LECTURE 5

Last time we constructed a homomorphism $\phi: Z(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{t})$ fitting into the following diagram

where for any $\lambda \in \mathfrak{t}^{*}, \chi_{\lambda}=\xi_{-, \lambda}$ is the central character of the Verma module M_{λ}. We stated the following result, which will be proved today.

Theorem 0.1 (Harish-Chandra). The homomorphism ϕ induces an isomorphism

$$
\phi_{\mathrm{HC}}: Z(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Sym}(\mathfrak{t})^{W \cdot}
$$

from $Z(\mathfrak{g})$ to the invariance of $\operatorname{Sym}(\mathfrak{t})$ with respect to the dot W-action.

1. Step 1: image is W_{\bullet}-Invariant

Let us first prove the image of ϕ is indeed contained in $\operatorname{Sym}(\mathfrak{t})^{W \bullet}$. Since W is generated by simple reflections $s_{\alpha}, \alpha \in \Delta$, we only need to show $\phi(z)=s_{\alpha} \cdot \phi(z)$ for any $z \in Z(\mathfrak{g})$. In other words, we need to show

$$
\begin{equation*}
\operatorname{ev}_{\lambda}(\phi(z))=\operatorname{ev}_{\lambda}\left(s_{\alpha} \cdot \phi(z)\right) \tag{1.1}
\end{equation*}
$$

for any $\lambda \in \mathfrak{t}^{*}$. In fact, we only need to prove this for a Zariski dense subset of \mathfrak{t}^{*}. Let us first give this dense subset. The following result is obvious after drawing a picture.

Lemma 1.1. Let $\alpha \in \Delta$ be a simple root. The subset $\left\{\lambda \in \mathfrak{t}^{*} \mid\langle\lambda+\rho, \check{\alpha}\rangle \in \mathbb{Z}^{\geq 0}\right\}$ is a Zariski dense subset of \mathfrak{t}^{*}.

Example 1.2. For $\mathfrak{g}=\mathfrak{s l}_{2}$, this subset is $\mathbb{Z}^{\geq-1} \subset \mathbb{A}^{1}$. In fact, in [Example 2.8, Lecture 4], we have used this subset to show the image of $\phi: Z\left(\mathfrak{s l}_{2}\right) \rightarrow k[h]$ is invariant under $h \mapsto-h-2$. The argument below is an immediate generalization.

Lemma 1.3. Let $\alpha \in \Delta$ be a simple root and $\lambda \in \mathfrak{t}^{*}$. Suppose $\langle\lambda+\rho, \check{\alpha}\rangle \in \mathbb{Z}^{\geq 0}$. Then M_{λ} contains $M_{s_{\alpha} \cdot \lambda}$ as a submodule.
Corollary 1.4. The image of $\phi: Z(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{t})$ is indeed contained in $\operatorname{Sym}(\mathfrak{t})^{W \cdot}$.
Proof. By previous discussion, we only need to prove 1.1 for α and λ satisfying the assumption of Lemma 1.3. By (0.1), the LHS and RHS of (1.1) are exactly the central character of M_{λ} and $M_{s_{\alpha} \cdot \lambda}$. Now Lemma 1.3 implies they are equal because the central character of a module is equal to the central character of any nonzero submodule of it.

Date: Mar 25, 2024.

Proof of Lemma 1.3. Recall

$$
s_{\alpha}(\lambda)=\lambda-2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha=\lambda-\langle\lambda, \check{\alpha}\rangle \alpha
$$

It follows that

$$
s_{\alpha} \cdot \lambda=\lambda-\langle\lambda+\rho, \check{\alpha}\rangle \alpha=\lambda-m \alpha
$$

for $m \in \mathbb{Z}^{\geq 0}$. The lemma is obvious for $m=0$. We assume $m>0$. Then we have $\langle\lambda, \check{\alpha}\rangle=m-1$ because $\langle\rho, \check{\alpha}\rangle=1$ (see [H1, Cor. to Lem. 10.2(B)]).

