Last time we constructed a homomorphism  $\phi: Z(\mathfrak{g}) \to \mathsf{Sym}(\mathfrak{t})$  fitting into the following diagram



where for any  $\lambda \in \mathfrak{t}^*$ ,  $\chi_{\lambda} = \xi_{-,\lambda}$  is the central character of the Verma module  $M_{\lambda}$ . We stated the following result, which will be proved today.

**Theorem 0.1** (Harish-Chandra). The homomorphism  $\phi$  induces an isomorphism

$$\phi_{\mathsf{HC}}: Z(\mathfrak{g}) \xrightarrow{\sim} \mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}$$

from  $Z(\mathfrak{g})$  to the invariance of  $Sym(\mathfrak{t})$  with respect to the dot W-action.

## 1. Step 1: image is $W_{\bullet}$ -invariant

Let us first prove the image of  $\phi$  is indeed contained in  $\mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}$ . Since W is generated by simple reflections  $s_{\alpha}, \alpha \in \Delta$ , we only need to show  $\phi(z) = s_{\alpha} \cdot \phi(z)$  for any  $z \in Z(\mathfrak{g})$ . In other words, we need to show

(1.1) 
$$\operatorname{ev}_{\lambda}(\phi(z)) = \operatorname{ev}_{\lambda}(s_{\alpha} \cdot \phi(z))$$

for any  $\lambda \in \mathfrak{t}^*$ . In fact, we only need to prove this for a Zariski dense subset of  $\mathfrak{t}^*$ . Let us first give this dense subset. The following result is obvious after drawing a picture.

**Lemma 1.1.** Let  $\alpha \in \Delta$  be a simple root. The subset  $\{\lambda \in \mathfrak{t}^* | \langle \lambda + \rho, \check{\alpha} \rangle \in \mathbb{Z}^{\geq 0}\}$  is a Zariski dense subset of  $\mathfrak{t}^*$ .

**Example 1.2.** For  $\mathfrak{g} = \mathfrak{sl}_2$ , this subset is  $\mathbb{Z}^{\geq -1} \subset \mathbb{A}^1$ . In fact, in [Example 2.8, Lecture 4], we have used this subset to show the image of  $\phi : Z(\mathfrak{sl}_2) \to k[h]$  is invariant under  $h \mapsto -h-2$ . The argument below is an immediate generalization.

**Lemma 1.3.** Let  $\alpha \in \Delta$  be a simple root and  $\lambda \in \mathfrak{t}^*$ . Suppose  $(\lambda + \rho, \check{\alpha}) \in \mathbb{Z}^{\geq 0}$ . Then  $M_{\lambda}$  contains  $M_{s_{\alpha}:\lambda}$  as a submodule.

**Corollary 1.4.** The image of  $\phi: Z(\mathfrak{g}) \to Sym(\mathfrak{t})$  is indeed contained in  $Sym(\mathfrak{t})^{W_{\bullet}}$ .

*Proof.* By previous discussion, we only need to prove (1.1) for  $\alpha$  and  $\lambda$  satisfying the assumption of Lemma 1.3. By (0.1), the LHS and RHS of (1.1) are exactly the central character of  $M_{\lambda}$  and  $M_{s_{\alpha}\cdot\lambda}$ . Now Lemma 1.3 implies they are equal because the central character of a module is equal to the central character of any nonzero submodule of it.

Date: Mar 25, 2024.

Proof of Lemma 1.3. Recall

$$s_{\alpha}(\lambda) = \lambda - 2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha = \lambda - \langle \lambda, \check{\alpha} \rangle \alpha.$$

It follows that

$$s_{\alpha} \cdot \lambda = \lambda - \langle \lambda + \rho, \check{\alpha} \rangle \alpha = \lambda - m\alpha$$

for  $m \in \mathbb{Z}^{\geq 0}$ . The lemma is obvious for m = 0. We assume m > 0. Then we have  $\langle \lambda, \check{\alpha} \rangle = m - 1$  because  $\langle \rho, \check{\alpha} \rangle = 1$  (see [H1, Cor. to Lem. 10.2(B)]).

