
LECTURE 5

Last time we constructed a homomorphism φ ∶ Z(g) → Sym(t) fitting into the following
diagram

(0.1) Z(g) φ //

χλ=ξ−,λ $$

Sym(t)

evλ

��
kλ,

where for any λ ∈ t∗, χλ = ξ−,λ is the central character of the Verma module Mλ. We stated the
following result, which will be proved today.

Theorem 0.1 (Harish-Chandra). The homomorphism φ induces an isomorphism

φHC ∶ Z(g) ∼Ð→ Sym(t)W●

from Z(g) to the invariance of Sym(t) with respect to the dot W -action.

1. Step 1: image is W●-invariant

Let us first prove the image of φ is indeed contained in Sym(t)W● . Since W is generated by
simple reflections sα, α ∈ ∆, we only need to show φ(z) = sα ⋅ φ(z) for any z ∈ Z(g). In other
words, we need to show

(1.1) evλ(φ(z)) = evλ(sα ⋅ φ(z))

for any λ ∈ t∗. In fact, we only need to prove this for a Zariski dense subset of t∗. Let us first
give this dense subset. The following result is obvious after drawing a picture.

Lemma 1.1. Let α ∈ ∆ be a simple root. The subset {λ ∈ t∗ ∣ ⟨λ+ρ, α̌⟩ ∈ Z≥0} is a Zariski dense
subset of t∗.

Example 1.2. For g = sl2, this subset is Z≥−1 ⊂ A1. In fact, in [Example 2.8, Lecture 4], we
have used this subset to show the image of φ ∶ Z(sl2)→ k[h] is invariant under h↦ −h−2. The
argument below is an immediate generalization.

Lemma 1.3. Let α ∈ ∆ be a simple root and λ ∈ t∗. Suppose ⟨λ+ρ, α̌⟩ ∈ Z≥0. Then Mλ contains
Msα⋅λ as a submodule.

Corollary 1.4. The image of φ ∶ Z(g)→ Sym(t) is indeed contained in Sym(t)W● .

Proof. By previous discussion, we only need to prove (1.1) for α and λ satisfying the assumption
of Lemma 1.3. By (0.1), the LHS and RHS of (1.1) are exactly the central character of Mλ

and Msα⋅λ. Now Lemma 1.3 implies they are equal because the central character of a module
is equal to the central character of any nonzero submodule of it.

�
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2 LECTURE 5

Proof of Lemma 1.3. Recall

sα(λ) = λ − 2
(λ,α)
(α,α)α = λ − ⟨λ, α̌⟩α.

It follows that

sα ⋅ λ = λ − ⟨λ + ρ, α̌⟩α = λ −mα
for m ∈ Z≥0. The lemma is obvious for m = 0. We assume m > 0. Then we have ⟨λ, α̌⟩ = m − 1
because ⟨ρ, α̌⟩ = 1 (see [H1, Cor. to Lem. 10.2(B)]).

Let fα ∈ n− be a nonzero vector of weight −α. Consider the vector fmα ⋅vλ, which is of weight
λ −mα = sα ⋅ λ. We only need to show

n ⋅ (fmα ⋅ vλ) = 0.

Indeed, if this is true, the map ksα⋅λ →Mλ, c↦ c(fmα ⋅ vλ) is b-linear, and thereby induces a g-
linear map Msα⋅λ →Mλ. This map is injective because as a morphism between U(n−)-modules,
it is given by − ⋅ fmα ∶ U(n−)→ U(n−), which is injective by the PBW theorem.

It remains to show n annihilates fmα ⋅ vλ. For each simple root β ∈ ∆, let eβ ∈ n be a nonzero
vector of weight β. Note that the vectors (eβ)β∈∆ generate n under Lie brackets1. Hence we
only need to show eβ ⋅ fmα ⋅ vλ = 0. There are two cases:

● If α ≠ β, then [eβ , fα] = 02 and

eβ ⋅ fmα ⋅ vλ = fmα ⋅ eβ ⋅ vλ = 0

because n ⋅ vλ = 0.
● If α = β, [eα, fα] ∈ t is propotionate to α̌ (see [H1, Prop. 8.3(d)]). Rescale eα, we may

assume [eα, fα] = α̌. Then [α̌, fα] = ⟨−α, α̌⟩fα = −2fα. Now the following calculation is
essentially that in [Exercise 2.17, Lecture 2]. We have

eα ⋅ fmα ⋅ vλ = ∑
1≤i≤m

fm−i
α ⋅ [eα, fα] ⋅ f i−1

α ⋅ vλ + fmα ⋅ eα ⋅ vλ.

