
LECTURE 13

In this lecture, we prove the first part of the localization theorem. Throughout this lecture,
we write X ∶= FlG.

1. Fibers of the localization functor

In this section, we prove the following result.

Proposition 1.1. For M ∈ U(g)−mod and any closed point x ∈X, we have

Loc(M)∣x ≃Mstabg(x),

where stabg(x) is the stabilizer of g at x, i.e., stabg(x) ∶= ker(g→ T (X)→ TX,x).

Remark 1.2. It is easy to see stabg(x) is the Borel subalgebra of g corresponding to the closed
point x ∈X (see [Lecture 12, Construction 1.7]).

Proof. By definition,

Loc(M)∣x ≃ Γ(X,kx ⊗
OX

DX ⊗
U(g)

M) ≃ Γ(X,δx ⊗
U(g)

M) ≃ Γ(X,δx) ⊗
U(g)

M,

where δx is the Delta right D-module in [Lecture 11, Exercise 6.8]. By loc.cit., δx has a unique
global section Diracx ∈ Γ(X,δx) such that Diracx ⋅ f = f(x)Diracx for any local section f of
OX . It follows for any vector field ∂ with ∂∣x = 0, we have Diracx ⋅ ∂ = 0 because locally we
can write ∂ = ∑ fk∂k with fk(x) = 0. In particular, the right U(g)-action on Diracx annihilates
stabg(x) ⊂ g ⊂ U(g). In other words, we have a right U(g)-linear map

k ⊗
U(stabg(x))

U(g)→ Γ(X,δx), 1⊗ u↦ Diracx ⋅ u.

It is easy to see both sides have natural filtrations induced respectively by the PBW filtrations
on U(g) and DX , and the above map is compatible with the filtrations. Taking associated
graded spaces, we only need to show the following obtained map is an isomorphism

Sym●(g/stabg(x))→ Sym●(TX,x).
Unwinding the definitions, this map is induced by the isomorphism g/stabg(x) ≃ TX,x.

�

Remark 1.3. As can be seen from the proof, Proposition 1.1 remains true if X is replaced by
any homogenous space under G.

Remark 1.4. As can be seen from the proof, Proposition 1.1 remains true for derived categories
and derived functors. In other words, the derived fiber of Loc(M) at x can be identified with
the derived coinvariance of M for stabg(x).

Let e ∈ X ≃ G/B be the closed point corresponding to the chosen Borel subgroup B. In the
above proof, we have shown

Γ(X,δe) ≃ k ⊗
U(b)

U(g)
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2 LECTURE 13

as right U(g)-modules. Note that the RHS is the “right Verma module” with highest weight
0. As stated in the localization theorem, we can produce the (left) Verma module M−2ρ with
highest weight −2ρ if using the left D-module corresponding to δe. The following exercise gives
a direct proof to this fact.

Exercise 1.5. This is Homework 6, Problem 4. In above, let δle ≃ δe ⊗ω−1X be the left D-module
corresponding to δe. Consider the left U(g)-module V ∶= Γ(X,δle).

(1) Prove: there is a canonical isomorphism

δle ≃ DX ⊗
OX

`,

where ` is the fiber of ω−1X at e, viewed as a skyscrapter sheaf.
(2) Let `↪ V be the injection induced by taking global sections for the embedding OX⊗OX

`↪ DX ⊗OX
`. Prove: this line in V is a weight subspace of weight −2ρ1.

(3) Prove: the subalgebra b ⊂ g stabilizes the line ` ⊂ V 2.
(4) Construct a U(g)-linear map

M−2ρ → V

and prove it is an isomorphism.

2. The ring D(X)
Proposition 2.1. The homomorphism a ∶ U(g)→ D(X) factors through U(g)χ0 .

Proof. We only need to show a(z) = 0 for any z ∈ ker(χ0) ⊂ Z(g). We only need to show for
any closed point x ∈X, the composition

ker(χ0)→ D(X)→ Γ(X,kx ⊗
OX

DX)

is zero. By the proof of Proposition 1.1, this map can be identified with

ker(χ0)→ k ⊗
U(bx)

U(g),

where bx = stabg(x) is the Borel subalgebra corresponding to x. Note that the ideal ker(χ0) ⊂
Z(g) does not depond on the choice of any Borel subalgebra: it is the character for the trivial
representation. Hence we only need to show ker(χ0)→ k⊗U(b−) U(g) is the zero map. But this
follows from the Harish-Chandra embedding

Z(g)→ U(g)→ k ⊗
U(n−)

U(g) ⊗
U(n)

k ≃ U(t).