Let  $f_{\alpha} \in \mathfrak{n}^{-}$  be a nonzero vector of weight  $-\alpha$ . Consider the vector  $f_{\alpha}^{m} \cdot v_{\lambda}$ , which is of weight  $\lambda - m\alpha = s_{\alpha} \cdot \lambda$ . We only need to show

$$\mathbf{n} \cdot (f_{\alpha}^m \cdot v_{\lambda}) = 0.$$

Indeed, if this is true, the map  $k_{s_{\alpha}\cdot\lambda} \to M_{\lambda}$ ,  $c \mapsto c(f_{\alpha}^m \cdot v_{\lambda})$  is  $\mathfrak{b}$ -linear, and thereby induces a  $\mathfrak{g}$ -linear map  $M_{s_{\alpha}\cdot\lambda} \to M_{\lambda}$ . This map is injective because as a morphism between  $U(\mathfrak{n}^-)$ -modules, it is given by  $-\cdot f_{\alpha}^m : U(\mathfrak{n}^-) \to U(\mathfrak{n}^-)$ , which is injective by the PBW theorem.

It remains to show  $\mathfrak{n}$  annihilates  $f_{\alpha}^m \cdot v_{\lambda}$ . For each simple root  $\beta \in \Delta$ , let  $e_{\beta} \in \mathfrak{n}$  be a nonzero vector of weight  $\beta$ . Note that the vectors  $(e_{\beta})_{\beta \in \Delta}$  generate  $\mathfrak{n}$  under Lie brackets<sup>1</sup>. Hence we only need to show  $e_{\beta} \cdot f_{\alpha}^m \cdot v_{\lambda} = 0$ . There are two cases:

• If  $\alpha \neq \beta$ , then  $[e_{\beta}, f_{\alpha}] = 0^2$  and

$$e_{\beta} \cdot f_{\alpha}^{m} \cdot v_{\lambda} = f_{\alpha}^{m} \cdot e_{\beta} \cdot v_{\lambda} = 0$$

because  $\mathbf{n} \cdot v_{\lambda} = 0$ .

• If  $\alpha = \beta$ ,  $[e_{\alpha}, f_{\alpha}] \in \mathfrak{t}$  is proportionate to  $\check{\alpha}$  (see [H1, Prop. 8.3(d)]). Rescale  $e_{\alpha}$ , we may assume  $[e_{\alpha}, f_{\alpha}] = \check{\alpha}$ . Then  $[\check{\alpha}, f_{\alpha}] = \langle -\alpha, \check{\alpha} \rangle f_{\alpha} = -2f_{\alpha}$ . Now the following calculation is essentially that in [Exercise 2.17, Lecture 2]. We have

$$e_{\alpha} \cdot f_{\alpha}^{m} \cdot v_{\lambda} = \sum_{1 \le i \le m} f_{\alpha}^{m-i} \cdot [e_{\alpha}, f_{\alpha}] \cdot f_{\alpha}^{i-1} \cdot v_{\lambda} + f_{\alpha}^{m} \cdot e_{\alpha} \cdot v_{\lambda}.$$

Recall we have  $e_{\alpha} \cdot v_{\lambda} = 0$ . Also,

$$\check{\alpha} \cdot f_{\alpha}^{j} = \sum_{1 \le i \le j} f_{\alpha}^{j-i} \cdot \left[\check{\alpha}, f_{\alpha}\right] \cdot f_{\alpha}^{i-1} + f_{\alpha}^{j} \cdot \check{\alpha} = -2jf_{\alpha}^{j} + f_{\alpha}^{j} \cdot \check{\alpha}.$$

Hence

$$e_{\alpha} \cdot f_{\alpha}^{m} \cdot v_{\lambda} = \sum_{1 \le i \le m} \left( -2(i-1)f_{\alpha}^{m-1} + f_{\alpha}^{m-1} \cdot \check{\alpha} \right) v_{\lambda} = \left( -m(m-1) + m\langle\lambda,\check{\alpha}\rangle \right) v_{\lambda} = 0$$

as desired.

 $\Box$ [Lemma 1.3]

### 2. Step 2: Filtrations

By Step 1, we have a homomorphism

$$\phi_{\mathsf{HC}}: Z(\mathfrak{g}) \to \mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}$$

In this step, we equip both sides with filtrations, and show  $\phi_{HC}$  is compatible with them. The punchline is the following easy fact:

<sup>&</sup>lt;sup>1</sup>Because  $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \mathfrak{g}_{[\alpha,\beta]}$  whenever  $\alpha,\beta,\alpha+\beta\in\Phi^+$ .

<sup>&</sup>lt;sup>2</sup>Otherwise it is a nonzero vector with weight  $\beta - \alpha$  but the latter is not a root because  $\Phi = \Phi^+ \sqcup \Phi^-$ .