Recall we have eα ⋅ vλ = 0. Also,

α̌ ⋅ f jα = ∑
1≤i≤j

f j−iα ⋅ [α̌, fα] ⋅ f i−1
α + f jα ⋅ α̌ = −2jf jα + f jα ⋅ α̌.

Hence

eα ⋅ fmα ⋅ vλ = ∑
1≤i≤m

(−2(i − 1)fm−1
α + fm−1

α ⋅ α̌)vλ = ( −m(m − 1) +m⟨λ, α̌⟩)vλ = 0

as desired.

�[Lemma 1.3]

2. Step 2: Filtrations

By Step 1, we have a homomorphism

φHC ∶ Z(g)→ Sym(t)W● .

In this step, we equip both sides with filtrations, and show φHC is compatible with them. The
punchline is the following easy fact:

1Because [gα, gβ] = g
[α,β] whenever α,β,α + β ∈ Φ+.

2Otherwise it is a nonzero vector with weight β − α but the latter is not a root because Φ = Φ+ ⊔Φ−.
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Fact 2.1. Let V1 and V2 be two vector spaces equipped with Z≥0-indexed (exhausted) filtrations.
Suppose ϕ ∶ V1 → V2 is a k-linear map compatible with the filtrations. Then ϕ is an isomorphism
between filtered vector spaces iff gr●ϕ ∶ gr●V1 → gr●V2 is an isomorphism between graded vector
spaces.

Construction 2.2. The PBW filtration on U(g) induces a filtration on Z(g) with F≤iZ(g) ∶=
Z(g) ∩ F≤iU(g). Note that gr●Z(g) is a subalgebra of gr●U(g) ≃ Sym(g).

Construction 2.3. The PBW filtration on U(t) ≃ Sym(t) is preserved by the dot W -action.
Hence it induces a filtration on U(t)W●3.

Warning 2.4. The dot W -action on Sym(t) does not preserve the grading. But the usual
(linear) W -action does.

Lemma 2.5. The homomorphism φHC ∶ Z(g)→ U(t)W● is compatible with the above filtrations.

Proof. This is obvious from the description of φ as

Z(g)↪ U(g)↠ k ⊗
U(n−)

U(g) ⊗
U(n)

k ≃ U(t).

�

3. Step 3: Calculating the graded pieces

Construction 3.1. Recall Sym(g) has a natural g-module structure constructed as follows. For
any V ∈ g, there is a natural g-module structure on V ⊗n given by

g × V ⊗n → V ⊗n, (x,⊗
i
vi)↦∑

i

(v1 ⊗⋯⊗ vi−1 ⊗ (x ⋅ vi)⊗ vi+1⋯⊗ vn).

This action is compatible with the symmetric group Σn-action on V ⊗n and thereby induces a
g-module structure on Symn(V ). Taking direct sum, we obtain a g-module structure on Sym(V ).

In the case V = g, to distinguish with the multiplication structure on Sym(g), we denote this
action by

g × Sym(g)→ Sym(g), (x,u)↦ adx(u),
and call it the adjoint action.

Note that by definition, for x ∈ g and u, v ∈ Sym(g), we have

adx(u ⋅ v) = adx(u) ⋅ v + u ⋅ adx(v).
In particular, the g-invariance

Sym(g)g ∶= {u ∈ Sym(g) ∣ adx(u) = 0 for any x ∈ g}
is a subalgebra of Sym(g).

