
LECTURE 2

1. Universal enveloping algebra

Construction 1.1. Recall we have a forgetful functor oblv ∶ Algk → Liek from the category of
associative algebras to that of Lie algebras. This functor admits a left adjoint

U ∶ Liek → Algk

that sends a Lie algebra g to the associative algebra

U(g) = T (g)/⟨xy − yx − [x, y], x, y ∈ g⟩.

Here

T (g) ∶=⊕
n≥0

g⊗n

is the tensor algebra of the underlying vector space of g, and ⟨xy − yx − [x, y], x, y ∈ g⟩ is the
two-sided ideal generated by elements of the form xy − yx − [x, y].

The associative algebra U(g) is called the universal enveloping algebra of g.

Let U(g)−mod be the abelian category of left modules for U(g).

Lemma 1.2. There is an equivalence

g−mod ≃ U(g)−mod

that commutes with forgetful functors to Vectk.

Proof. For a given vector space V , a g-module structure on V is a Lie algebra homomorphism
g→ oblv(gl(V )). By adjunction, this is the same as a homomorphism U(g)→ gl(V ), i.e., a left
U(g)-module structure on V .

�

Construction 1.3. The tensor algebra T (g) is naturally graded. But this grading does not
descent to U(g) because xy − yx − [x, y] is not a homogenous element. Instead, U(g) has an
exhausted filtration

F≤nU(g) ∶= im(F≤nT (g)→ U(g))
that is compatible with the algebra structure, i.e.,

F≤mU(g)⊗
k
F≤nU(g) multÐÐ→ F≤m+nU(g).

Taking associated graded pieces, we obtain a graded algebra

gr●U(g) ∶=⊕
n≥0

F≤nU(g)/F<nU(g).

By the universal property of the tensor algebra, we have a unique homomorphism T (g) →
gr●U(g) whose restriction on g ⊂ T (g) is the composition g → F≤1U(g) → gr1U(g) ⊂ gr●U(g).
Denote this composition by x↦ x̄. Note that we have x̄ȳ = ȳx̄ as elements in gr2U(g) because the
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term [x, y] is killed by the surjection F≤2U(g)→ gr2U(g). It follows that we have a commutative
diagram of surjective maps:

T (g) x↦x̄ // //

����

gr●U(g)

Sym(g),
φ

99 99

where Sym(g) ∶= T (g)/⟨xy − yx⟩ is the symmetric algebra of g. In particular, gr●U(g) is a
commutative algebra.

Remark 1.4. Note that gr●U(g) being commutative is equivalent to [FiU(g),FjU(g)] ⊂
Fi+j−1U(g), where we write F−nU(g) = 0 for n > 0.

Theorem 1.5 (Poincaré–Birkhoff–Witt, a.k.a. PBW). For any Lie algebra g, the above ho-
momorphism φ ∶ Sym(g)→ gr●U(g) is an isomorphism.

Corollary 1.6. Let {xi}i∈I be a basis of g as a vector space. Choose a total order on the set
I. Then the set {xm1

i1
xm2

i2
⋯xmn

in
∣n ≥ 0, i1 < i2 < ⋯ < in,m1,m2, . . . ,mn ∈ Z>0} is a basis of the

vector space U(g).

Corollary 1.7. If g is a finite-dimensional algebra, then U(g) is left and right Noetherian.

Proof. A filtered ring A is left (resp. right) Noetherian if its assoicated graded ring gr●A is so.
See [MR, Chapter 1, Theorem 6.9]1. �

2. Verma modules

From now on, we fix a finite-dimensional semisimple Lie algebra g and choose t ⊂ b ⊂ g, i.e.,
a Cartain subalgebra and a Borel subalgebra of it. Recall we have g = n−⊕ t⊕n, b = t⊕n, t ≃ b/n
and n = [b,b]2.

Construction 2.1. The projection b → t induces a restriction functor t−mod → b−mod. Note
that we have

(2.1) t−mod ≃ U(t)−mod ≃ Sym(t)−mod ≃ QCoh(t∗).

Hence for any λ ∈ t∗, the skyscrapter sheaf at λ gives a 1-dimensional representation

kλ ∈ t−mod.

In other words, for x ∈ t, its action on kλ is given by the scaler λ(x).
We abuse notation and write kλ for the corresponding object in b−mod.

Remark 2.2. Note that any 1-dimensional b-module V is of the form kλ. Indeed, the Lie
homomorphism b→ gl(V ) must kill n = [b,b] because gl(V ) is abelian.

Definition 2.3. Consider the restriction functor g−mod→ b−mod and its left adjoint

indgb ∶ b−mod→ g−mod.

For any weight λ ∈ t∗, we define the Verma module to be

Mλ ∶= indgb(kλ) ∈ g−mod.

