
LECTURE 3

In this lecture, we give a quick review of the theory of algebraic groups. This theory is
analogous to that of complex Lie groups, but the techniques are more algebraic and some proofs
are subtler1. Standard textbooks include: [B], [H] and [Sp]. See [M] for a modern treatment of
this theory, which is also my favourite.

1. Algebraic Groups

Definition 1.1. An algebraic group over k is a finite type k-scheme G equipped with a group
structure, i.e., a multiplication map m ∶ G ×G → G subject to axioms similar to those for an
abstract group.

Homomorphisms between algebraic groups are defined in the obvious way. Let Grpk be the
category of algebraic groups.

Remark 1.2. As in the study of abstract groups, the unit and the inversion maps are determined
by the multiplication map. We denote them respectively by:

e ∶ pt→ G, σ ∶ G→ G,

where pt ∶= Spec(k).

Construction 1.3. Let G be an algebraic group. For any commutative k-algebra A, write

G(A) ∶= Hom(Spec(A),G)

be the set of maps Spec(A) → G between k-schemes. The group structure on G induces a group
structure on G(A).

Note that for A→ B, we have a homomorphism G(A) → G(B). Hence we obtain a functor

G(−) ∶ CAlgk → Grp

from the category of commutative k-algebras to the category of (abstract) groups. By the Yoneda
lemma, the algebraic group G is determined by this functor.

Example 1.4. The additive group Ga is defined such that Ga(A) = A, viewed as a commu-
tative group under addition. The underlying k-scheme is the affine line A1.

Example 1.5. The multplicative group GL1 = Gm is defined such that Gm(A) = A×, i.e.
the subset of unit elements in A, viewed as a commutative group under multiplication. The
underlying k-scheme is A1 ∖ 0, i.e., the affine line with the origin removed.

Example 1.6. One can define algebraic groups G ∶= GLn, SLn, SOn, etc. such that G(A) is
the group of matrices of the corresponding type with coefficients in A.

Example 1.7. One can define the algebraic group PGLn such that OPGLn
is a subring of OGLn

2.

Date: Mar 11, 2024.
1Especially if one allows positive-characteristic or non-algebraic-closed base field k.
2Warning: PGLn(A) ≠ GLn(A)/GL1(A) for general A. In fact, viewed as functors in A, the LHS is the

sheafification of the RHS in the fpqc topology.
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Remark 1.8. Not every functor CAlgk → Grp comes from an algebraic group. For example, any
k-vector space V defines a functor

GLV (−) ∶ CAlgk → Grp

that sends A to the group of A-linear automorphisms of A⊗V . This functor is not represented
by an algebraic group unless V is finite-dimensional.

2. Hopf algebras

From now on, we assume G is affine34.

Construction 2.1. An affine algebraic group G is determined by its ring of functions OG.
The maps m ∶ G ×G→ G and e ∶ pt→ G correspond to homomorphisms between algebras

∆ ∶ OG → OG ⊗OG, ε ∶ OG → k,

which are called the comultiplication and counit maps of OG. Together with the usual mul-
tiplication and unit maps of OG, we obtain a bialgebra (OG, ⋅,∆).

Note that this bialgebra is commutative but not cocommutative unless G is so.
The inverse map σ ∶ G → G corresponds to a homomorphism S ∶ OG → OG, which is called

the antipode of OG. This makes OG into a commutative Hopf algebra.

Remark 2.2. A Hopf algebra is a bialgebra A equipped with an antipode map S ∶ A→ A subject
to a certain axiom. For our purposes, it is less useful to memorize this axiom than to imagine
it amounts to say “Spec(A)”5 has an inversion map.

Example 2.3. For G = Ga, we have OG = k[t] and

∆(t) = t⊗ 1 + 1⊗ t, ε(f) = f(0), S(f)(t) = f(−t).

Example 2.4. For G = Gm, we have OG = k[t, t−1] and

∆(t) = t⊗ t, ε(f) = f(1), S(f)(t) = f(t−1).