Let $f_{\alpha} \in \mathfrak{n}^{-}$be a nonzero vector of weight $-\alpha$. Consider the vector $f_{\alpha}^{m} \cdot v_{\lambda}$, which is of weight $\lambda-m \alpha=s_{\alpha} \cdot \lambda$. We only need to show

$$
\mathfrak{n} \cdot\left(f_{\alpha}^{m} \cdot v_{\lambda}\right)=0
$$

Indeed, if this is true, the map $k_{s_{\alpha} \cdot \lambda} \rightarrow M_{\lambda}, c \mapsto c\left(f_{\alpha}^{m} \cdot v_{\lambda}\right)$ is \mathfrak{b}-linear, and thereby induces a \mathfrak{g} linear map $M_{s_{\alpha} \cdot \lambda} \rightarrow M_{\lambda}$. This map is injective because as a morphism between $U\left(\mathfrak{n}^{-}\right)$-modules, it is given by $-\cdot f_{\alpha}^{m}: U\left(\mathfrak{n}^{-}\right) \rightarrow U\left(\mathfrak{n}^{-}\right)$, which is injective by the PBW theorem.

It remains to show \mathfrak{n} annihilates $f_{\alpha}^{m} \cdot v_{\lambda}$. For each simple root $\beta \in \Delta$, let $e_{\beta} \in \mathfrak{n}$ be a nonzero vector of weight β. Note that the vectors $\left(e_{\beta}\right)_{\beta \in \Delta}$ generate \mathfrak{n} under Lie brackets ${ }^{1}$. Hence we only need to show $e_{\beta} \cdot f_{\alpha}^{m} \cdot v_{\lambda}=0$. There are two cases:

- If $\alpha \neq \beta$, then $\left[e_{\beta}, f_{\alpha}\right]=q^{2}$ and

$$
e_{\beta} \cdot f_{\alpha}^{m} \cdot v_{\lambda}=f_{\alpha}^{m} \cdot e_{\beta} \cdot v_{\lambda}=0
$$

because $\mathfrak{n} \cdot v_{\lambda}=0$.

- If $\alpha=\beta,\left[e_{\alpha}, f_{\alpha}\right] \in \mathfrak{t}$ is propotionate to $\check{\alpha}$ (see H1, Prop. 8.3(d)]). Rescale e_{α}, we may assume $\left[e_{\alpha}, f_{\alpha}\right]=\check{\alpha}$. Then $\left[\check{\alpha}, f_{\alpha}\right]=\langle-\alpha, \check{\alpha}\rangle f_{\alpha}=-2 f_{\alpha}$. Now the following calculation is essentially that in [Exercise 2.17, Lecture 2]. We have

$$
e_{\alpha} \cdot f_{\alpha}^{m} \cdot v_{\lambda}=\sum_{1 \leq i \leq m} f_{\alpha}^{m-i} \cdot\left[e_{\alpha}, f_{\alpha}\right] \cdot f_{\alpha}^{i-1} \cdot v_{\lambda}+f_{\alpha}^{m} \cdot e_{\alpha} \cdot v_{\lambda}
$$

Recall we have $e_{\alpha} \cdot v_{\lambda}=0$. Also,

$$
\check{\alpha} \cdot f_{\alpha}^{j}=\sum_{1 \leq i \leq j} f_{\alpha}^{j-i} \cdot\left[\check{\alpha}, f_{\alpha}\right] \cdot f_{\alpha}^{i-1}+f_{\alpha}^{j} \cdot \check{\alpha}=-2 j f_{\alpha}^{j}+f_{\alpha}^{j} \cdot \check{\alpha}
$$

Hence
$e_{\alpha} \cdot f_{\alpha}^{m} \cdot v_{\lambda}=\sum_{1 \leq i \leq m}\left(-2(i-1) f_{\alpha}^{m-1}+f_{\alpha}^{m-1} \cdot \check{\alpha}\right) v_{\lambda}=(-m(m-1)+m\langle\lambda, \check{\alpha}\rangle) v_{\lambda}=0$
as desired.
[Lemma 1.3

2. Step 2: Filtrations

By Step 1, we have a homomorphism

$$
\phi_{\mathrm{HC}}: Z(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{t})^{W \cdot} .
$$

In this step, we equip both sides with filtrations, and show ϕ_{HC} is compatible with them. The punchline is the following easy fact:

[^0]Fact 2.1. Let V_{1} and V_{2} be two vector spaces equipped with $\mathbb{Z}^{\geq 0}$-indexed (exhausted) filtrations. Suppose $\varphi: V_{1} \rightarrow V_{2}$ is a k-linear map compatible with the filtrations. Then φ is an isomorphism between filtered vector spaces iff $\mathrm{gr}^{\bullet} \varphi: \mathrm{gr}^{\bullet} V_{1} \rightarrow \mathrm{gr}^{\bullet} V_{2}$ is an isomorphism between graded vector spaces.

