LECTURE 2

1. Universal enveloping algebra

Construction 1.1. Recall we have a forgetful functor $oblv : Alg_k \rightarrow Lie_k$ from the category of associative algebras to that of Lie algebras. This functor admits a left adjoint

$$U: \operatorname{Lie}_k \to \operatorname{Alg}_k$$

that sends a Lie algebra \mathfrak{g} to the associative algebra

$$U(\mathfrak{g}) = T(\mathfrak{g})/\langle xy - yx - [x, y], x, y \in \mathfrak{g} \rangle.$$

Here

$$T(\mathfrak{g}) \coloneqq \bigoplus_{n \ge 0} \mathfrak{g}^{\otimes r}$$

is the tensor algebra of the underlying vector space of \mathfrak{g} , and $\langle xy - yx - [x, y], x, y \in \mathfrak{g} \rangle$ is the two-sided ideal generated by elements of the form xy - yx - [x, y].

The associative algebra $U(\mathfrak{g})$ is called the **universal enveloping algebra** of \mathfrak{g} .

Let $U(\mathfrak{g})$ -mod be the abelian category of left modules for $U(\mathfrak{g})$.

Lemma 1.2. There is an equivalence

 $\mathfrak{g}-\mathsf{mod} \simeq U(\mathfrak{g})-\mathsf{mod}$

that commutes with forgetful functors to $Vect_k$.

Proof. For a given vector space V, a \mathfrak{g} -module structure on V is a Lie algebra homomorphism $\mathfrak{g} \to \mathsf{oblv}(\mathfrak{gl}(V))$. By adjunction, this is the same as a homomorphism $U(\mathfrak{g}) \to \mathfrak{gl}(V)$, i.e., a left $U(\mathfrak{g})$ -module structure on V.

Construction 1.3. The tensor algebra $T(\mathfrak{g})$ is naturally graded. But this grading does not descent to $U(\mathfrak{g})$ because xy - yx - [x, y] is not a homogenous element. Instead, $U(\mathfrak{g})$ has an exhausted filtration

$$\mathsf{F}^{\leq n}U(\mathfrak{g}) \coloneqq \mathsf{im}(\mathsf{F}^{\leq n}T(\mathfrak{g}) \to U(\mathfrak{g}))$$

that is compatible with the algebra structure, i.e.,

$$\mathsf{F}^{\leq m}U(\mathfrak{g}) \underset{k}{\otimes} \mathsf{F}^{\leq n}U(\mathfrak{g}) \xrightarrow{\mathsf{mult}} \mathsf{F}^{\leq m+n}U(\mathfrak{g}).$$

Taking associated graded pieces, we obtain a graded algebra

$$\operatorname{gr}^{\bullet} U(\mathfrak{g}) \coloneqq \bigoplus_{n \ge 0} \operatorname{F}^{\le n} U(\mathfrak{g}) / \operatorname{F}^{< n} U(\mathfrak{g}).$$

By the universal property of the tensor algebra, we have a unique homomorphism $T(\mathfrak{g}) \rightarrow \mathfrak{gr}^{\bullet}U(\mathfrak{g})$ whose restriction on $\mathfrak{g} \subset T(\mathfrak{g})$ is the composition $\mathfrak{g} \rightarrow \mathsf{F}^{\leq 1}U(\mathfrak{g}) \rightarrow \mathfrak{gr}^{1}U(\mathfrak{g}) \subset \mathfrak{gr}^{\bullet}U(\mathfrak{g})$. Denote this composition by $x \mapsto \bar{x}$. Note that we have $\bar{x}\bar{y} = \bar{y}\bar{x}$ as elements in $\mathfrak{gr}^{2}U(\mathfrak{g})$ because the

Date: Mar 4, 2024.

term [x, y] is killed by the surjection $\mathsf{F}^{\leq 2}U(\mathfrak{g}) \to \mathsf{gr}^{2}U(\mathfrak{g})$. It follows that we have a commutative diagram of surjective maps:

where $\text{Sym}(\mathfrak{g}) \coloneqq T(\mathfrak{g})/\langle xy - yx \rangle$ is the symmetric algebra of \mathfrak{g} . In particular, $\text{gr}^{\bullet}U(\mathfrak{g})$ is a commutative algebra.