Lemma 3.2. There is a unique dotted graded isomorphism making the following diagram com-
mute

gr●Z(g) ≃ //

⊂
��

Sym(g)g

⊂
��

gr●U(g) ≃ // Sym(g),
where the bottom isomorphism is given by the PBW theorem.

To prove this lemma, we use the following exercise:

3Note that gr●U(t) is also isomorphic to Sym(t). To distinguish them, we always use U(t) to denote the
filtered commutative ring while use Sym(t) to denote the graded commutative ring.
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Exercise 3.3. This is Homework 2, Problem 4. Prove: the adjoint g-action on U(g), i.e.,

g ×U(g)→ U(g), (x,u)↦ adx(u) = [x,u],
preserves each F≤nU(g), and the induced g-action on gr●(U(g)) ≃ Sym(g) is the adjoint action
in Construction 3.1.

Proof of Lemma 3.2. By the above exercise, we have a short exact sequence of finite-
dimensional g-modules:

0→ F≤n−1U(g)→ F≤nU(g)→ Symn(g)→ 0.

Since g−modfd is semisimple, this short exact sequence splits. Hence taking g-invariance, we
obtain4

0→ F≤n−1Z(g)→ F≤nZ(g)→ Symn(g)g → 0

This gives the desired isomorphism grnZ(g) ≃ Symn(g)g.
�[Lemma 3.2]

A similar proof5 gives:

Lemma 3.4. There is a unique dotted graded isomorphism making the following diagram com-
mute

gr●(U(t)W●) ≃ //

⊂
��

Sym(t)W

⊂
��

gr●U(t) ≃ // Sym(t),
where the right-top corner is the invariance for the linear W -action on Sym(t).

Combining the above two lemmas, we obtain:

Corollary 3.5. There is a unique dotted graded homomorphism making the following diagram
commute

gr●Z(g) ≃ //

gr●φHC

��

Sym(g)g

φcl

��
gr●(U(t)W●) ≃ // Sym(t)W .

4. Step 4: Chevalley isomorphism

It remains to show
φcl ∶ Sym(g)g → Sym(t)W

is an isomorphism. Let us first give an explicit construction of this homomorphism. We need
the following characterization of φ.

Construction 4.1. Consider the composition

Z(g)↪ U(g)↠ U(g) ⊗
U(n)

k.

With respect to the adjoint t-action, the source has weight 0. Hence the composition factors
through the 0-weight subspace of the target, which is exactly U(b)⊗U(n) k ≃ U(t). By definition,
the obtained map

Z(g)→ U(t)
4 Warning: in general, taking invariance is only left exact. (Memory method: it is given by Homg(k,−).)

Hence we need the existence of a splitting.
5Note that Rep(W )fd is also semisimple
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is just φ.

Construction 4.2. It follows φcl can be constructed as follows. Consider the composition

(4.1) Sym(g)g ↪ Sym(g)↠ Sym(g/n).
It factors through Sym(b/n) ≃ Sym(t). The obtained map

Sym(g)g → Sym(t)
can be identified with gr●φ. Since φ factors through U(t)W● , the map gr●φ factors through
gr●(U(t)W●) ≃ Sym(t)W . The obtained map

Sym(g)g → Sym(t)W

is just φcl.

Remark 4.3. The geometric meaning of the above construction is as follows.
Note that Sym(g)g = Sym(g)G because G-invariance is equal to g-invariance6. Hence (4.1)

corresponds to the morphisms
(g/n)∗ → g∗ → g∗//G.

Since gr●φ factors through gr●(U(t)W●) ≃ Sym(t)W . The above composition factors through
(g/n)∗ → (b/n)∗ ≃ t∗ → t∗//W . In other words, we have

(g/n)∗ //

��

g∗//G

t∗ // t∗//W

OO

such that the dotted arrow is given by Spec(φcl).
It is convenient to get rid of the dual spaces using the Killing form. Namely, Kil induces an

isomorphism g ≃ g∗ compatible with the G-actions, while Kil∣t induces an isomorphism t ≃ t∗

compatible with the W -actions7. Via the first isomorphism, the subspaces n ⊂ b ⊂ g corresponds
to (g/b)∗ ⊂ (g/n)∗ ⊂ g. Then the above commutative diagram is identified with

(4.2) b //

��

g//G

t // t//W.

