any two Borel subgroups of G are conjugate by an element of G(k).

Theorem 1.6. The normalizer subgroup of B in G is equal to B, i.e., NG(B) = B.

Construction 1.7. We have (G/B)(k) ≃ G(k)/B(k). Then Theorem 1.5 and Theorem 1.6
imply there is an isomorphism

(G/B)(k) ∼Ð→ {Borel subgroups of G}, gB ↦ Adg(B)
and therefore

(G/B)(k) ∼Ð→ {Borel subalgebras of g}, gB ↦ Adg(b).

Corollary 1.8. For two Borel subgroups B and B′ of G, there is a unique G-equivariant
isomorphism G/B → G/B′.

Notation 1.9. The above corollary says that as a k-scheme equipped with a G-action, G/B
does not depend on the choice of G. We write FlG for it.

Remark 1.10. In fact, one can define the moduli problem classifying Borel subalgebras of g
and show that it is representable by a k-scheme FlG which is isomorphic to G/B for any Borel
subgroup B. Namely, let n = dim(G) and d be the common dimension of all the Borel subgroups.
Then one can show the above moduli problem is a closed subfunctor of the Grassmannian
Gr(d,g) that classifies d-dimensional subspaces of g.

It is a well-known fact that the obvious map Gr(d, V ) → P(∧dV ) is a closed embedding,
known as the Plücker embedding. Hence the composition FlG → Gr(d,g) → P(∧dg) gives a
closed embedding of FlG into a projective space.

2. Line bundles on flag variety

From now on, G is assumed to be connected and reductive. Recall this means the unipotent
radical of G is trivial. We can classify the line bundles on the flag variety G/B using the
characters of B (or equivalently, of T ≃ B/[B,B]). To describe this classfication, we need the
following construction.

Definition 2.1. Let K be an algebraic group and Y be a k-scheme equipped with an action of
H. Consider the maps act,pr ∶ K × Y ⇉ Y . A K-equivariant quasi-coherent OY -module
is an object F ∈ OY −modqc euipped with isomorphisms act∗F → pr∗F that satisfies the cocycle
condition over K ×K × Y .

Let OY −modKqc be the category of K-equivariant quasi-coherent OY -modules.

Remark 2.2. The category OY −modKqc is an abelian category and the forgetful functor

OY −modKqc → OY −modqc is exact. However, this functor is not fully faithful. Being equivariant
is a structure rather than a property.

4Any action of a smooth connected solvable algebraic group B on a finite type separated k-scheme X has a
fixed k-point.
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Example 2.3. The structure sheaf OY has an obvious K-equivariant structure.

Construction 2.4. Suppose the quotient Y /K exsits5. Let π ∶ Y → Y /K be the projection map.
Note that π ○ act = π ○ pr. Hence we have a functor

(2.1) OY /K−modqc → OY −modKqc, M↦ π∗M
that sends M to π∗M equipped with the obvious equivariant structure.

By the flat descent of quasi-coherent sheaves, we have:

Proposition 2.5. The functor (2.1) is an equivalence.

At least when K is affine, the inverse of (2.1) can be constructed as follows.

Construction 2.6. Let F ∈ OY −modKqc. The K-equivariant structure induces a morphism
F → act∗ ○ pr∗F . Taking global sections, we obtain a map

F(Y ) → pr∗F(K × Y ) ≃ O(K) ⊗ F(Y ).
One can show the cocycle condition for the K-equivariant structure on F is translated to the
associative law for a right K-action on F(Y ). By taking inverse, we obtain a functor

Γ(Y,−) ∶ OY −modKqc → Rep(K).
One can check the multplication map O(Y )⊗O(Y ) → O(Y ) and the action map O(Y )⊗F(Y ) →
F(Y ) are K-linear.

Remark 2.7. Let g ∈ K be a closed point and consider the map g ∶ Y → Y given by its action.
The K-equivariant structure on F provides an isomorphism g∗F → F and therefore F → g∗F .
Taking global sections, we obtain an automorphism Γ(Y,F) → Γ(Y,F), which gives the right
action of the point g ∈ K on Γ(Y,F). When F = O is the structure sheaf, this is the usual
formula (φ ⋅ g)(y) = φ(gy).

Construction 2.8. The following construction is an infinitesimal variant of Construction 2.6.
Consider k ∶= Lie(K). Then for F ∈ OY −modKqc, the underlying sheaf F has a natural action by k
such that the induced k-module structure on F(Y ) coincides with that induced by the K-module
structure in Construction 2.6.