�

Remark 2.2. Alternatively, we can use left D-modules and reduce to show

ker(χ0)→ D(X)→ Γ(X,DX ⊗
OX

ke)

is zero. By Exercise 1.5, the RHS is non-canonically isomorphic to M−2ρ
3 and the above map

can be identified with the action map on a highest weight vector. Then the claim follows from
$(−2ρ) = χ0.

1Hint: ` ≃ ∧dTX,e and TX,e ≃ n−.
2Hint: consider the PBW filtration of DX and the induced filtration on V . Show that b ⊗ ` → V factors

through F≤1V and the composition b⊗ `→ F≤1V → gr1V is zero.
3Such an isomorphism depends on a trivialization of the line `, i.e., a choice of vector in it.
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To prove the obtained homomorphism

U(g)χ0 → D(X)
is an isomorphism, we consider filtrations on both sides.

Construction 2.3. The PBW filtration on U(g) induces a filtration on U(g)χ0 . The surjection
U(g) → U(g)χ0 induces a surjection Sym●(g) → gr●(U(g)χ0) which sends ker(gr●(Z(g)) → k)
to 0. Recall gr●(Z(g)) ≃ Sym●(g)g ([Lecture 5, Lemma 3.2]). Hence we obtain a surjection

O(g∗ ×
g∗//G

0) ≃ Sym●(g) ⊗
Sym●

(g)g
k↠ gr●(U(g)χ0).

Note that a priori we do not know this is an isomorphism.

Construction 2.4. On the other hand, the short exact sequences 0 → F≤k−1DX → F≤kDX →
Symk

OX
TX → 0 induce

0→ Γ(X,F≤k−1DX)→ Γ(X,F≤kDX)→ Γ(X,Symk
OX
TX)

and therefore an injection

gr●D(X)↪ Γ(X,Sym●

OX
TX) ≃ O(T ∗X),

where T ∗X ≃ SpecX(Sym●

OX
TX) is the cotangent bundle on X. Note that a priori we do not

know this is an isomorphism.

Combining the above constructions, we obtain homomorphisms

O(g∗ ×
g∗//G

0)↠ gr●(U(g)χ0)→ gr●D(X)↪ O(T ∗X).

We only need to show this composition is an isomorphism. This composition corresponds to a
map

(2.1) T ∗X → g∗ ×
g∗//G

0

which will be studied in the next section.

Remark 2.5. The map T ∗X → g∗, which is the (algebro-geometric) dual of g→ T (X) is called
the moment map.

3. Nilpotent cone and the Springer resolution

In this and the next sections, we study the map (2.1). I recommend [CG, Section 3] for these
contents.

Recall we have an identification g ≃ g∗ provided by the Killing form. Also recall g∗//G ≃
g//G ≃ t//W are isomorphic to an affine space of dimension equal to dim(t) (see [Lecture 6]).

We first describe the target of (2.1).

Definition 3.1. Define N to be the fiber product

N //

��

g

��
0 // g//G,

and call it the nilpotent cone of g.

Remark 3.2. By Kostant’s theorem ([Lecture 6, Corollary 1.15]), the projection map g→ g//G
is flat. Recall regular immersions are closed under flat base-changes. Hence N → g is a regular
immersion. In particular, N is Cohen–Macaulay.
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Remark 3.3. We have dim(N ) = dim(g) − dim(t).
Warning 3.4. The nilpotent cone N is always singular.

The name “nilpotent cone” is justified by the following result:

Proposition 3.5. A closed point of g is contained in N iff it is an nilpotent element.

Proof. Recall for any Borel pair (b, t), we have a commutative diagram (see [Lecture 5, (4.2)])

b //

��

g//G

t // t//W.

≃

OO

Also, W acts transitively on the fibers of the map t → t//W at the closed points ([Lecture 6,
Proposition 1.1]). It follows that a closed point v ∈ b is sent to 0 ∈ g//G iff it is sent to 0 ∈ t.
The latter condition is equivalent to v being nilpotent. Now the claim follows from the fact
that any element of g is contained in some Borel subalgebra.

�

Remark 3.6. We will see N is reduced (and even normal) and therefore it can be characterized
by the above proposition.

Now we describe the source of (2.1). Note that T ∗X is smooth because X is so.