Remark 1.4. Note that $\operatorname{gr}^{\bullet} U(\mathfrak{g})$ being commutative is equivalent to $[\mathsf{F}^{i}U(\mathfrak{g}), \mathsf{F}^{j}U(\mathfrak{g})] \subset \mathsf{F}^{i+j-1}U(\mathfrak{g})$, where we write $\mathsf{F}^{-n}U(\mathfrak{g}) = 0$ for n > 0.

Theorem 1.5 (Poincaré–Birkhoff–Witt, a.k.a. PBW). For any Lie algebra \mathfrak{g} , the above homomorphism $\phi: \operatorname{Sym}(\mathfrak{g}) \to \operatorname{gr}^{\bullet} U(\mathfrak{g})$ is an isomorphism.

Corollary 1.6. Let $\{x_i\}_{i\in I}$ be a basis of \mathfrak{g} as a vector space. Choose a total order on the set I. Then the set $\{x_{i_1}^{m_1}x_{i_2}^{m_2}\cdots x_{i_n}^{m_n} | n \ge 0, i_1 < i_2 < \cdots < i_n, m_1, m_2, \ldots, m_n \in \mathbb{Z}^{>0}\}$ is a basis of the vector space $U(\mathfrak{g})$.

Corollary 1.7. If \mathfrak{g} is a finite-dimensional algebra, then $U(\mathfrak{g})$ is left and right Noetherian.

Proof. A filtered ring A is left (resp. right) Noetherian if its associated graded ring $gr^{\bullet}A$ is so. See [MR, Chapter 1, Theorem 6.9]¹.

2. Verma modules

From now on, we fix a finite-dimensional semisimple Lie algebra \mathfrak{g} and choose $\mathfrak{t} \subset \mathfrak{b} \subset \mathfrak{g}$, i.e., a Cartain subalgebra and a Borel subalgebra of it. Recall we have $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{t} \oplus \mathfrak{n}, \ \mathfrak{b} = \mathfrak{t} \oplus \mathfrak{n}, \ \mathfrak{t} \simeq \mathfrak{b}/\mathfrak{n}$ and $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]^2$.

Construction 2.1. The projection $\mathfrak{b} \to \mathfrak{t}$ induces a restriction functor $\mathfrak{t}-\mathsf{mod} \to \mathfrak{b}-\mathsf{mod}$. Note that we have

(2.1)
$$\mathfrak{t}-\mathsf{mod} \simeq U(\mathfrak{t})-\mathsf{mod} \simeq \mathsf{Sym}(\mathfrak{t})-\mathsf{mod} \simeq \mathsf{QCoh}(\mathfrak{t}^*)$$

Hence for any $\lambda \in \mathfrak{t}^*$, the skyscrapter sheaf at λ gives a 1-dimensional representation

$$k_{\lambda} \in \mathfrak{t}-\mathsf{mod}.$$

In other words, for $x \in \mathfrak{t}$, its action on k_{λ} is given by the scaler $\lambda(x)$. We abuse notation and write k_{λ} for the corresponding object in \mathfrak{b} -mod.

Remark 2.2. Note that any 1-dimensional \mathfrak{b} -module V is of the form k_{λ} . Indeed, the Lie homomorphism $\mathfrak{b} \to \mathfrak{gl}(V)$ must kill $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$ because $\mathfrak{gl}(V)$ is abelian.

Definition 2.3. Consider the restriction functor \mathfrak{g} -mod $\rightarrow \mathfrak{b}$ -mod and its left adjoint

ind $\mathfrak{g}_{\mathfrak{h}}:\mathfrak{b}-\mathrm{mod}\to\mathfrak{g}-\mathrm{mod}.$

For any weight $\lambda \in \mathfrak{t}^*$, we define the **Verma module** to be

 $M_{\lambda} \coloneqq \operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}(k_{\lambda}) \in \mathfrak{g}-\operatorname{mod}.$

¹Sketch: a left ideal $I \subset A$ defines a left ideal $gr^{\bullet}I \subset gr^{\bullet}A$ with $gr^{n}I = ((I + F^{n-1}A) \cap F^{n}A)/F^{n-1}A$. This assignment is injective.

²We didn't mention the last one in the last lecture, but it follows easily from the root decomposition.