Namely, let K(1) ∶= Spec(OK,e/m2
K,e) be the first neightborhood of the unit element e insider

K. For any open subscheme, the maps act,pr induce maps act
(1)
U ,pr

(1)
U ∶ K(1) × U → U . The

K-equivariant structure provides a morphism F∣U → (act(1)U )∗ ○ (pr(1)U )∗(F∣U). Taking global
sections, we obtain a map

F(U) → (pr(1)U )∗(F∣U)(K(1) ×U) ≃ OK,e/m2
K,e ⊗F(U).

Note that the short exact sequence

0→ mK,e/m2
K,e → OK,e/m2

K,e → k → 0

has a canonical spliting. Hence we obtain a map F(U) → mK,e/m2
K,e ⊗ F(U). By definition,

we have k∗ ≃ mK,e/m2
K,e. Hence we obtain a map

k⊗F(U) → F(U).
One can show6 this defines a k-module structure on F(U) for any U and therefore on F .

5More precisely, we mean the fppf sheafification of the functor R ↦ Y (R)/K(R) is represented by a k-scheme.
6Note: I do not have time to check if there should be a negative sign. I will return to this problem after the

class.
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Construction 2.9. Now for any open subset U ⊂ Y /K, its inverse image π−1(U) ⊂ Y is
preserved by the K-action. Hence we obtain a right K-representation structure on F(π−1(U))
compatible with the O(π−1(U))-module structure. One can show O(U) ≃ O(π−1(U))K and
U ↦ F(π−1(U))K defines a quasi-coherent OY /K-module, which we denote by FK . We have a
functor

OY −modKqc → OY /K−modqc, F ↦ FK

inverse to the functor (2.1).

Construction 2.10. Let V ∈ Rep(K) be a K-representation. The quasi-coherent OY -module
OY ⊗ V has a natural K-equivariant structure such that the K-representation structure on

(OY ⊗ V )(π−1(U)) ≃ OY (π−1(U)) ⊗ V
is given by the (anti)diagonal action. Hence we obtain a funnctor

Rep(K) → OY /K−modqc, V ↦ (OY ⊗ V )K .
Remark 2.11. In fact, we have Rep(K) ≃ QCoh(pt/K) where pt/K is the classifying stack of
K. Via this equivalence, the above functor corresponds to the pullback functor along the map
Y /K → pt/K.

Construction 2.12. For any character λ of T and the corresponding 1-dimensional B-
representation k−λ, we obtain a line bundle7

Lλ ∶= (OG ⊗ k−λ)B ∈ OG/B−modqc

on the flag variety G/B. It is easy to see

(2.2) X(T ) ≃ X(B) → Pic(G/B), λ↦ Lλ

is a homomorphism, which is called the characteristic map for G.

Remark 2.13. In fact, for any connected algebraic group G and its Borel subgroup B, we have
an exact sequence

0→ X(G) → X(B) → Pic(G/B) → Pic(G) → 0.

When G is semisimple, X(G) = 0. When G is further simply connected, Pic(G) = 0. See [M,
Section 18].

Example 2.14. For G = SL2 equipped with its standard Borel and Cartan subgroups. Any
character of B is of the form ( t ∗

0 t−1
) ↦ tn for some n ∈ Z. Unwinding the definitions, the

corresponding line bundle on G/B ≃ P1 is O(n). Indeed, its global section is the space of
functions φ on SL2 such that φ(g( t ∗

0 t−1
)) = tnφ(g).

Warning 2.15. Other authors might choose different conventions and obtain the line bundle
O(−n).

Example 2.16. We have L−2ρ ≃ ωG/B .

Construction 2.17. Note that Lλ is naturally equivariant with respect to the left multplication
action of G on G/B. By Construction 2.6, we obtain a G-module structure on H0(G/B,Lλ).
This representation is finite-dimensional because G/B is proper.

Recall the following well-known result:

Theorem 2.18 (Borel-Weil-Bott). When char(k) = 0 and G is semisimple, if λ is dominant
and integral, then H0(G/B,Lλ) ≃ Lλ and Hi(G/B,Lλ) = 0 for i > 0.

7Note the negative sign!
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Remark 2.19. The statement Hi(G/B,Lλ) = 0 for i > 0 remains true in positive characteristic,
known as Kempf’s vanishing theorem. See [J, Chapter 4] for a proof. However, H0(G/B,Lλ) is
not always irreducible.

We also record the following result. For a proof, see [J, Chapter 4].