**Fact 2.1.** Let  $V_1$  and  $V_2$  be two vector spaces equipped with  $\mathbb{Z}^{\geq 0}$ -indexed (exhausted) filtrations. Suppose  $\varphi: V_1 \to V_2$  is a k-linear map compatible with the filtrations. Then  $\varphi$  is an isomorphism between filtered vector spaces iff  $\operatorname{gr}^{\bullet} \varphi: \operatorname{gr}^{\bullet} V_1 \to \operatorname{gr}^{\bullet} V_2$  is an isomorphism between graded vector spaces.

**Construction 2.2.** The PBW filtration on  $U(\mathfrak{g})$  induces a filtration on  $Z(\mathfrak{g})$  with  $\mathsf{F}^{\leq i}Z(\mathfrak{g}) := Z(\mathfrak{g}) \cap \mathsf{F}^{\leq i}U(\mathfrak{g})$ . Note that  $\mathsf{gr}^{\bullet}Z(\mathfrak{g})$  is a subalgebra of  $\mathsf{gr}^{\bullet}U(\mathfrak{g}) \simeq \mathsf{Sym}(\mathfrak{g})$ .

**Construction 2.3.** The PBW filtration on  $U(\mathfrak{t}) \simeq Sym(\mathfrak{t})$  is preserved by the dot W-action. Hence it induces a filtration on  $U(\mathfrak{t})^{W_{\bullet}3}$ .

**Warning 2.4.** The dot W-action on Sym(t) does not preserve the grading. But the usual (linear) W-action does.

**Lemma 2.5.** The homomorphism  $\phi_{\mathsf{HC}}: Z(\mathfrak{g}) \to U(\mathfrak{t})^{W_{\bullet}}$  is compatible with the above filtrations.

*Proof.* This is obvious from the description of  $\phi$  as

$$Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \twoheadrightarrow k \underset{U(\mathfrak{n}^{-})}{\otimes} U(\mathfrak{g}) \underset{U(\mathfrak{n})}{\otimes} k \simeq U(\mathfrak{t}).$$

## 3. Step 3: Calculating the graded pieces

**Construction 3.1.** Recall  $Sym(\mathfrak{g})$  has a natural  $\mathfrak{g}$ -module structure constructed as follows. For any  $V \in \mathfrak{g}$ , there is a natural  $\mathfrak{g}$ -module structure on  $V^{\otimes n}$  given by

$$\mathfrak{g} \times V^{\otimes n} \to V^{\otimes n}, \ (x, \underset{i}{\otimes} v_i) \mapsto \sum_i (v_1 \otimes \cdots \otimes v_{i-1} \otimes (x \cdot v_i) \otimes v_{i+1} \cdots \otimes v_n).$$

This action is compatible with the symmetric group  $\Sigma_n$ -action on  $V^{\otimes n}$  and thereby induces a  $\mathfrak{g}$ -module structure on  $\operatorname{Sym}^n(V)$ . Taking direct sum, we obtain a  $\mathfrak{g}$ -module structure on  $\operatorname{Sym}(V)$ .

In the case  $V = \mathfrak{g}$ , to distinguish with the multiplication structure on  $Sym(\mathfrak{g})$ , we denote this action by

$$\mathfrak{g} \times \operatorname{Sym}(\mathfrak{g}) \to \operatorname{Sym}(\mathfrak{g}), \ (x, u) \mapsto \operatorname{ad}_x(u),$$

and call it the adjoint action.

Note that by definition, for  $x \in \mathfrak{g}$  and  $u, v \in Sym(\mathfrak{g})$ , we have

$$\operatorname{ad}_x(u \cdot v) = \operatorname{ad}_x(u) \cdot v + u \cdot \operatorname{ad}_x(v).$$

In particular, the  $\mathfrak{g}$ -invariance

$$\mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}} := \{ u \in \mathsf{Sym}(\mathfrak{g}) \mid \mathsf{ad}_x(u) = 0 \text{ for any } x \in \mathfrak{g} \}$$

is a subalgebra of Sym(g).

**Lemma 3.2.** There is a unique dotted graded isomorphism making the following diagram commute

where the bottom isomorphism is given by the PBW theorem.

To prove this lemma, we use the following exercise:

<sup>&</sup>lt;sup>3</sup>Note that  $gr^{\bullet}U(\mathfrak{t})$  is also isomorphic to  $\mathsf{Sym}(\mathfrak{t})$ . To distinguish them, we always use  $U(\mathfrak{t})$  to denote the filtered commutative ring while use  $\mathsf{Sym}(\mathfrak{t})$  to denote the graded commutative ring.

