
LECTURE 4

After the preparations of the first three lectures, we can finally say a few words about what
this course is actually about.

From now on, we fix the following notations. Let G be a connected semisimple algebraic
group with Lie algebra g. We fixed g ⊃ b ⊃ t and let G ⊃ B ⊃ T be the corresponding closed
connected algebraic subgroups12 of G.

We can consider the right multiplication action of B on G. This is a free action and thereby
the quotient G/B exists3. This quotient is a projective smooth k-scheme, and actually does not
depend on the choice of B. It is known as the flag variety4 of G, usually denoted by FlG.

Now the main goal of this course is to exhibit the following phenomenon: representations of
the Lie algebra g is closely related to the geometry of FlG. In particular, we will see that the
structure of the category O is related to the orbits of the left B-action on FlG ≃ G/B.

1. Blocks

Let’s be back to the study of the category O. The main goal of this and the next lectures is
to split the category O into blocks

O ≃ ⊕
χ∈Spec(Z(g))

Oχ

and study each block. Here Z(g) ⊂ U(g) is the center of the associative algebra U(g).
Note that any M ∈ g−mod can be viewed as a Z(g)-module, which is the same as a quasi-

coherent sheaf on Spec(Z(g)). We have:

Theorem 1.1. Let M ∈ O, then the corresponding quasi-coherent sheaf on Spec(Z(g)) is
supported on a 0-dimensional subvariety.

Remark 1.2. What we really means here is the annihilator I ∶= {f ∈ Z(g) ∣ f ⋅M = 0} of M has
a finite codimension, i.e., dim(Z(g)/I) <∞5.

Before we prove the above theorem, we make the following definition and state a corollary
of it.

Date: Mar 18, 2024.
1In general, for an algebraic group G and g = Lie(G), there is a 1-1 correspondence between the set of

closed connected algebraic subgroups of G and the set of Lie subalgebras of g. Warning: This is only true in

characteristic 0.
2As in the study of semisimple Lie algebras, B is a Borel subgroup of G, which is defined to be a maximal

connected solvable subgroup of G; T is called Cantan subgroup of G, which is defined to be a maximal

connected torus inside G.
3In future lectures, we will revisit its definition.
4Example: for G = SL2, FlG is isomorphic to the projective line P1.
5Since M is not a finite type Z(g)-module, there is no consensus definition of its schematic support. One

may extend the finite type case and define the schematic support as Spec(Z(g)/I), which is what I did in the
class. One can show the underlying topological space is indeed the set-theoretic support, i.e., containing those

prime ideals p ⊂ Z(g) such that Mp ≠ 0. Indeed, as in the proof of the theorem, we reduce to the case when M

is a Verma module, where the claim is manifest.
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Definition 1.3. For any closed point χ ∈ Spec(Z(g)), let Oχ ⊂ O be the full subcategory
containing those M ∈ O that is set-theoretically supported on χ. We call Oχ a block of O.

Remark 1.4. In a more representation-theoretic language: a closed point Spec(Z(g)) is the
same as a character χ ∶ Z(g) → k. Then for M ∈ O, it is set-theoretically supported on χ iff
ker(χ)n ⋅M = 0 for n >> 0.

Corollary 1.5. We have

O ≃ ⊕
χ∈Spec(Z(g))

Oχ.

In other words, any M ∈ O admits a unique finite decomposition M = ⊕χMχ such that Mχ ∈ Oχ.
Also, for M = ⊕χMχ and N = ⊕χNχ, we have

HomO(M,N) ≃ ⊕χHomOχ(Mχ,Nχ).

Proof. Let us first construct the decomposition. By the theorem, we have a finite decomposition
of Z(g)-modules M = ⊕χMχ, where

Mχ ≃M/(ker(χ)n ⋅M)

for n >> 0. Since ker(χ) is contained in the center of U(g), the subspace ker(χ)n ⋅M ⊂ M is
preserved by the U(g)-action and in particular is a sub-g-module of M . It follows that both
ker(χ)n ⋅M and Mχ are objects in O. Since ker(χ)n annihilates Mχ, the latter is contained
in Oχ. Moreover, the projection M → Mχ is clearly g-linear. This implies M = ⊕χMχ is a
decomposition in O.

For χ ≠ χ′, there is no nonzero g-linear map Mχ → Nχ′ because there is no nonzero Z(g)-
linear map between them. �

Remark 1.6. In the future, we will see the decomposition O ≃ ⊕χ∈Spec(Z(g))Oχ also holds for

the derived categories. In other words, we can replace Hom●(−,−) in above by Exti
●
(−,−).