Remark 2.4. Explicitly, we have

$$M_{\lambda} \simeq U(\mathfrak{g}) \underset{U(\mathfrak{b})}{\otimes} k_{\lambda}.$$

In particular, M_{λ} is infinite-dimensional.

Definition 2.5. By adjunction, there is a b-linear map $k_{\lambda} \to M_{\lambda}$ corresponding to the identity morphism $M_{\lambda} \to M_{\lambda}$ in \mathfrak{g} -mod. After fixing a nonzero vector 1_{λ} of k_{λ} , we obtain a vector $v_{\lambda} \in M_{\lambda}$. We call it a **highest weight vector** of M_{λ} .

The meaning of this name will be explained shortly. Note that by definition, $\mathbf{n} \cdot v_{\lambda} = 0$ and v_{λ} is a λ -eigenvector for the t-action.

Exercise 2.6. This is Homework 1, Problem 1. Prove:

(1) The map

$$U(\mathfrak{n}^{-}) \underset{k}{\otimes} U(\mathfrak{b}) \xrightarrow{\mathsf{mult}} U(\mathfrak{g})$$

is an isomorphism between $(U(\mathfrak{n}^{-}), U(\mathfrak{b}))$ -bimodules.

(2) As an \mathfrak{n} -module, M_{λ} is freely generated by v_{λ} , i.e.,

$$U(\mathfrak{n}^-) \to M_\lambda, \ x \mapsto x \cdot v_\lambda$$

is an isomorphism.

As a contrary, we have:

Lemma 2.7. The \mathfrak{n} -action on M_{λ} is locally finite.

Proof. By the above exercise, we have $M_{\lambda} = \bigcup_i \mathsf{F}^i U(\mathfrak{g}) \cdot v_{\lambda}$, where $F^{\bullet}U(\mathfrak{g})$ is the PBW filtration on $U(\mathfrak{g})$. Each $\mathsf{F}^i U(\mathfrak{g}) \cdot v_{\lambda}$ is finite dimensional. Hence we only need to show these subspaces are \mathfrak{n} -stable. For $u \in \mathsf{F}^i U(\mathfrak{g})$ and $x \in \mathfrak{n}$ we have

$$x \cdot (u \cdot v_{\lambda}) = u \cdot (x \cdot v_{\lambda}) + [x, u] \cdot v_{\lambda}.$$

By definition $x \cdot v_{\lambda} = 0$. Then we win because $[x, u] \in [\mathfrak{g}, \mathsf{F}^{i}U(\mathfrak{g})] \subset \mathsf{F}^{i-1}U(\mathfrak{g})$.

We are going to describe the t-action on M_{λ} . We need some definitions.

Definition 2.8. Let $V \in \mathfrak{t}$ -mod. We say V is a weight module if $V = \bigoplus_{\lambda \in \mathfrak{t}^*} V_{\lambda}$, where $V_{\lambda} \subset V$ is the λ -eigenspace. We say λ is a weight of V if $V_{\lambda} \neq 0$. Vectors in V_{λ} are called λ -weight vectors.

Remark 2.9. A t-module V is a weight module iff the action is locally finite and semisimple. This means for any $v \in V$, the subspace $\mathfrak{t} \cdot v$ is finite-dimensional and any $x \in \mathfrak{t}$ is sent to a diagonalizable endomorphism in $\mathfrak{gl}(\mathfrak{t} \cdot v)$.

Remark 2.10. A t-module is a weight module iff the corresponding quasi-coherent sheaf on t^* is a direct sum of 1-dimensional skyscrapters at closed points.

Example 2.11. By the root decomposition, \mathfrak{g} is a weight module when viewed as a \mathfrak{t} -module via the adjoint action. Nonzero weights are roots.

Example 2.12. The object $U(\mathfrak{t}) \in \mathfrak{t}$ -mod is not a weight module. Indeed, it corresponds to the structure sheaf of \mathfrak{t}^* .

Remark 2.13. Weight modules in t-mod are closed under taking subquotients (e.g. by Remark 2.10), but not closed under extensions.