OO

We abuse notations and also view the dotted arrow as Spec(φcl).

Remark 4.4. Since the projection b→ t has a splitting t→ b. The above claim implies Spec(φcl)
can be characterized as the following dotted arrow

g // g//G

t //

OO

t//W.

OO

We can also prove the existence of this map using group-theoretic method. Namely, consider the
normalizer NG(T ) of T insider G. Recall we have W ≃ NG(T )/T such that the linear W -action

6Because Rep(G)→ g−mod is fully faithful when G is connected.
7Both claims follow from the fact that Kil is invariant with respect to the adjoint g-action and thereby to the

adjoint G-action. Here we use W ≃ NG(T )/T .
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on t can be identified with the adjoint action of NG(T )/T . Then the morphism t → g → g//G
factors through t//W because NG(T ) is a subgroup of G.

Warning 4.5. I do not know any group-theoretic proof of (4.2). This is because not b → g/G
(the quotient stack) does not factor through t: two elements in b that have the same image in
t are not necessarily conjugate to each other. In fact, the 0-fiber of the map g → g//G contains
exactly the nilpotent elements in g.

Theorem 4.6 (Chevalley). The homomorphism

φcl ∶ Sym(g)g → Sym(t)W

is an isomorphism. In other words, the natural morphism t//W → g//G is an isomorphism.

Proof. As in Remark 4.3, we can identify φcl with the restriction map Fun(g)G → Fun(t)W ,
which is also Sym(g∗)G → Sym(t∗)W .

This map is injective because if an adjoint-invariant function on g vanishes on t, then it
vanishes on each semisimple elements. But the latter are Zariski dense in g.

To prove the surjectivity, we first find generators of Sym(t∗)W as follows. Recall the subset
P + of dominant integral weights, i.e.,

P + ∶= {λ ∈ t∗ ∣ ⟨λ, α̌⟩ ∈ Z≥0 for all α ∈ ∆}.
Note that P + spans t∗. In fact, for each α ∈ ∆, we can find fundamental dominant weights
ωα such that

⟨ωα, β̌⟩ = δαβ , α, β ∈ ∆.

Then {ωα} is a basis of t∗ and P + = Z≥0{ωα}. A direct calculation shows that {λn ∣λ ∈ P +}
span Symn(t∗). Hence the sums

bλ,n ∶= ∑
w∈W

w(λn), λ ∈ P +, n ≥ 0

span Sym(t∗)W .
It remains to show each bλ,n is contained in the image of φcl. We need the following well-

known fact.

Theorem 4.7 (Weyl). For any λ ∈ P +, there is a unique finite-dimensional irreducible g-module
Lλ with higheset weight λ.

For λ ∈ P +, n ≥ 0, consider the function aλ,n ∈ Fun(g) defined by

aλ,n(x) ∶= tr(xn;Lλ),
i.e., its value at any x ∈ g is the trace of the action of xn on Lλ. It is easy to see aλ,n is
g-invariant8 and thereby G-invariant.

Now the following exercise implies each bλ,n is contained in the image of φcl. Indeed, this
follows from induction on λ with respect to the partial ordering ≺9.

Exercise 4.8. This is Homework 2, Problem 5. Let λ ∈ P + be a dominant integral weight and
n ≥ 0. Prove there exists scalars cλ′ ∈ k, λ′ ≺ λ such that

φcl(aλ,n) = aλ,n∣t =
1

#StabW (λ)bλ,n + ∑λ′≺λ
cλ′bλ′,n,

where StabW (λ) ⊂W is the stablizer of the W -action at λ.

8Recall Lλ is Gsc-integrable ([Theorem 6.4, Lecture 3]). Hence aλ,n is Gsc-invariant, and thereby g-invariant.
9Recall λ′ ⪯ λ iff λ − λ′ ∈ Z≥0Φ+. See [Definition 2.15, Lecture 2].
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�
Combining all the previous discussion, we finish the proof of Theorem 0.1.
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