Example 2.5. The universal enveloping algebra U(g) of any Lie algebra is a Hopf algebra. The
comultiplication ∆ ∶ U(g) → U(g)⊗U(g) is determined by ∆(x) = x⊗1+1⊗x, x ∈ g ⊂ U(g) and
its compatibility with the multiplication. Similarly, the antipode is determined by S(x) = −x,
x ∈ g.

The Hopf algebra U(g) is cocommutative but not commutative unless g is abelian.

Remark 2.6. Using the Hopf algebra structure on U(g), the tensor product structure in g−mod
can be defined as follows. Let V1 and V2 be left U(g)-modules. Their tensor product V1 ⊗V2 is
naturally a U(g) ⊗U(g)-module. Restricting along ∆, we can view V1 ⊗ V2 as a U(g)-module.

Remark 2.7. There are also interesting Hopf algebras that are neither commutative nor cocom-
mutative. For example, quantum algebras are such gadgets. See [L] for a standard textbook.

3Any affine algebraic group over field of characteristic 0 is smooth.
4Projective algebraic groups, a.k.a., abelian varieties, are also important and play a central role in modern

mathematics.
5Note however that this does not make sense if A is not commutative.
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3. Tangent spaces

As in the theory of Lie groups, the tangent space of an algebraic group at its unit is a Lie
algebra. To desribe this, let us review the definition of tangent spaces in algebraic geometry.

Definition 3.1. Let X be any k-scheme and x ∈ X be a k-point, i.e., a map x ∶ Spec(k) → X.
The tangent space of X at x, denoted by TxX, is the set of dotted arrows making the following
diagram commute:

Spec(k) x //

��

X

Spec(k[ε]/ε2).

99

Here the vertical map is given by the homomorphism k[ε]/ε2 → k, ε↦ 0.
Elements in TxX are called tangent vectors of X at x.

Tangent vectors are related to derivations. Let us review its definition in the algebraic
setting.

Definition 3.2. Let A be a k-algebra and M be an A-module. A k-derivation of A into M
is a k-linear map D ∶ A→M satisfying the Lebniz rule

D(f ⋅ g) = f ⋅D(g) + g ⋅D(f).

Let Der(A,M) be the set of such k-derivations. This is naturally an A-module.

Definition 3.3. Let X be a k-scheme and M be an OX -module. A k-derivation of OX
into M is a k-linear morphism D ∶ OX → M such that for any open subscheme U ⊂ X,
D(U) ∶ OX(U) →M(U) is a k-derivation. Let Der(OX ,M) be the space of k-derivations.

Construction 3.4. Let X = Spec(A) be an affine scheme and x ∶ Spec(k) → X be given by a
homomorphism φ ∶ A→ k. View k as an A-module via this homomorphism and denote it by kx.
For any D ∈ Der(A,kx), the map

A→ k[ε]/ε2, f ↦ φ(f) +D(f)ε

is a homomorphism and thereby gives a map Spec(k[ε]/ε2) → X, which is an element in TxX.
It is easy to see this gives a bijection

Der(A,kx) ≃ TxX.

In particular, we obtain an A-module structure on TxX. Note that the action of A factors
through A↠ kx.

For general k-scheme, the above construction gives a bijection

Der(OX , kx) ≃ TxX,

where kx is viewed as the skyscrapter sheaf at x. Indeed, this follows from the obvious fact that
TxX only depends on a Zariski neighborhood of x in X.

Construction 3.5. Let f ∶ X → Y be a morphism between k-schemes. Let x ∈ X and y ∶=
f(x) ∈ Y be k-points. There is an obvious k-linear map

df ∶ TxX → TyY

given by composing with f . We call it the differential of f .

We have the following obvious result:
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Lemma 3.6. Let X and Y be k-schemes. Let x ∈ X and y ∈ Y be k-points. For ∂1 ∈ TxX and
∂2 ∈ TyY , write ∂1 ⊕ ∂2 ∈ T(x,y)(X × Y ) for the map

Spec(k[ε]/ε2)
(∂1,∂2)ÐÐÐÐ→X × Y.