Theorem 2.20. Let G be semisimple. The following conditions are equivalent:

(i) When viewed as an integral weight of t, λ is regular and dominant, i.e., ⟨λ, α̌⟩ ∈ Z>0 for
any α ∈ Φ+;

(ii) The line bundle Lλ is very ample;
(iii) The line bundle Lλ is ample.

Remark 2.21. In fact, the characteristic map X(T ) → Pic(FlG) does not depend on the choice
of B, as long as we replace T by the abstract Cartan group Tabs for G. More precisely, for any
choice of B, there is a corresponding realization isomorphism Tabs → T , then the composition
X(Tabs) ≃ X(T ) → Pic(FlG) does not depend on B.

3. Bruhat decomposition

Recall G is assumed to be reductive. References for this section include [M, Section 21.h]
and [J, Chapter 13].

Theorem 3.1 (Bruhat decomposition for G(k)). We have

G(k) = ⊔
w∈W

B(k)wB(k),

where in the RHS we lift w ∈W to an element in NG(T )(k).

Example 3.2. For G = GLn, this decomposition follows from Gaussian elimination.

We also have the version for schemes.

Theorem 3.3 (Bruhat decomposition for G). For any w ∈W , there is a unique smooth locally
closed subscheme of G, denoted by BwB, such that BwB(k) = B(k)wB(k). We have a disjoint
union decomposition of underlying topological spaces:

G = ⊔
w∈W

BwB.

Each subscheme BwB is stablized by the (B,B)-action on G and is equal to the (B,B)-orbit
that contains w.

Remark 3.4. Using B = NT , we have B(k)wB(k) = N(k)wB(k) = B(k)wN(k) and similarly
BwB = NwB = BwN .

Taking quotient for the right B-action, we also have:

Theorem-Definition 3.5 (Bruhat decomposition for FlG). For any w ∈W , there is a unique
smooth locally closed subscheme of FlG, denoted by Fl=wG , such that Fl=wG = BwB/B. We have a
disjoint union decomposition of underlying topological spaces:

FlG = ⊔
w∈W

Fl=wG .

Each subscheme Fl=wG is stablized by the B-action on FlG and is equal to the B-orbit/N -orbit
that contains wB/B. The subschemes Fl=wG are called the Bruhat cells of the flag variety FlG.

Example 3.6. For G = SL2 and the isomorphism FlG ≃ P1 in Example 1.3. We hvae Fl=1G ≃ {∞}
and Fl=sG ≃ A1.
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The following lemma is easy on the level of k-points. A careful argument shows it is also
true on the level of schemes.

Lemma 3.7. We have Fl=wG ≃ N/(Adw(N) ∩N) ≃ Adw(N) ∩N−.

Remark 3.8. When char(k) = 0, for any unipotent algebraic group U , there is a well-defined
isomorphism between k-schemes exp ∶ Lie(U) → U , where Lie(U) means the affine space scheme
corresponding to the same-named vector space (see [M, Section 14.d]). It follows that Fl=wG is
isomorphic to an affine space. This explains the word “cell”.

Exercise 3.9. This is Homework 6, Problem 1. Prove: dim(Fl=wG ) ≃ `(w)8.

Definition 3.10. The (reduced) closures Fl=wG of Fl=wG inside FlG are called the Schubert
varieties for G.

Remark 3.11. Fortunately, the Schubert varieties are in general singular.

Theorem 3.12. We have a disjoint union decomposition of underlying topological spaces

Fl=wG = ⊔
w′≤w

Fl=w
′

G .

Notation 3.13. Because of the above theorem, we also write Fl≤wG ∶= Fl=wG .

4. Statement of localization theorem

In this section, we state the main theorems of this course. Next time, we prove them.
Consider the G-action on the flag variety FlG. As in [Lecture 10, Construction 8.1], we have

a homomorphism

(4.1) a ∶ U(g) → D(FlG)
induced from the Lie algebra homomorphism g→ T (FlG).
Construction 4.1. We have adjoint functors

(4.2) Loc ∶ U(g)−modÐÐ→←ÐÐ DFlG−modlqc ∶ Γ
constructed as follows:

● Loc(M) ∶= DFlG ⊗U(g)M , where M denotes the sheaf on FlG with constant values M .

● Γ(F) is the space of global section of F , equipped with the U(g)-module structure ob-
tained by restricting along (4.1).