Proposition 2.14. The Verma module M_{λ} is a weight module, and the weights are given exactly by

$$\lambda - \sum_{\alpha \in \Phi^+} n_\alpha \alpha, \ n_\alpha \in \mathbb{Z}^{\ge 0}.$$

Moreover, each weight space is finite-dimensional.

Proof. First, note that $v_{\lambda} \in M_{\lambda}$ is a λ -weight vector because it is the image of $1_{\lambda} \in k_{\lambda}$.

By the PBW theorem (Corollary 1.6), $U(\mathfrak{n}^-)$ has a basis consists of weight vectors whose weights are $-\sum_{\alpha \in \Phi^+} n_\alpha \alpha$, $n_\alpha \in \mathbb{Z}^{\geq 0}$. Also, each weight space is finite dimensional.

Let $x \in U(\mathfrak{n}^-)$ be such a weight vector and μ be its weight. By the following equation, $x \cdot v_{\lambda} \in M_{\lambda}$ is a $(\lambda + \mu)$ -weight vector:

$$t \cdot (x \cdot v_{\lambda}) = x \cdot (t \cdot v_{\lambda}) + [t, x] \cdot v_{\lambda}, \ t \in \mathfrak{t}.$$

Then we win by Exercise 2.6.

Definition 2.15. We define a partial order \leq on \mathfrak{t}^* such that $\mu_1 \leq \mu_2$ iff $\mu_2 - \mu_1 \in \mathbb{Z}^{\geq 0} \Phi^+$.

Note that under the above partial order, the weight of $v_{\lambda} \in M_{\lambda}$ is indeed the highest one.

Example 2.16. Consider the case $\mathfrak{g} = \mathfrak{sl}_2$ equipped with its standard Cartan and Borel subalgebras. A weight $\lambda \in \mathfrak{t}^*$ is the same as a scaler $l := \langle \lambda, \check{\alpha} \rangle$, where $\check{\alpha} := h := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{t}$ is the coroot.

Since $\langle \alpha, \check{\alpha} \rangle = 2$, the weights of the Verma module M_l are of the form l - 2n, $n \ge 0$. For each such l' := l - 2n, since \mathfrak{n}^- is 1-dimensional, the l'-weight space of M_l is also 1-dimensional. Namely, it is spaned by $f^n \cdot v_l \in M_l$, where $f := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ generates \mathfrak{n}^- .

Exercise 2.17. This is Homework 1, Problem 2³. In the case $\mathfrak{g} = \mathfrak{sl}_2$, show the Verma module M_l is irreducible unless $l \in \mathbb{Z}^{\geq 0}$. In the latter case, show there is a non-split short exact sequence

$$(2.2) 0 \to M_{-l-2} \to M_l \to L_l \to 0$$

such that L_l is a finite-dimensional irreducible \mathfrak{sl}_2 -module with highest weight l.

We return to the study of general semisimple Lie algebra \mathfrak{g} .

Theorem 2.18. The Verma module M_{λ} admits a unique irreducible quotient module L_{λ} , and the highest weight of L_{λ} is λ . In particular, L_{λ} and L'_{λ} are non-isomorphic for $\lambda \neq \lambda'$.

Proof. Any proper submodule $N \subset M_{\lambda}$ is a weight module whose weights do not contain λ . It follows that the union of all the proper submodules satisfies the same property. By construction, this is the maximal proper submodule of M_{λ} . Then L_{λ} is the corresponding quotient.

3. Category \mathcal{O}

Roughly speaking, the Bernstein–Gelfand–Gelfand (a.k.a. BGG) category \mathcal{O} is the full subcategory of \mathfrak{g} –mod consisting of objects similar to Verma modules. Let us first give the traditional definition:

Definition 3.1. We define the **category** \mathcal{O} to be the full subcategory of \mathfrak{g} -mod consisting of objects M satisfying the following properties:

(O1) M is finitely generated as a g-module;

³Warning: the solution in Gaitsgory's notes contains a critical typo and the last paragraph there should be justified. Also, don't forget to show L_l is irreducible.

- (O2) M is a weight module;
- (O3) The action of \mathfrak{n} on M is locally finite.

Example 3.2. We have already seen that the Verma modules $M_{\lambda} \in \mathcal{O}$.

Lemma 3.3. The subcategory \mathcal{O} of \mathfrak{g} -mod is closed under taking sub-quotients and finite direct sums. In particular, \mathcal{O} is an abelian category.