*Exercise* 3.3. This is Homework 2, Problem 4. Prove: the adjoint g-action on  $U(\mathfrak{g})$ , i.e.,

$$\mathfrak{g} \times U(\mathfrak{g}) \to U(\mathfrak{g}), \ (x, u) \mapsto \operatorname{ad}_x(u) = [x, u],$$

preserves each  $\mathsf{F}^{\leq n}U(\mathfrak{g})$ , and the induced  $\mathfrak{g}$ -action on  $\mathsf{gr}^{\bullet}(U(\mathfrak{g})) \simeq \mathsf{Sym}(\mathfrak{g})$  is the adjoint action in Construction 3.1.

*Proof of Lemma 3.2.* By the above exercise, we have a short exact sequence of *finitedimensional*  $\mathfrak{g}$ -modules:

$$0 \to \mathsf{F}^{\leq n-1}U(\mathfrak{g}) \to \mathsf{F}^{\leq n}U(\mathfrak{g}) \to \operatorname{Sym}^{n}(\mathfrak{g}) \to 0.$$

Since  $\mathfrak{g}\text{-}\mathsf{mod}_{\mathsf{fd}}$  is semisimple, this short exact sequence splits. Hence taking  $\mathfrak{g}\text{-}\mathrm{invariance},$  we obtain  $^4$ 

$$0 \to \mathsf{F}^{\leq n-1}Z(\mathfrak{g}) \to \mathsf{F}^{\leq n}Z(\mathfrak{g}) \to \mathsf{Sym}^n(\mathfrak{g})^{\mathfrak{g}} \to 0$$

This gives the desired isomorphism  $\operatorname{gr}^n Z(\mathfrak{g}) \simeq \operatorname{Sym}^n(\mathfrak{g})^{\mathfrak{g}}$ .

A similar  $\text{proof}^5$  gives:

**Lemma 3.4.** There is a unique dotted graded isomorphism making the following diagram commute

where the right-top corner is the invariance for the linear W-action on Sym(t).

Combining the above two lemmas, we obtain:

**Corollary 3.5.** There is a unique dotted graded homomorphism making the following diagram commute

4. Step 4: Chevalley isomorphism

It remains to show

$$\phi_{\mathsf{cl}}:\mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}}\to\mathsf{Sym}(\mathfrak{t})^W$$

is an isomorphism. Let us first give an explicit construction of this homomorphism. We need the following characterization of  $\phi$ .

Construction 4.1. Consider the composition

$$Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \twoheadrightarrow U(\mathfrak{g}) \bigotimes_{U(\mathfrak{g})} k.$$

With respect to the adjoint t-action, the source has weight 0. Hence the composition factors through the 0-weight subspace of the target, which is exactly  $U(\mathfrak{b}) \otimes_{U(\mathfrak{n})} k \simeq U(\mathfrak{t})$ . By definition, the obtained map

$$Z(\mathfrak{g}) \to U(\mathfrak{t})$$

 $\Box$ [Lemma 3.2]

<sup>&</sup>lt;sup>4</sup> Warning: in general, taking invariance is only *left exact*. (Memory method: it is given by  $Hom_{\mathfrak{g}}(k, -)$ .) Hence we need the existence of a splitting.

<sup>&</sup>lt;sup>5</sup>Note that  $\operatorname{Rep}(W)_{\mathsf{fd}}$  is also semisimple

is just  $\phi$ .

**Construction 4.2.** It follows  $\phi_{cl}$  can be constructed as follows. Consider the composition

(4.1) 
$$\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \hookrightarrow \operatorname{Sym}(\mathfrak{g}) \twoheadrightarrow \operatorname{Sym}(\mathfrak{g}/\mathfrak{n}).$$

It factors through  $Sym(\mathfrak{b}/\mathfrak{n}) \simeq Sym(\mathfrak{t})$ . The obtained map

$$\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \operatorname{Sym}(\mathfrak{t})$$

can be identified with  $\mathbf{gr}^{\bullet}\phi$ . Since  $\phi$  factors through  $U(\mathfrak{t})^{W_{\bullet}}$ , the map  $\mathbf{gr}^{\bullet}\phi$  factors through  $\mathbf{gr}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \simeq \operatorname{Sym}(\mathfrak{t})^{W}$ . The obtained map

$$\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \operatorname{Sym}(\mathfrak{t})^W$$

is just  $\phi_{cl}$ .

Remark 4.3. The geometric meaning of the above construction is as follows.