Remark 4.2. The above adjoint pair can not be equivalences because the homomorphism (4.1)
is not an isormophism. Below is an imprecise but motivating explanation. The ring U(g) has
the same size as Sym(g), which is a commutative algebra of dimension dim(g). On the other
hand, the ring D(FlG) has the same size as SymO(FlG)(T (FlG)) (lying!), which is a commutative

algebra of dimension 2 dimFlG = dim(g) − dim(t).
However, the differences are eliminated once we kill the kernel of the character of Z(g).

Recall the latter is a commutative algebra of dimension dim(t).
Construction 4.3. Let χ0 be the central character of the trivial g-module and write U(g)χ0 ∶=
U(g)⊗Z(g)kχ0 . In other words, U(g)χ0 is the quotient of U(g) by its double-sided ideal generated
by ker(χ0). Note that

U(g)χ0−mod ⊂ U(g)−mod

8If you do not know the basics about reductive groups, prove this for semisimple G.
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is the full subcategory of U(g)-modules such that Z(g) acts via the character χ0. Recall for any
w ∈W we have

Mw●(−2ρ), M
∨
w●(−2ρ), Lw●(−2ρ) ∈ U(g)χ0−mod.

Construction 4.4. For any w ∈ W , let iw ∶ Fl=wG → FlG be the locally closed embedding.
Consider the left DFlG-modules:

∆w ∶= iw,!(OFl=wG
),

∇w ∶= iw,∗,dR(OFl=wG
),

ICw ∶= Im(∆w → ∇w).

Remark 4.5. Let us clarify the definitions of these objects in this remark.
We first translate OFl=wG

to the right D-module

ωFl=wG
∈ DFl=wG

−modrqc,

then apply the functors iw,! and iw,∗,dR defined in Lecture 11 to obtain complices of right D-
modules on FlG. However, by Kashiwara’s lemma, iw,∗,dR(ωFl=wG

) is a genuine right D-module,
i.e., is contained in the abelian category. Moreover, it is holonomic by [Lecture 11, Fact 10.5].
Hence by [Lecture 11, Fact 10.1 and Example 9.3],

iw,!(ωFl=wG
) ≃ D ○ iw,∗,dR ○D(ωFl=wG

) ≃ D(iw,∗,dR(ωFl=wG
))

is also a holonomic right D-module. Now ∆w and ∇w are defined to be the holonomic left
D-modules corresponding to them.

As for ICw, by the base-change isomorphism ([Lecture 11, Fact 8.1]), we have an equivalence
Id ≃ i!w ○ iw,∗,dR. Via adjunction, it induces a natural transformation iw,! → iw,∗,dR, which then
induces a morphism ∆w → ∇w.

Remark 4.6. The symbol IC stands for intersection cohomology because ICw corresponds to the
intersection cohomology sheaf on the Schubert variety Fl≤wG via the Riemann–Hilbert correspon-
dence.

Theorem 4.7 (Localization theorem). We have

(1) The homomorphism (4.1) induces an isomorphism

U(g)χ0 ≃ D(FlG).

(2) The isomorphism in (1) induces functors inverse to each other:

Loc ∶ U(g)χ0−modÐÐ→←ÐÐ DFlG−modlqc ∶ Γ.

(3) Via the equivalences in (2), we have

Mw●(−2ρ) ←→∆w, M
∨
w●(−2ρ) ←→ ∇w, Lw●(−2ρ) ←→ ICw.

Remark 4.8. The adjoint functors in (2) are compatible with (4.2) in the obvious way.

Exercise 4.9. This is Homework 6, Problem 2. Deduce the BGG theorem from the localization
theorem9.

Exercise 4.10. This is Homework 6, Problem 3. Prove the isomorphism in (1) for the special
case G = SL2.

9HintL prove any subquotient of ∆w is set-theoretically support on the Schubert variety Fl≤wG .
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5. Strongly equivariant D-modules
Note that the block Oχ0 is not contained in U(g)χ0−mod because each module in Oχ0

is annihilated by ker(χ0)N , N >> 0 rather than just by ker(χ0). In this section, we give a
description of the category

O′
χ0
∶= Oχ0 ∩U(g)χ0−mod

via localization theory.

Definition 5.1. Let Y be a smooth k-scheme acted by an algebraic group K. We say a left
D-module F ∈ OY −modlqc is equipped with a weakly K-equivariant structure if

(i) It is equipped with a K-equivariant structure as a quasi-coherent OY -module;
(ii) The action morphism DY ⊗OY

F → F is compatible with the K-equivariant structures.