Proof. For (O1), $U(\mathfrak{g})$ is Noetherian. For (O2), Remark 2.13. The claim for (O3) is obvious.

Warning 3.4. The subcategory \mathcal{O} is not closed under extensions. This can be seen by considering $\operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}(N)$ where N is a finite dimensional t-module that does not have a weight decomposition.

Lemma 3.5. Any object $M \in \mathcal{O}$ is Noetherian, i.e., satisfies the ascending chain condition for subobjects.

Proof. Follows from the fact that $U(\mathfrak{g})$ is Noetherian.

Proposition 3.6. Any object $M \in \mathcal{O}$ is a quotient of a finite successive extension of Verma modules. In particular, M is finitely generated as an \mathfrak{n}^- -module.

Proof. The last claim follows from the first one because of Exercise 2.6.

By (O1), M is generated by a finite-dimensional subspace M_0 as a \mathfrak{g} -module. By (O2), we can enlarge M_0 and assumme it is a finite direct sum of weight spaces. By (O3), $U(\mathfrak{b}) \cdot M_0 = U(\mathfrak{n}) \cdot M_0$ is finite-dimensional. Hence we may assume M_0 is stable under the \mathfrak{b} -action. By adjunction, we have a \mathfrak{g} -linear map

$$\operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}(M_0) \to M,$$

which is surjective because M_0 generates M as a \mathfrak{g} -module. It remains to show M_0 is a successive extension of 1-dimensional \mathfrak{b} -modules. We state this as the following lemma.

Lemma 3.7. Let $M \in \mathcal{O}$ and $M_0 \subset M$ be a finite-dimensional subspace stable under the \mathfrak{b} -action. Then the \mathfrak{n} -action on M_0 is nilpotent and M_0 is a successive extension of 1-dimensional \mathfrak{b} -modules.

Proof. Note that the second claim follows from the first one. Namely, let $N_0 \,\subset M_0$ be the subspace annihilated by \mathfrak{n} . This is a sub- \mathfrak{b} -representation because \mathfrak{n} is an ideal of \mathfrak{b} . The first claim implies $N_0 \neq 0$. Since N_0 is annihilated by \mathfrak{n} , it is in the image of the restriction functor $\mathfrak{t}-\mathsf{mod} \rightarrow \mathfrak{b}-\mathsf{mod}$. It follows that N_0 is a direct sum of 1-dimensional \mathfrak{b} -representations because it is a weight module. Replacing M_0 by M_0/N_0 , we win by induction.

It remains to prove the first claim. We only need to show \mathfrak{n} acts nilpotently on any weight vector $v \in M_0$. Let $x \in \mathfrak{n}$ be a weight vector. A direct calculation shows $x \cdot v$ is a weight vector whose weight is the sum of those of v and x. In particular, the weight of $x \cdot v$ is strictly greater than that of v with respect to the partial order \prec . Since the set of weights of M_0 is finite, we see \mathfrak{n} acts nilpotently on v.

 \Box [Proposition 3.6]

Corollary 3.8. Let $M \in \mathcal{O}$. Then each weight space of M is finite-dimensional.

Proof. Follows from Proposition 2.14 and Proposition 3.6.

Exercise 3.9. This is Homework 1, Problem 3. Recall for any $V_1, V_2 \in \mathfrak{g}-\mathsf{mod}$, the tensor product $V_1 \otimes V_2$ of the underlying vector spaces has a natural \mathfrak{g} -module structure defined by $x \cdot (v_1 \otimes v_2) \coloneqq (x \cdot v_1) \otimes v_2 + v_1 \otimes (x \cdot v_2)$.

LECTURE 2

- (1) Prove: if V_1 and V_2 are weight modules, so is $V_1 \otimes V_2$. Determine the weights and weight
- spaces of $V_1 \otimes V_2$ in term of those for V_1 and V_2 . (2) Consider the case $\mathfrak{g} = \mathfrak{sl}_2$. Prove: the tensor product of two Verma modules is not contained in \mathcal{O} .

References

[MR] McConnell, John C., James Christopher Robson, and Lance W. Small. Noncommutative noetherian rings. Vol. 30. American Mathematical Soc., 2001.