1Sketch: a left ideal I ⊂ A defines a left ideal gr●I ⊂ gr●A with grnI = ((I + Fn−1A) ∩ FnA)/Fn−1A. This

assignment is injective.
2We didn’t mention the last one in the last lecture, but it follows easily from the root decomposition.
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Remark 2.4. Explicitly, we have

Mλ ≃ U(g) ⊗
U(b)

kλ.

In particular, Mλ is infinite-dimensional.

Definition 2.5. By adjunction, there is a b-linear map kλ →Mλ corresponding to the identity
morphism Mλ → Mλ in g−mod. After fixing a nonzero vector 1λ of kλ, we obtain a vector
vλ ∈Mλ. We call it a highest weight vector of Mλ.

The meaning of this name will be explained shortly. Note that by definition, n ⋅ vλ = 0 and
vλ is a λ-eigenvector for the t-action.

Exercise 2.6. This is Homework 1, Problem 1. Prove:

(1) The map

U(n−)⊗
k
U(b) multÐÐ→ U(g)

is an isomorphism between (U(n−), U(b))-bimodules.
(2) As an n−-module, Mλ is freely generated by vλ, i.e.,

U(n−)→Mλ, x↦ x ⋅ vλ
is an isomorphism.

As a contrary, we have:

Lemma 2.7. The n-action on Mλ is locally finite.

Proof. By the above exercise, we have Mλ = ⋃i FiU(g) ⋅vλ, where F ●U(g) is the PBW filtration
on U(g). Each FiU(g) ⋅ vλ is finite dimensional. Hence we only need to show these subspaces
are n-stable. For u ∈ FiU(g) and x ∈ n we have

x ⋅ (u ⋅ vλ) = u ⋅ (x ⋅ vλ) + [x,u] ⋅ vλ.

By definition x ⋅ vλ = 0. Then we win because [x,u] ∈ [g,FiU(g)] ⊂ Fi−1U(g).
�

We are going to describe the t-action on Mλ. We need some definitions.

Definition 2.8. Let V ∈ t−mod. We say V is a weight module if V = ⊕λ∈t∗Vλ, where Vλ ⊂ V
is the λ-eigenspace. We say λ is a weight of V if Vλ ≠ 0. Vectors in Vλ are called λ-weight
vectors.

Remark 2.9. A t-module V is a weight module iff the action is locally finite and semisimple.
This means for any v ∈ V , the subspace t ⋅ v is finite-dimensional and any x ∈ t is sent to a
diagonalizable endomorphism in gl(t ⋅ v).

Remark 2.10. A t-module is a weight module iff the corresponding quasi-coherent sheaf on t∗

is a direct sum of 1-dimensional skyscrapters at closed points.

Example 2.11. By the root decomposition, g is a weight module when viewed as a t-module
via the adjoint action. Nonzero weights are roots.

Example 2.12. The object U(t) ∈ t−mod is not a weight module. Indeed, it corresponds to
the structure sheaf of t∗.

Remark 2.13. Weight modules in t−mod are closed under taking subquotients (e.g. by Remark
2.10), but not closed under extensions.
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Proposition 2.14. The Verma module Mλ is a weight module, and the weights are given
exactly by

λ − ∑
α∈Φ+

nαα, nα ∈ Z≥0.

Moreover, each weight space is finite-dimensional.

Proof. First, note that vλ ∈Mλ is a λ-weight vector because it is the image of 1λ ∈ kλ.
By the PBW theorem (Corollary 1.6), U(n−) has a basis consists of weight vectors whose

weights are −∑α∈Φ+ nαα, nα ∈ Z≥0. Also, each weight space is finite dimensional.
Let x ∈ U(n−) be such a weight vector and µ be its weight. By the following equation,

x ⋅ vλ ∈Mλ is a (λ + µ)-weight vector:

t ⋅ (x ⋅ vλ) = x ⋅ (t ⋅ vλ) + [t, x] ⋅ vλ, t ∈ t.
Then we win by Exercise 2.6.

�

Definition 2.15. We define a partial order ⪯ on t∗ such that µ1 ⪯ µ2 iff µ2 − µ1 ∈ Z≥0Φ+.

Note that under the above partial order, the weight of vλ ∈Mλ is indeed the highest one.

Example 2.16. Consider the case g = sl2 equipped with its standard Cartan and Borel sub-
algebras. A weight λ ∈ t∗ is the same as a scaler l ∶= ⟨λ, α̌⟩, where α̌ ∶= h ∶= ( 1 0

0 −1 ) ∈ t is the
coroot.

Since ⟨α, α̌⟩ = 2, the weights of the Verma module Ml are of the form l − 2n, n ≥ 0. For
each such l′ ∶= l − 2n, since n− is 1-dimensional, the l′-weight space of Ml is also 1-dimensional.
Namely, it is spaned by fn ⋅ vl ∈Ml, where f ∶= ( 0 0

1 0 ) generates n−.