We say F ∈ OY −modlqc is equipped with a strongly K-equivariant structure if we further
have:

(iii) The k-module structure on F obtained in Construction 2.8 is the same as the k-module
structure obtained by restricting along the map U(k) → DY .

We also translate the above definitions to right D-modules.

Example 5.2. The structure sheaf OY , viewed as a left D-module, has an obvious weakly
K-equivariant structure, and this structure is strong.

Remark 5.3. Being weakly equivariant is a structure rather than a property. However, one can
show being strongly equivariant is actually a property when K is connected.

One the other hand, in the derived category of D-modules, being strongly equivariant is also
a structure rather than a property. Note that strongly equivariant complices of D-modules are
not the same as complices of strongly equivariant D-modules.

I do not recommend to learn the traditional proof of the following result. Modern techniques
about D-modules would provide a more illuminating proof.

Proposition 5.4. If the quotient Y /K exists (which is automatically smooth), then the functor
π∗ induces an equivalence

π∗ ∶ DY /K−modqc → DY −modK−strong
qc .

Example 5.5. The “six functors” introduced last time can be updated to functors between
strongly K-equivariant D-modules, at least after taking cohomologies.

Theorem 5.6 (Localization thoerem, continued). We have

(4) The equivalences in Theorem 4.7 restricts to equivalences

Loc ∶ O′
χ0
ÐÐ→←ÐÐ DFlG−modl,B−strongc ∶ Γ.

Remark 5.7. Note that on the geometric side, we use coherent D-modules. This is because

objects in O′
χ0

are finitely generated. Equivalently, we can use DFlG−modl,B−stronghol becuse any
strongly B-equivariant coherent D-module on FlG is holonomic. This is essentially because
there are finitely many B-orbits on FlG.

Warning 5.8. Although the B-orbits and N -orbits on FlG are the same, we must use strongly
equivariant condition for B rather than for N . Otherwise the global section would not be weight
modules. Namely, being strongly K-equivariant implies the g-module structure on the global
section is K-integrable, and any object in O is required to be B-integrable (rather than just
N -integrable).
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Remark 5.9. If we want an equivalence about the actual block Oχ0 , we need:

● Replace FlG by the basic affine space10 G/U ;
● Impose weakly equivariant structure with respect to the right T -action on G/U ;
● Restrict to the full subcategory generated by subquotients and extensions of strongly
T -equivariant objects. These objects are called (T,0)-monodromic objects.

This is beyond the scope of our course.

6. Twisted D-modules
In this section, we sketch the story for other blocks O$(λ).
For any weight λ, there is a variant DλFlG of DFlG , called the sheaf of λ-twisted differential

operators. Recall DFlG is the universal enveloping algebra of the split Picard algebroid T̃FlG ∶=
OFlG ⊕ TFlG (see [Lecture 10, Remark 5.4]). For any λ, one can construct a Picard algebroid

T̃ λFlG , and DλFlG is defined to be its universal enveloping algebra11. When λ is integral, DλFlG
is just the sheaf of differential operators on the line bundle Lλ. For more details, see [BB]
and [G, Section 9]. Now:

● For any λ and χ ∶=$(λ), we have U(g)χ ≃ Dλ(FlG).
● When λ is dot-dominant, the functor Γ is exact.
● When λ is dominant, the functor Γ is an equivalence. Also, Verma, dual Verma and

irreducible modules correspond respectively to !/∗/IC objects.

References

[BB] Beilinson, Alexander, and Joseph Bernstein. ”A proof of Jantzen conjectures.” ADVSOV (1993): 1-50.

[G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people.
mpim-bonn.mpg.de/gaitsgde/267y/catO.pdf.

[J] Jantzen, Jens Carsten. Representations of algebraic groups. Vol. 107. American Mathematical Soc., 2003.
[M] Milne, James S. Algebraic groups: the theory of group schemes of finite type over a field. Vol. 170.

Cambridge University Press, 2017.

10This is a bad name: it is not affine!
11In particular, we have a PBW filtration such that gr●DλFlG ≃ Sym●OFlG

TFlG . Moreover, F≤1DλFlG ≃ T̃ λFlG

https://people.mpim-bonn.mpg.de/gaitsgde/267y/catO.pdf
https://people.mpim-bonn.mpg.de/gaitsgde/267y/catO.pdf

	1. Flag variety
	2. Line bundles on flag variety
	3. Bruhat decomposition
	4. Statement of localization theorem
	5. Strongly equivariant D-modules
	6. Twisted D-modules
	References