Proof of Theorem 1.1. Note that if an ideal I ⊂ Z(g) annihilates two g-modules, then I2 an-
nihilates any extension of them. By [Prop. 31, Lec. 2], any M ∈ O is a quotient of a finite
successive extension of Verma modules. It follows that we can assume M = Mλ is a Verma
module.

We will use the following lemma.

Lemma 1.7. For any element z ∈ Z(g) and Verma module Mλ, the action of z on Mλ is given
by a scaler. In other words, there exists a unique scaler ξz,λ ∈ k such that

z ⋅ v = ξz,λv

for any v ∈Mλ.

Let us first finish the proof using the lemma. By the definition of actions, the map

χ ∶= ξ−,λ ∶ Z(g)→ k

has to be a homomorphism between k-algebras. In other words, χ is a character of Z and the
lemma says Mλ ∈ Oχ, i.e., Mλ is annilated by the 1-codimensional ideal ker(χ).

Lemma 1.7. Since z is an element in the center, the map z ⋅ − ∶Mλ →Mλ is a U(g)-linear map.
In particular, it is U(t)-linear and thereby preserves the weight subspaces of Mλ. Consider the
higheset weight subspace, which is spanned by the vector vλ ∈Mλ. This subspace is preserved
by the action of z, hence there exists a unique scaler ξz,λ ∈ k such that

z ⋅ vλ = ξz,λvλ.
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Recall Mλ is generated by vλ. Hence any v ∈ Mλ can be written as u ⋅ vλ for some u ∈ U(g).
Then we have

z ⋅ v = z ⋅ (u ⋅ vλ) = u ⋅ (z ⋅ vλ) = ξz,λu ⋅ vλ = ξz,λv

as desired. Here we used the assumption that z is contained in the center.
�[Lemma 1.7]

�[Theorem 1.1]

2. The Harish–Chandra isomorphism: preparation

The scaler ξz,λ in Lemma 1.7 can be calculated as follows.

Construction 2.1. The trivial modules define homomorphisms between associative algebras
U(n±)↠ k. Consider the k-linear map

U(g) ≃ U(n−) ⊗
U(n−)

U(g) ⊗
U(n)

U(n)↠ k ⊗
U(n−)

U(g) ⊗
U(n)

k

induced by these homomorphisms. By the PBW theorem, the RHS can be identified as U(t) =
Sym(t). In other words, we obtain a k-linear surjection

(2.1) U(g)↠ Sym(t).

To have a better feeling about this projection, please do the following exercise.

Exercise 2.2. This is Homework 2, Problem 1. Let g = sl2 and e, h, f be the standard basis.
Consider Ω ∶= ef +fe+ 1

2
h2 ∈ U(sl2). Calculate its image in Sym(t) = k[h] under the map (2.1).

Lemma 2.3. The composition

φ ∶ Z(g)↪ U(g)↠ Sym(t)

is a homomorphism and makes the following diagram commute

Z(g)
φ //

χ=ξ−,λ $$

Sym(t)

evλ

��
kλ,

where evλ is taking the value of a function f ∈ Sym(t) ≃ Fun(t∗) at λ ∈ t∗.

Proof. Note that χ and evλ are homomorphisms. Also, the map ∏λ∈t∗ evλ ∶ Sym(t) →∏λ∈t∗ kλ
is injective. Hence we only need to show the above diagram commutes as vector spaces.

Note that the PBW theorem also implies

U(b) ⊗
U(n)

k ≃ Sym(t)

as U(b)-modules, where the U(b)-module on the RHS is provided by the homomorphism U(b)→
U(t) ≃ Sym(t). It follows that the map (2.1) is equal to

U(g)→ k ⊗
U(n−)

U(g) ⊗
U(b)

Sym(t) ≃ Sym(t).

Then evλ ○ φ is given by

Z(g)↪ U(g)↠ k ⊗
U(n−)

U(g) ⊗
U(b)

kλ ≃ kλ,

where as before we view kλ as a U(b)-module via U(b)↠ Sym(t).
On the other hand, by definition, χ is the composition

Z(g)↪ U(g)
−⋅vλ
ÐÐ→Mλ

pr
Ð→ kλ
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where pr is the projection to the highest weight subspace. Recall

Mλ ≃ U(g) ⊗
U(b)

kλ

and via this identification, the projection pr is

U(g) ⊗
U(b)

kλ↠ k ⊗
U(n−)

U(g) ⊗
U(b)

kλ ≃ kλ.