Exercise 2.17. This is Homework 1, Problem 23. In the case g = sl2, show the Verma module
Ml is irreducible unless l ∈ Z≥0. In the latter case, show there is a non-split short exact sequence

(2.2) 0→M−l−2 →Ml → Ll → 0

such that Ll is a finite-dimensional irreducible sl2-module with highest weight l.

We return to the study of general semisimple Lie algebra g.

Theorem 2.18. The Verma module Mλ admits a unique irreducible quotient module Lλ, and
the highest weight of Lλ is λ. In particular, Lλ and L′λ are non-isomorphic for λ ≠ λ′.

Proof. Any proper submodule N ⊂Mλ is a weight module whose weights do not contain λ. It
follows that the union of all the proper submodules satisfies the same property. By construction,
this is the maximal proper submodule of Mλ. Then Lλ is the corresponding quotient.

�

3. Category O

Roughly speaking, the Bernstein–Gelfand–Gelfand (a.k.a. BGG) category O is the full sub-
category of g−mod consisting of objects similar to Verma modules. Let us first give the tradi-
tional definition:

Definition 3.1. We define the category O to be the full subcategory of g−mod consisting of
objects M satisfying the following properties:

(O1) M is finitely generated as a g-module;

3Warning: the solution in Gaitsgory’s notes contains a critical typo and the last paragraph there should be
justified. Also, don’t forget to show Ll is irreducible.
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(O2) M is a weight module;
(O3) The action of n on M is locally finite.

Example 3.2. We have already seen that the Verma modules Mλ ∈ O.

Lemma 3.3. The subcategory O of g−mod is closed under taking sub-quotients and finite direct
sums. In particular, O is an abelian category.

Proof. For (O1), U(g) is Noetherian. For (O2), Remark 2.13. The claim for (O3) is obvious. �

Warning 3.4. The subcategory O is not closed under extensions. This can be seen by consider-
ing indgb(N) where N is a finite dimensional t-module that does not have a weight decomposition.

Lemma 3.5. Any object M ∈ O is Noetherian, i.e., satisfies the ascending chain condition for
subobjects.

Proof. Follows from the fact that U(g) is Noetherian. �

Proposition 3.6. Any object M ∈ O is a quotient of a finite successive extension of Verma
modules. In particular, M is finitely generated as an n−-module.

Proof. The last claim follows from the first one because of Exercise 2.6.
By (O1), M is generated by a finite-dimensional subspace M0 as a g-module. By (O2), we can

enlarge M0 and assumme it is a finite direct sum of weight spaces. By (O3), U(b)⋅M0 = U(n)⋅M0

is finite-dimensional. Hence we may assume M0 is stable under the b-action. By adjunction,
we have a g-linear map

indgb(M0)→M,

which is surjective because M0 generates M as a g-module. It remains to show M0 is a successive
extension of 1-dimensional b-modules. We state this as the following lemma.

Lemma 3.7. Let M ∈ O and M0 ⊂ M be a finite-dimensional subspace stable under the b-
action. Then the n-action on M0 is nilpotent and M0 is a successive extension of 1-dimensional
b-modules.

Proof. Note that the second claim follows from the first one. Namely, let N0 ⊂ M0 be the
subspace annihilated by n. This is a sub-b-representation because n is an ideal of b. The first
claim implies N0 ≠ 0. Since N0 is annihilated by n, it is in the image of the restriction functor
t−mod→ b−mod. It follows that N0 is a direct sum of 1-dimensional b-representations because
it is a weight module. Replacing M0 by M0/N0, we win by induction.

It remains to prove the first claim. We only need to show n acts nilpotently on any weight
vector v ∈M0. Let x ∈ n be a weight vector. A direct calculation shows x ⋅ v is a weight vector
whose weight is the sum of those of v and x. In particular, the weight of x ⋅ v is strictly greater
than that of v with respect to the partial order ≺. Since the set of weights of M0 is finite, we
see n acts nilpotently on v.

�
�[Proposition 3.6]

Corollary 3.8. Let M ∈ O. Then each weight space of M is finite-dimensional.

Proof. Follows from Proposition 2.14 and Proposition 3.6.
�

Exercise 3.9. This is Homework 1, Problem 3. Recall for any V1, V2 ∈ g−mod, the tensor
product V1 ⊗ V2 of the underlying vector spaces has a natural g-module structure defined by
x ⋅ (v1 ⊗ v2) ∶= (x ⋅ v1)⊗ v2 + v1 ⊗ (x ⋅ v2).
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(1) Prove: if V1 and V2 are weight modules, so is V1⊗V2. Determine the weights and weight
spaces of V1 ⊗ V2 in term of those for V1 and V2.

(2) Consider the case g = sl2. Prove: the tensor product of two Verma modules is not
contained in O.
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