Then the map

(3.1) TxX × TyY → T(x,y)(X × Y ), (∂1, ∂2) ↦ ∂1 ⊕ ∂2

induces an isomorphism TxX ⊕ TyY = T(x,y)(X × Y ).

4. Lie Algebras and Algebraic Groups

Notation 4.1. Let G be an algebraic group. Define

Lie(G) ∶= TeG.

Example 4.2. For G = GLn, we have Lie(GLn) ≃ gln. In particular, Lie(GLn) is naturally a Lie
algebra. We have similar results for other classical subgroups of GLn.

Remark 4.3. Consider the multiplication map m ∶ G ×G → G and its differential dm ∶ Lie(G ×
G) → Lie(G). Via the identification Lie(G)⊕Lie(G) ≃ Lie(G×G), we obtain a binary operation
on Lie(G):

Lie(G) ⊕ Lie(G) ≃ Lie(G ×G) dmÐÐ→ Lie(G).
By definition, this binary operation is associative and 0 ∈ Lie(G) is the unit of it. Hence it
sends (∂1, ∂2) to ∂1 + ∂2. This is the algebraic analogue of the formula exp(tu) ⋅ exp(tv) =
exp(t(u + v))(1 +O(t2)), u, v ∈ Lie(G) that appears in the study of Lie groups.

In particular, we have a short exact sequence of groups:

(4.1) 0→ Lie(G) → G(k[ε]) → G(k) → 0,

where the group structure on Lie(G) is given by (∂1, ∂2) ↦ ∂1 + ∂2.

Theorem 4.4. There is a canonical functor Grpk → Liek sending G to Lie(G) equipped with a
natural Lie bracket, such that for G = GLn, the Lie bracket on Lie(GLn) is given by that on gln.

Remark 4.5. There are several equivalent ways to construct the Lie bracket on Lie(G). Below
are two of them:

● The Hopf algebra approach: given ∂1, ∂2 ∈ Lie(G), viewed as k-derivations OG → ke,
consider the composition6

OG
∆Ð→ OG ⊗OG

∂1⊗∂2−∂2⊗∂1ÐÐÐÐÐÐÐ→ ke.

One can show this is also a k-derivation. Then we define [∂1, ∂2] ∈ Lie(G) to be the
element corresponding to this k-derivation. The axioms of Hopf algebras imply this is
indeed a Lie bracket. This is the algebraic analogue of the formula exp(tu) ⋅ exp(tv) ⋅
exp(−tu) ⋅ exp(−tv) = exp(t2[u, v])(1 +O(t3)), u, v ∈ Lie(G) that appears in the study
of Lie groups.

● The adjoint representation approach: the isomorphism Lie(G) ≃ Der(OG, ke) can be
generalized to Lie(G) ⊗ R ≃ Der(OG,Re) that are functorial in R ∈ CAlgk. It follows
that the short exact sequence (4.1) can be generalized to short exact sequences

0→ Lie(G) ⊗R → G(R[ε]) → G(R) → 0

6For non-affine G, we use the morphisms between OX -modules OG
∆
Ð→ mult∗(OG ⊗ OG)

∂1⊗∂2−∂2⊗∂1
ÐÐÐÐÐÐÐÐ→

mult∗(ke ⊗ ke) ≃ ke.
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that are functorial in R. Note that we have a canonical splitting G(R) → G(R[ε])
induced by the embedding R → R[ε]. These splittings provide adjoint actions of G(R)
on Lie(G) ⊗ R that are functorial in R. In other words, we have a homomorphism
between algebraic groups:

(4.2) Ad ∶ G→ GLLie(G).

The differential of this homomorphism at the unit element e gives a k-linear map

ad ∶ Lie(G) → glLie(G).

Then we define [α1, α2] ∶= ad(α1)(α2). One can show this is indeed a Lie bracket. Note
that by construction ad is indeed the adjoint presentation of Lie(G).

Remark 4.6. The functor Grpk → Liek is unique if stated properly. See [M, Theorem 10.23].