It follows χ is also given by

Z(g)↪ U(g)↠ U(g) ⊗
U(b)

kλ↠ k ⊗
U(n−)

U(g) ⊗
U(b)

kλ ≃ kλ.

�

Notation 2.4. The homomorphism φ corresponds to a morphism between k-schemes, which
we denote by

$ ∶ t∗ → Spec(Z(g)).

Using this notation, Lemma 1.7 says

Mλ ∈ O$(λ).

In fact, it implies the schematic support of Mλ is the point $(λ) ∈ t∗.

Remark 2.5. The map $ ∶ t∗ → Spec(Z(g)) is not an isomorphism because two Verma modules
can belong to the same block.

Warning 2.6. The embedding t → g also induces an injection Sym(t) ↪ U(g), but the center
Z(g) is not contained in the image of it. This can be seen e.g. from the following exercise.

Exercise 2.7. This is Homework 2, Problem 2. Let κ ∶ g×g→ k be any nondegenerate symmetric
invariant bilinear form on g. For any basis x1,⋯, xn of g and its dual basis x∗1,⋯, x

∗

n with respect
to the form κ6, consider the Casimir element

Ωκ =
n

∑
i=1

xi ⋅ x
∗

i ∈ U(g).

(1) Prove: the Casimir element Ωκ does not depend on the choice of the basis, and is
contained in the center Z(g).

(2) For g = sl2, κ = Kil and the canonical basis e, h, f , find ΩKil and prove it is not contained
in Sym(t) ⊂ U(g).

Example 2.8. On the other hand, recall there is a nontrivial map M−l−2 →Ml for l ∈ Z≥0. It
follows that $(−l − 2) = $(l) where we identify t∗ with Spec(k[h]). Since Z≥0 ⊂ Spec(k[h])
is a dense subset7, we obtain $(−l − 2) = $(l) for any l ∈ t∗. In other words, the image of
φ ∶ Z(sl2)→ Sym(t) ≃ k[h] is invariant under the change of variable h↦ −h − 2.

Note that this can serve as a sanity-check for your calculation of ΩKil in the above exercise.

6By definition, this means κ(xi, x
∗

j )i,j is the unit matrix.
7Note that we are using the Zariski topology on Spec(k[h]). Equivalently, this means any polynomial in

k[h] that vanishes at h ∈ Z≥0 is 0.
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3. Recollection: the Weyl group

In the above example, Z(sl2) is actually isomorphic to the subalgebra of k[h] containing
exactly those polynomials that are invariant under h ↦ −h − 2. We will prove this for general
g. Namely Z(g) is isomorphic to a certain invariance of Sym(t). Let us first define the desired
symmetry on Sym(t).

Recall the following definition.

Definition 3.1. Let (E,Φ) be a root system. The Weyl group W ⊂ GLE is the subgroup

generated by the reflections sα, where sα(β) = β −
2(α,β)
(α,α)

α.

If (E,Φ) corresponds to a semisimple Lie algebra g, we also say W is the Weyl group of g
(and even of the algebraic group G).

Remark 3.2. By definition, W preserves Φ (this is an axiom of root systems) and any element
w ∈ W is determined by its action on Φ (because Φ spans E). It follows that W is a finite
subgroup because Φ is finite.

Remark 3.3. It also follows that W preserves EQ ⊂ E where recall EQ is the Q-vector space
spanned by Φ. Hence we obtain a linear W -action on t∗ ≃ k⊗QEQ. This action is often denoted
as

W × t∗ → t∗, (w,λ)↦ w(λ).

Passing to dual vector spaces, we obtained a linear W -action on t.

Remark 3.4. The Weyl groups of (E,Φ) and (E∗, Φ̌) are isomorphic such that sα corresponds
to sα̌.

Proposition 3.5. Let NG(T ) be the normalizer of T inside G. Then we have a canonical
isomorphism

W ≃ NG(T )/T

such that the W -action on t is identified with the adjoint action of NG(T )/T on Lie(T )8.

Remark 3.6. Weyl groups are (crystallographic) Coxeter groups. Namely, if we choose positive
roots Φ+ ⊂ Φ and simple roots ∆ ⊂ Φ+. Then

W = ⟨sα, α ∈ ∆ ∣ s2
α = 1, (sαsβ)

mαβ = 1, α ≠ β⟩

where mαβ ∈ {2,3,4,6}. Elements sα, α ∈ ∆ are called simple reflections.