Proposition 3.7. Consider the obvious projection T ∗X →X and the moment map T ∗X → g∗.
The obtained map

(3.1) T ∗X →X × g∗

is a closed embedding. Moreover, via the identification g ≃ g∗, a closed points (x, v) ∈ X × g is
contained in T ∗X iff v ∈ nx ∶= [bx,bx], where bx is the Borel subalgebra corresponding to x.

Proof. Let x ∈ X be a closed point. We have a “realizing” map X ≃ G/Bx, x ↦ Bx/Bx. It
follows that TX,x ≃ g/bx and therefore T ∗X,x ≃ (g/bx)∗. By definition, the fiber of (3.1) at x ∈X
is the obvious map (g/bx)∗ → g∗ which is a closed embedding.

In general, a linear map between two vector bundles on X is a closed embedding iff its fiber
at any closed point x ∈X is a closed embedding. Therefore (3.1) is a closed embedding.

Now the second claim follows from the isomorphism (g/bx)∗ ≃ nx.
�

Remark 3.8. One can find local trivialization of the vector bundle T ∗X → FlG as follows. Let
x− ∈ X be any closed point and consider the big Bruhat cell of X with respect to the Borel
subgroup Bx− , i.e., the unique open Bx− -orbit in X. Denote this orbit by Ux− . It follows that
the commposition

T ∗X →X × g∗ →X × n∗x−

is an isomorphism when restricted to Ux− ⊂ X. Indeed, for any x ∈ Ux− , Bx and Bx− are in
generic position and therefore nx− → g→ g/bx is an isomorphism.

Also note that for any chosen x ∈ Ux− , we have n∗x− ≃ (g/bx)∗ ≃ nx, where the last isomorphism
uses the Killing form. Hence we can also trivialize T ∗X ∣Ux−

as X × nx after choosing a point
x ∈ Ux− .
Definition 3.9. We write Ñ ∶= T ∗X can call the map (2.1)

p ∶ Ñ → N .
the Springer resolution of the nilpotent cone.
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Lemma 3.10. The map p ∶ Ñ → N is proper and surjective.

Proof. We have a commutative diagram

Ñ //

��

X × g

��
N // g.

The top horizontal map is proper because it is a closed embedding. The right vertical map
is proper because X is complete. Hence the composition Ñ → g is proper. Since N → g is
separated, the map Ñ → N is also proper.

It remains to show p is surjective on closed points. This follows from the fact that any
(nilpotent) element in g is contained in some Borel subalgebras.

�

Corollary 3.11. The scheme N is irreducible.

We will see p ∶ Ñ → N is a resolution of singularities. For example, in the case of SL2, we
have:

Exercise 3.12. This is Homework 6, Problem 5. For G = SL2, prove p ∶ Ñ → N is the blow-up
of N at the point 0 ∈ N .

Remark 3.13. The Springer resolution plays a central role in geometric representation theory.

4. Kostant’s theorem

Our goal is to prove the following result.

Theorem 4.1 (Kostant). The map Ñ → N induces an isomorphism O(N ) ∼Ð→ O(Ñ ).

Remark 4.2. In fact, one can show the derived direct image functor p∗ ∶ D(O
Ñ
−modqc) →

D(ON−modqc) sends O
Ñ

to ON . The proof of this stronger result is an elaboration of the
proof of Theorem 4.1 displayed below, with the help of the (derived non-flat) base-change
isomorphisms. See [G, Section 7] for more details.

Note that the above theorem implies the first part of the localization theorem.

Corollary 4.3. The homomorphism U(g)χ0
→ D(X) is an isomorphism.

Proof. By the discussion in previous sections, we only need to show O(N ) → O(Ñ ) is an
isomorphism, which is Kostant’s theorem.

�
To prove Kostant’s theorem, we need more geometric inputs.

Proposition-Definition 4.4. There is a unique reduced closed subscheme g̃ of X×g, called the
Grothendieck’s alteration, whose closed points are those (x, v) satisfying v ∈ bx. Moreover,
g̃ is smooth.

Sketch. It is easy to show v ∈ bx is a closed condition and therefore defines a reduced closed
subscheme g̃. Also, as in Remark 3.8, the composition

g̃→X × g→X × g/nx−
is an isomorphism when restricted to the open Bruhat cell Ux− ⊂X. This implies g̃ is smooth.

�
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Lemma 4.5. There exists a Cartesian square

Ñ //

��

g̃

��
0 // t,

where t is the abstract Cartan Lie algebra (see Appendix A). Moreover, the vertical maps are
smooth.