Warning 4.7. It is not true that every Lie algebra can be obtained from algebraic groups.
See [Bou, I, §5, Exercise 6] for a counterexample.

Remark 4.8. Let G be an affine algebraic group and g ∶= Lie(G) be its Lie algebra. The Hopf
algebras OG and U(g) are related as follows.

Consider the dual U(g)∗ ∶= Homk(U(g), k) as a topological vector space7. The cocommuta-
tive Hopf algebra structure on U(g) induces a commutative topological Hopf algebra structure
on it8.

On the other hand, consider the maximal ideal m ⊂ OG corresponding to the unit point
e ∶ pt → G. Let ÔG be the m-adic completion of OG. The commutative Hopf algebra structure
on OG induces a commutative topological Hopf algebra structure on it.

We have

U(g)∗ ≃ ÔG
as commutative topological Hopf algebras such that (F≤kU(g))∗ ≃ ÔG/mkÔG. Note that this
gives another way to define the Lie bracket on Lie(G).

Example 4.9. Note that the Lie algebras of Ga and Gm are isomorphic, it follows that ÔGa ≃
k[[t]] and ÔGm = k[[t − 1]] are isomorphic. Up to a scaler, this isomorphism is given by

k[[t − 1]] → k[[t]], f ↦ f(exp(t)).

Note that given a power series a0 + a1(t − 1) + a2(t − 1)2 + ⋯, the series a0 + a1(exp(t) − 1) +
a2(exp(t) − 1)2 +⋯ indeed converges in the t-adic topology.

5. Representations of Algebraic Groups

In this section, G is an affine algebraic group.

Definition 5.1. A representation of G, or equivalently a G-module is a k-vector space V
equipped with a natural transformation G(−) → GLV (−) as functors CAlgk → Grp.

7For a vector space V equipped with the discrete topology, the dual V ∗ is equipped with the weakest topology
such that for any finite-dimensional subspace V0 ⊂ V , the map V ∗

→ V ∗

0 is continuous. Here V ∗

0 is equipped

with the discrete topology. Equivalently, we can define V ∗ as an object in the pro-category Pro(Vectk,fd) of

finite dimensional vector spaces.
8Here we must use the complete tensor product U(g)∗⊗̂U(g)∗ instead of the usual tensor product. By design,

this is the dual of U(g) ⊗U(g).
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Let V and W be G-modules, a G-linear map φ ∶ V → W is a k-linear map such that for
any A ∈ CAlgk, the following diagram commutes

G(A) //

��

GLV (A)

φ○−

��
GLW (A)

−○φ // HomA(A⊗ V,A⊗W ).

Let Rep(G) be the category of G-modules.

Example 5.2. Any V can be equipped with a trivial G-module structure such that the homo-
morphisms G(A) → GLV (A) are trivial.

Example 5.3. The homomorphism (4.2) defines a G-module structure on its Lie algebra
Lie(G). We call it the adjoint representation of G.

Proposition 5.4. The category Rep(G) is an abelian category and the forgetful functor
Rep(G) → Vectk is exact.

Remark 5.5. If V is finite-dimensional, then GLV is represented by an algebraic group. A
G-module structure on V is just a homomorphism G→ GLV between algebraic groups.

Warning 5.6. Evaluate at k ∈ CAlgk, we obtain a group homomorphism G(k) → GLV (k) =
GL(V ). But a G-module structure contains more information than such a homomorphism. This
can be seen from the following exercise. (Note that for k = C, the abstract groups Ga(C) = C
and Gm(C) = C× are isomorphic via the exponential map.)

Exercise 5.7. This is Homework 1, Problem 4.

(1) Find all maps between k-schemes A1 → A1 ∖ 0.
(2) Find all 1-dimensional representations of the additive group Ga.
(3) Find all maps between k-schemes A1 ∖ 0→ A1 ∖ 0.
(4) Find all 1-dimensional representations of the multiplicative group Gm.