Note that  $\mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}} = \mathsf{Sym}(\mathfrak{g})^G$  because *G*-invariance is equal to  $\mathfrak{g}$ -invariance<sup>6</sup>. Hence (4.1) corresponds to the morphisms

$$(\mathfrak{g}/\mathfrak{n})^* \to \mathfrak{g}^* \to \mathfrak{g}^*//G.$$

Since  $\operatorname{\mathsf{gr}}^{\bullet}\phi$  factors through  $\operatorname{\mathsf{gr}}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \simeq \operatorname{\mathsf{Sym}}(\mathfrak{t})^{W}$ . The above composition factors through  $(\mathfrak{g}/\mathfrak{n})^{*} \rightarrow (\mathfrak{b}/\mathfrak{n})^{*} \simeq \mathfrak{t}^{*} \rightarrow \mathfrak{t}^{*}/\!/W$ . In other words, we have

$$\begin{array}{cccc} (\mathfrak{g/n})^* \longrightarrow \mathfrak{g}^* /\!\!/ G \\ & & & \\ & & & \\ & & & \\ \mathfrak{t}^* \longrightarrow \mathfrak{t}^* /\!\!/ W \end{array}$$

such that the dotted arrow is given by  $\text{Spec}(\phi_{cl})$ .

It is convenient to get rid of the dual spaces using the Killing form. Namely, Kil induces an isomorphism  $\mathfrak{g} \simeq \mathfrak{g}^*$  compatible with the *G*-actions, while Kil|<sub>t</sub> induces an isomorphism  $\mathfrak{t} \simeq \mathfrak{t}^*$  compatible with the *W*-actions<sup>7</sup>. Via the first isomorphism, the subspaces  $\mathfrak{n} \subset \mathfrak{b} \subset \mathfrak{g}$  corresponds to  $(\mathfrak{g}/\mathfrak{b})^* \subset (\mathfrak{g}/\mathfrak{n})^* \subset \mathfrak{g}$ . Then the above commutative diagram is identified with

We abuse notations and also view the dotted arrow as  $Spec(\phi_{cl})$ .

Remark 4.4. Since the projection  $\mathfrak{b} \to \mathfrak{t}$  has a splitting  $\mathfrak{t} \to \mathfrak{b}$ . The above claim implies  $\mathsf{Spec}(\phi_{\mathsf{cl}})$  can be characterized as the following dotted arrow

$$\begin{array}{c} \mathfrak{g} \longrightarrow \mathfrak{g}/\!/G \\ \uparrow & & \uparrow \\ \mathfrak{t} \longrightarrow \mathfrak{t}/\!/W. \end{array}$$

We can also prove the existence of this map using group-theoretic method. Namely, consider the normalizer  $N_G(T)$  of T insider G. Recall we have  $W \simeq N_G(T)/T$  such that the linear W-action

<sup>&</sup>lt;sup>6</sup>Because  $\operatorname{Rep}(G) \to \mathfrak{g}\operatorname{\mathsf{-mod}}$  is fully faithful when G is connected.

<sup>&</sup>lt;sup>7</sup>Both claims follow from the fact that Kil is invariant with respect to the adjoint g-action and thereby to the adjoint G-action. Here we use  $W \simeq N_G(T)/T$ .

on t can be identified with the adjoint action of  $N_G(T)/T$ . Then the morphism  $\mathfrak{t} \to \mathfrak{g} \to \mathfrak{g}/\!/G$  factors through  $\mathfrak{t}/\!/W$  because  $N_G(T)$  is a subgroup of G.

**Warning 4.5.** I do not know any group-theoretic proof of (4.2). This is because not  $\mathfrak{b} \to \mathfrak{g}/G$  (the quotient stack) does not factor through  $\mathfrak{t}$ : two elements in  $\mathfrak{b}$  that have the same image in  $\mathfrak{t}$  are not necessarily conjugate to each other. In fact, the 0-fiber of the map  $\mathfrak{g} \to \mathfrak{g}//G$  contains exactly the nilpotent elements in  $\mathfrak{g}$ .

**Theorem 4.6** (Chevalley). The homomorphism

 $\phi_{\mathsf{cl}}: \mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \mathsf{Sym}(\mathfrak{t})^W$ 

is an isomorphism. In other words, the natural morphism  $\mathfrak{t}/|W \to \mathfrak{g}|/G$  is an isomorphism.