Sketch. We have an obvious injective map Ñ → g̃ between vector bundles on X. By Remark
3.8 and the proof of Proposition-Definition 4.4, this map can be identified with X ×nx →X ×bx
when restricted to the open Bruhat cell Ux− ⊂ X with a chosen point x ∈ Ux− . Hence the
quotient bundle can be identified with X × tx ≃ X × t over Ux− , where we used the realizing
isomorphism t→ tx.

One can show these identifications do not depend on x, and can be glued into a short exact
sequence of vector bundles over X:

0→ Ñ → g̃→X × t→ 0,

which makes the desired claim manifest.
�

Notation 4.6. Let grss ⊂ greg ⊂ g be the open subschemes whose closed points are regular
semisimple (resp. regular4) elements in g. Let g̃rss ⊂ g̃reg ⊂ g̃ be their preimages.

Let Nreg ∶= greg ∩ N be the open subscheme of N . Its closed points are regular nilpotent
elements.

Let treg ⊂ t be the open subscheme whose closed points are regular elements5.

We have the following basic results. See e.g. [CG, Section 3.1] for a proof.

Proposition 4.7. Consider the map g→ g//G→ t//W given by the abstract Chevalley isomor-
phism (see Appendix A). We have:

(1) The following diagram commutes:

g̃ //

��

t

��
g // t//W

(2) When restricted to the regular locus g̃reg, the above diagram is Cartesian. In other
words, the following diagram is Cartesian:

g̃reg //

��

t

��
greg // t//W.

4Recall an element v ∈ g is regular if its centralizer is of minimal dimension, which is dim(t).
5This means the realizations in any/all Cartan subalgebras are regular. Equivalently, this means W acts

freely at these points.
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(3) When restricted to the regular semisimple locus g̃rss, the following diagram is Cartesian,
and the Vertical maps are finite étale covers with Galois group W:

g̃rss //

��

treg

��
grss // treg/W.

Warning 4.8. The map g̃ → t does not send regular elements to regular elements. Indeed, it
sends Nreg to 0.

Proposition 4.9. The scheme N is normal.

Sketch. We have seen N is Cohen–Macaulay (Remark 3.2). Hence by Serre’s criterion, we only
need to show N is regular in codimension 1.

By Lemma 4.5, the map g̃ → t is smooth, hence so is g̃reg → t. Recall t → t//W is faithfully
flat ([Lecture 6, Proposition 1.1 and Corollary 1.5]). Hence by Proposition 4.7(2), the map
greg → t//W is smooth (by flat descent of smooth maps). By definition, we have a Cartesian
diagram

Nreg
//

��

greg

��
0 // g//G ≃ t//W.

Hence Nreg is smooth.
It remains to show the closed subset N − Nreg of N is of codimension ≥ 2. Since N is

irreducible (Corollary 3.11), N −Nreg is of codimension ≥ 1. We need to use the following two
basic facts:

(i) The adjoint action of G on N has only finitely many orbits6 (see [CG, Proposition
3.2.9]);

(ii) Each G-orbit on g has a symplectic structure (see [CG, Proposition 1.1.5]).

By (ii), each G-orbit has an even dimension. Hence each G-orbit in N −Nreg has even codi-
mension. By (i), N −Nreg has codimension ≥ 2 as desired.

�

Corollary 4.10. The map p ∶ Ñ → N is a resolution of singularities, i.e., it is birational proper
and surjective.

Proof. We have already proved p is proper and surjective (Lemma 3.10). It remains to show
p is birational. We claim its restriction on Nreg ⊂ N is an isomorphism. Since N is reduced,

we only need to show any closed point of Nreg has a unique preimage in Ñreg. Now the claim
follows from Proposition 4.7(2) because 0 ∈ t//W has a unique preimage in t.

�

Remark 4.11. In fact, p ∶ Ñ → N is a semismall resolution, i.e., dim(Ñ ×N Ñ ) = dim(N ). This

fact is crucial in the Springer theory. The fiber product Ñ ×N Ñ is known as the Steinberg va-
riety, which also plays a central role in geometric representation theory. For more information,
see [CG].

6This can be viewed as a generalization of the theory of Jordan blocks.
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Proof of Theorem 4.1. Follows by applying Zariski’s main theorem to the projection p ∶ Ñ → N .
Direct proof: p∗OÑ is coherent because p is proper. It is generically of rank 1 because p is
birational. Both the source and target of ON → p∗OÑ are sheaves of integral domains, hence
they have isomorphic sheaves of fractional fields. Then we win because ON is integrally closed.