Proposition 5.8. Any G-action on a vector space V is locally finite, i.e., V is the union of its
finite-dimensional subrepresentations.

Proposition 5.9. There is a canonical equivalence

Rep(G) ≃ OG−comod

from the category of G-modules to the category of OG-comodules. This equivalence is compatible
with the forgetful functors to Vectk.

Remark 5.10. The functor Rep(G) ≃ OG−comod is constructed as follows. Let V ∈ Rep(G).
Consider A ∶= OG and the homomorphism G(A) → GLV (A). The identity map G → G can be
written as Spec(A) → G which corresponds to an element in G(A)9. Consider the image of this
element in GLV (A), which is a A-linear map A ⊗ V → A ⊗ V . This is the same as a k-linear
map V → A⊗ V , i.e., a k-linear map

V → OG ⊗ V.

One can verify this defines a OG-comodule structure on V .

9Warning: this is not the unit element of this group.
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Construction 5.11. There is a forgetful functor

Rep(G) → Lie(G)−mod

that can be constructed in the following equivalent ways:

● Let we first suppose V ∈ Rep(G) is finite-dimensional. Then we have a homomorphism
between algebraic groups G → GLV which induces a homomorphism between their Lie
algebras Lie(G) → Lie(GLV ) = gl(V ), i.e., a Lie(G)-module structure on V .

When V is infinite-dimensional, the functor GLV (−) is no longer represented by an
algebraic group, but there is a formal method to define its Lie algebra and make the
above construction work.

● Any V ∈ Rep(G) has an OG-comodule structure. By co-restricting along the map OG →
ÔG, we obtain a (continuous) comodule structure for ÔG ≃ U(g)∗. Passing to duality,
we obtain a module structure for U(g).

Remark 5.12. On the level of k-points, the conjugate action of G(k) on G induces an (abstract)
action of G(k) on Lie(G). This can be generalized to an action of G(A) on A⊗ Lie(G) for any
A ∈ CAlgk and thereby obtain the desired G-module structure on Lie(G).

Proposition 5.13. If G is connected, then the functor Rep(G) → Lie(G)−mod is fully faithful.
In particular, the G-invariance and Lie(G)-invariance for a G-module are the same.

Definition 5.14. If G is connected, we say an object V ∈ Lie(G)−mod is G-integrable if it is
contained in the essential image of the above functor.

Warning 5.15. The similar claim for derived categories is false. In other words, extensions
of G-integrable modules are not necessarily G-integrable. The multiplicative group Gm is a
counterexample.

6. Semisimple Algebraic Groups

Theorem 6.1. Any semisimple Lie algebra g can be realized as the Lie algebra of an algebraic
group. In the category of connected algebraic groups G with Lie(G) ≃ g, there is a final object
Gad and an initial object Gsc. Moreover, the homomorphisms

Gsc → G→ Gad

are isogenies, i.e., are surjective and have finite kernels.

Example 6.2. For g = sln, we have Gsc = SLn and Gad = PGLn.

Definition 6.3. We say G is semisimple10 if it is connected and its Lie algebra is semisimple.
For a semisimple algebraic group G, we say it is of adjoint type (resp. simply connected)
if it is of the form Gad (resp. Gsc).

Theorem 6.4. If Gsc is a simply-connected semisimple algebraic group, then any finite-
dimensional g-module is Gsc-integrable, i.e.,

Rep(Gsc)fd = g−modfd.

Warning 6.5. The similar claim for infinite-dimensional representation is false. This can be
seen from the following exercise.

Exercise 6.6. This is Homework 1, Problem 5. Let G be any semisimple algebraic group with
Lie algbra g. Prove: any Verma module of g is not G-integrable.

10This is an ad hoc definition that only is only correct under our assumptions on k.
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Theorem 6.7. Let G be any semisimple algebraic group with Lie algebra g. Then the
abelian categories Rep(G) and g−modfd are semisimple11. Simple objects in Rep(G) are finite-
dimensional, and an object V ∈ Rep(G) is simple iff it is an simple object in g−mod.
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