*Proof.* As in Remark 4.3, we can identify  $\phi_{cl}$  with the restriction map  $\operatorname{Fun}(\mathfrak{g})^G \to \operatorname{Fun}(\mathfrak{t})^W$ , which is also  $\operatorname{Sym}(\mathfrak{g}^*)^G \to \operatorname{Sym}(\mathfrak{t}^*)^W$ .

This map is injective because if an adjoint-invariant function on  $\mathfrak{g}$  vanishes on  $\mathfrak{t}$ , then it vanishes on each semisimple elements. But the latter are Zariski dense in  $\mathfrak{g}$ .

To prove the surjectivity, we first find generators of  $Sym(\mathfrak{t}^*)^W$  as follows. Recall the subset  $P^+$  of **dominant integral weights**, i.e.,

$$P^{+} \coloneqq \{\lambda \in \mathfrak{t}^{*} \mid \langle \lambda, \check{\alpha} \rangle \in \mathbb{Z}^{\geq 0} \text{ for all } \alpha \in \Delta \}$$

Note that  $P^+$  spans  $\mathfrak{t}^*$ . In fact, for each  $\alpha \in \Delta$ , we can find **fundamental dominant weights**  $\omega_{\alpha}$  such that

$$\langle \omega_{\alpha}, \beta \rangle = \delta_{\alpha\beta}, \ \alpha, \beta \in \Delta.$$

Then  $\{\omega_{\alpha}\}$  is a basis of  $\mathfrak{t}^*$  and  $P^+ = \mathbb{Z}^{\geq 0}\{\omega_{\alpha}\}$ . A direct calculation shows that  $\{\lambda^n | \lambda \in P^+\}$  span  $\mathsf{Sym}^n(\mathfrak{t}^*)$ . Hence the sums

$$b_{\lambda,n} \coloneqq \sum_{w \in W} w(\lambda^n), \ \lambda \in P^+, n \ge 0$$

span Sym $(\mathfrak{t}^*)^W$ .

It remains to show each  $b_{\lambda,n}$  is contained in the image of  $\phi_{cl}$ . We need the following well-known fact.

**Theorem 4.7** (Weyl). For any  $\lambda \in P^+$ , there is a unique finite-dimensional irreducible  $\mathfrak{g}$ -module  $L_{\lambda}$  with higheset weight  $\lambda$ .

For  $\lambda \in P^+$ ,  $n \ge 0$ , consider the function  $a_{\lambda,n} \in \mathsf{Fun}(\mathfrak{g})$  defined by

$$a_{\lambda,n}(x) \coloneqq \operatorname{tr}(x^n; L_{\lambda}),$$

i.e., its value at any  $x \in \mathfrak{g}$  is the trace of the action of  $x^n$  on  $L_{\lambda}$ . It is easy to see  $a_{\lambda,n}$  is  $\mathfrak{g}$ -invariant<sup>8</sup> and thereby *G*-invariant.

Now the following exercise implies each  $b_{\lambda,n}$  is contained in the image of  $\phi_{cl}$ . Indeed, this follows from induction on  $\lambda$  with respect to the partial ordering  $<^9$ .

*Exercise* 4.8. This is Homework 2, Problem 5. Let  $\lambda \in P^+$  be a dominant integral weight and  $n \ge 0$ . Prove there exists scalars  $c_{\lambda'} \in k$ ,  $\lambda' \prec \lambda$  such that

$$\phi_{\mathsf{cl}}(a_{\lambda,n}) = a_{\lambda,n}|_{\mathfrak{t}} = \frac{1}{\#\mathsf{Stab}_W(\lambda)} b_{\lambda,n} + \sum_{\lambda' < \lambda} c_{\lambda'} b_{\lambda',n},$$

where  $\mathsf{Stab}_W(\lambda) \subset W$  is the stablizer of the W-action at  $\lambda$ .

<sup>&</sup>lt;sup>8</sup>Recall  $L_{\lambda}$  is  $G_{sc}$ -integrable ([Theorem 6.4, Lecture 3]). Hence  $a_{\lambda,n}$  is  $G_{sc}$ -invariant, and thereby g-invariant. <sup>9</sup>Recall  $\lambda' \leq \lambda$  iff  $\lambda - \lambda' \in \mathbb{Z}^{\geq 0} \Phi^+$ . See [Definition 2.15, Lecture 2].

Combining all the previous discussion, we finish the proof of Theorem 0.1.

## References

- [H1] Humphreys, James E. Introduction to Lie algebras and representation theory. Vol. 9. Springer Science & Business Media, 2012.
- [H2] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.