�

Appendix A. Abstract Cartan group and abstract Weyl group

Construction A.1. Let Bx and By be two Borel subgroups of G. Let Tx ∶= Bx/[Bx,Bx] and
Ty ∶= By/[By,By] be their abelianizations. Recall there exists g ∈ G(k) such that Adg induces

an isomorphism Adg ∶ Bx
≃Ð→ By. Hence we obtain an isomorphism between the abelianizations

Adg ∶ Tx
≃Ð→ Ty. The isomorphism Adg does not depend on the choice of g because any other

choice g′ satisfies g′ ∈ gBx(k) and the adjoint action of Bx on Tx is trivial. For this reason, we
write the above isomorphism as

φx,y ∶ Tx
∼Ð→ Ty.

It is easy to check φx,x = Id and φy,z ○ φx,y = φx,z. Hence there exists an algebraic group T,
equipped with isomorphisms

rx ∶ T
∼Ð→ Tx,

such that ry = φx,y ○ rx. The data (T, rx) are unique up to an unique isomorphism7.
We call T the abstract Cartan group for G, and call rx the realizing isomorphisms.
Similarly, the Lie algebra of T is denoted by t and is called the abstract Cartan algebra

for g.

Warning A.2. The algebraic group T is not a subgroup of G, at least not in a canonical way.

Remark A.3. A Cartan subgroup T1 ↪ G of G does not give a realizing isomorphism T → T1,
at least not in a canonical way. Instead, if we further choose a Borel subgroup Bx that contains
T1, i.e., if we have a Borel pair (Bx, T1), then there is a realizing isomorphism T→ T1 defined
to be the composition

r(Bx,T1)
∶ T rxÐ→ Tx

∼←Ð T1,

where the second isomorphism is given by T1 ↪ Bx↠ Tx.

Warning A.4. One cannot define the abstract Borel group for G.

Construction A.5. Let (Bx, T1) and (By, T2) be two Borel pairs. Recall there is a unique

element g ∈ G(k) such that Adg ∶ Bx
∼Ð→ By and Adg ∶ T1

∼Ð→ T2. Hence we obtain an isomorphism

between the normalizers Adg ∶ NG(T1)
∼Ð→ NG(T2) and therefore an isomorphism between the

corresponding Weyl groups. We denote this isomorphism by

ϕ(Bx,T1),(By,T2)
∶WT1 →WT2 .

It is easy to check ϕ(Bx,T1),(Bx,T1)
= Id and ϕ(By,T2),(Bz,T3)

○ϕ(Bx,T1),(By,T2)
= ϕ(Bx,T1),(Bz,T3)

.
Hence there exists a group W equipped with isomorphisms

r(Bx,T1)
∶ W ∼Ð→WT1

such that r(By,T2)
= ϕ(Bx,T1),(By,T2)

○ r(Bx,T1)
. The data (W, r(Bx,T1)

) are unique up to an
unique isomorphism.

We call W the abstract Weyl group for G, and call r(Bx,T1)
the realizing isomorphisms.

Warning A.6. The isomorphism ϕ(Bx,T1),(By,T2)
depends on Bx and By.

7This means for (T, rx) and ((T)′, r′x), there is a unique isomorphism α ∶ T ∼Ð→ (T)′ such that rx = r′x ○ α.
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Warning A.7. The group W is not a subgroup of G, at least not in a canonical way.

Remark A.8. One can also define the abstract Weyl group by providing a group structure on
∣G/(X ×X)∣. This construction was introduced by Deligne–Lusztig when developing the theory
named by them.

Construction A.9. Let (Bx, T1) be any Borel pair. The action of WT1 on T1 defines an

action of W on T via the realizing isomorphisms r(Bx,T1)
∶ T ∼Ð→ T1 and r(Bx,T1)

∶ W ∼Ð→ WT1 .
Unwinding the definitions, one can show this action does not depend on the choice of the Borel
pair. Hence we obtain a canonical action of W on T, which is called the (abstract) action
of W on T.

Construction A.10. Recall for any Borel pair (B,T ), we have the Chevalley isomorphism

t//W ∼Ð→ g//G characterized by the following commutative diagram (see [Lecture 5, (4.2)])

b //

��

g//G

t // t//W.

≃

OO

Via the realizing isomorphism r(B,T ) ∶ t//W
∼Ð→ t//W , we obtain an isomorphism

t//W ∼Ð→ g//G
which can be shown to do not depend on the choice of the Borel pair. We call this isomorphism
the abstract Chevalley isomorphism.
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