Example 3.7. For g = sln, W is isomorphic to the symmetric group Σn and the simple
reflections are (i, i + 1) for i = 1,⋯, n − 1. The Σn-action on t is the standard one.

Example 3.8. For g = sl2, the nontrivial element s ∈W = Σ2 acts on t∗ = Spec(k[h]) as h↦ −h.
Note that this is not the reflection in Example 2.8.

Definition 3.9. Let

ρ =
1

2
∑
α∈Φ+

α

be the half-sum of all positive roots. The dotted action of W on t∗, denoted by

W × t∗ → t∗, (w,λ)↦ w ⋅ λ,

is defined to be w ⋅ λ ∶= w(λ + ρ) − ρ.

8We haven’t defined normalizers for algebraic groups, nor the quotient group NG(T )/T and its action on
Lie(T ). But nothing surprising happens here.
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Construction 3.10. The dotted W -action on t∗ is not k-linear (e.g. the fixed point is −ρ ∈ t∗).
Instead, each w ⋅ − ∶ t∗ → t∗ is an affine transformation. In particular, it is a morphism between
k-schemes and corresponds to a homomorphism Sym(t) ← Sym(t). This defines a right action
of W on Sym(t). The standard dotted W -action on Sym(t) is obtained by taking inverse.

4. The Harish-Chandra isomorphism: statement

Theorem 4.1 (Harish-Chandra). The homomorphism φ ∶ Z(g) → Sym(t) induces an isomor-
phism

φHC ∶ Z(g)
∼

Ð→ Sym(t)W●

from Z(g) to the invariance of Sym(t) with respect to the dotted W -action.

We will prove this theorem next time. For now, let us state some corollaries of it.

Corollary 4.2. The map $ ∶ t∗ → Spec(Z(g)) induces an isomorphism

t∗//W●

∼

Ð→ Spec(Z(g))

from the (GIT) quotient of t∗ by W● to Spec(Z(g)).

Remark 4.3. In algebraic geometry, the quotient of a scheme X by an algebraic group H,
defined to be the coequalizer H ×X ⇉ X, does not always exist as a scheme. Mostly for this
reason, people defined the notion of stacks such that quotients always exist as stacks.

However, the quotients inside the category of schemes and the category of stacks are different
whenever the action is not free. Hence people call the former categorical quotient and the latter
quotient stack.

On the other hand, the GIT quotient, or geometric invariant theory quotient is a variant of
the categorical quotient when we restrict to the categories of affine schemes. For X = Spec(A)

is affine, the GIT quotient is defined to be X//H ∶= Spec(AH). Therefore the above corollary
is just a rephrasing of the theorem.

Note however in general GIT quotient is not the categorical quotient 9. For example, the
categorical quotient G/B is projective rather than affine.

It is known that t∗//W● is also the categorical quotient10. But we keep this notation because
t∗/W● is reserved for the quotient stack (at least by modern mathematicians).

Proposition 4.4 (Linkage principle). Verma modules Mλ and Mµ belong to the same block
iff µ = w ⋅ λ for some w ∈ W . In particular, there are only finitely many Verma modules and
irreducible objects11 in each block.

Remark 4.5. In fact, the proposition follows from Corollary 4.2 once we know t∗//W● is a
“well-behaved” quotient. Namely, we need:

● W acts transitively along each fiber of the map t∗ → t∗//W●.

Note however that this is not true for general GIT quotients (e.g. G//B = pt)12. But we will
see next time that this is indeed true for the W -action on t∗. And we will prove t∗ → t∗//W● is
indeed surjective.

9Warning: Wikipedia falsely claims this. Maybe they mean the categorical quotient considered in the category
of affine schemes. But this is not the standard terminology.

10If you know some algebraic geometry, try proving this by yourself.
11Recall Mλ has a unique irreducible quotient Lλ, and all irreducible objects of O are of this form. See

[Thm. 25, Prop. 31, Lec. 2].
12Even worse G → G//N is not surjective because G/N is not affine. This counterexample actually plays a

role in the geometric study of Eisenstein series.
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Also, next time, we will actually first prove the “if” part of the corollary and use it to show
φ factors through the W●-invariance.

Exercise 4.6. This is Homework 2, Problem 3. Let g = sl2. Prove Z(sl2) ≃ k[ΩKil] where ΩKil is
the Casimir element. You can use Theorem 4.1 for this exercise.
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