Construction 2.2. The $P B W$ filtration on $U(\mathfrak{g})$ induces a filtration on $Z(\mathfrak{g})$ with $\mathrm{F}^{\leq i} Z(\mathfrak{g})$:= $Z(\mathfrak{g}) \cap \mathrm{F}^{\leq i} U(\mathfrak{g})$. Note that $\mathfrak{g r} \mathrm{r}^{\bullet} Z(\mathfrak{g})$ is a subalgebra of $\operatorname{gr} U(\mathfrak{g}) \simeq \operatorname{Sym}(\mathfrak{g})$.
Construction 2.3. The $P B W$ filtration on $U(\mathfrak{t}) \simeq \operatorname{Sym}(\mathfrak{t})$ is preserved by the dot W-action. Hence it induces a filtration on $U(\mathfrak{t})^{W \cdot 3}$.

Warning 2.4. The dot W-action on $\operatorname{Sym}(\mathfrak{t})$ does not preserve the grading. But the usual (linear) W-action does.
Lemma 2.5. The homomorphism $\phi_{\mathrm{HC}}: Z(\mathfrak{g}) \rightarrow U(\mathfrak{t})^{W \cdot}$ is compatible with the above filtrations.
Proof. This is obvious from the description of ϕ as

$$
Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \rightarrow k \underset{U\left(\mathfrak{n}^{-}\right)}{\otimes} U(\mathfrak{g}) \underset{U(\mathfrak{n})}{\otimes} k \simeq U(\mathfrak{t})
$$

3. Step 3: Calculating the graded pieces

Construction 3.1. Recall $\operatorname{Sym}(\mathfrak{g})$ has a natural \mathfrak{g}-module structure constructed as follows. For any $V \in \mathfrak{g}$, there is a natural \mathfrak{g}-module structure on $V^{\otimes n}$ given by

$$
\mathfrak{g} \times V^{\otimes n} \rightarrow V^{\otimes n},\left(x, \underset{i}{\otimes v_{i}}\right) \mapsto \sum_{i}\left(v_{1} \otimes \cdots \otimes v_{i-1} \otimes\left(x \cdot v_{i}\right) \otimes v_{i+1} \cdots \otimes v_{n}\right)
$$

This action is compatible with the symmetric group Σ_{n}-action on $V^{\otimes n}$ and thereby induces a \mathfrak{g}-module structure on $\operatorname{Sym}^{n}(V)$. Taking direct sum, we obtain a \mathfrak{g}-module structure on $\operatorname{Sym}(V)$.

In the case $V=\mathfrak{g}$, to distinguish with the multiplication structure on $\operatorname{Sym}(\mathfrak{g})$, we denote this action by

$$
\mathfrak{g} \times \operatorname{Sym}(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{g}),(x, u) \mapsto \operatorname{ad}_{x}(u)
$$

and call it the adjoint action.
Note that by definition, for $x \in \mathfrak{g}$ and $u, v \in \operatorname{Sym}(\mathfrak{g})$, we have

$$
\operatorname{ad}_{x}(u \cdot v)=\operatorname{ad}_{x}(u) \cdot v+u \cdot \operatorname{ad}_{x}(v)
$$

In particular, the \mathfrak{g}-invariance

$$
\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}}:=\left\{u \in \operatorname{Sym}(\mathfrak{g}) \mid \operatorname{ad}_{x}(u)=0 \text { for any } x \in \mathfrak{g}\right\}
$$

is a subalgebra of $\operatorname{Sym}(\mathfrak{g})$.
Lemma 3.2. There is a unique dotted graded isomorphism making the following diagram commute

where the bottom isomorphism is given by the PBW theorem.
To prove this lemma, we use the following exercise:

[^1]Exercise 3.3. This is Homework 2, Problem 4. Prove: the adjoint \mathfrak{g}-action on $U(\mathfrak{g})$, i.e.,

$$
\mathfrak{g} \times U(\mathfrak{g}) \rightarrow U(\mathfrak{g}), \quad(x, u) \mapsto \operatorname{ad}_{x}(u)=[x, u]
$$

preserves each $\mathrm{F}^{\leq n} U(\mathfrak{g})$, and the induced \mathfrak{g}-action on $\operatorname{gr}^{\bullet}(U(\mathfrak{g})) \simeq \operatorname{Sym}(\mathfrak{g})$ is the adjoint action in Construction 3.1 .
Proof of Lemma 3.2. By the above exercise, we have a short exact sequence of finitedimensional \mathfrak{g}-modules:

$$
0 \rightarrow \mathrm{~F}^{\leq n-1} U(\mathfrak{g}) \rightarrow \mathrm{F}^{\leq n} U(\mathfrak{g}) \rightarrow \operatorname{Sym}^{n}(\mathfrak{g}) \rightarrow 0
$$

Since $\mathfrak{g}-\bmod _{\mathfrak{f d}}$ is semisimple, this short exact sequence splits. Hence taking \mathfrak{g}-invariance, we obtain 4^{4}

$$
0 \rightarrow \mathrm{~F}^{\leq n-1} Z(\mathfrak{g}) \rightarrow \mathrm{F}^{\leq n} Z(\mathfrak{g}) \rightarrow \operatorname{Sym}^{n}(\mathfrak{g})^{\mathfrak{g}} \rightarrow 0
$$

This gives the desired isomorphism $\operatorname{gr}^{n} Z(\mathfrak{g}) \simeq \operatorname{Sym}^{n}(\mathfrak{g})^{\mathfrak{g}}$.
$\square[$ Lemma 3.2
A similar proof gives:
Lemma 3.4. There is a unique dotted graded isomorphism making the following diagram commute

where the right-top corner is the invariance for the linear W-action on $\operatorname{Sym}(\mathfrak{t})$.
Combining the above two lemmas, we obtain:
Corollary 3.5. There is a unique dotted graded homomorphism making the following diagram commute

4. Step 4: Chevalley isomorphism

It remains to show

$$
\phi_{\mathrm{cl}}: \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \operatorname{Sym}(\mathfrak{t})^{W}
$$

is an isomorphism. Let us first give an explicit construction of this homomorphism. We need the following characterization of ϕ.

Construction 4.1. Consider the composition

$$
Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \underset{U(\mathfrak{n})}{\otimes} k .
$$

With respect to the adjoint \mathfrak{t}-action, the source has weight 0 . Hence the composition factors through the 0 -weight subspace of the target, which is exactly $U(\mathfrak{b}) \otimes_{U(\mathfrak{n})} k \simeq U(\mathfrak{t})$. By definition, the obtained map

$$
Z(\mathfrak{g}) \rightarrow U(\mathfrak{t})
$$

[^2]is just ϕ.
Construction 4.2. It follows ϕ_{cl} can be constructed as follows. Consider the composition
\[

$$
\begin{equation*}
\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \hookrightarrow \operatorname{Sym}(\mathfrak{g}) \rightarrow \operatorname{Sym}(\mathfrak{g} / \mathfrak{n}) \tag{4.1}
\end{equation*}
$$

\]

It factors through $\operatorname{Sym}(\mathfrak{b} / \mathfrak{n}) \simeq \operatorname{Sym}(\mathfrak{t})$. The obtained map

$$
\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \operatorname{Sym}(\mathfrak{t})
$$

can be identified with $\mathrm{gr}{ }^{\bullet} \phi$. Since ϕ factors through $U(\mathfrak{t})^{W \cdot}$, the map $\mathrm{gr}^{\bullet} \phi$ factors through $\operatorname{gr}\left(U(\mathfrak{t})^{W \bullet}\right) \simeq \operatorname{Sym}(\mathfrak{t})^{W}$. The obtained map

$$
\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \operatorname{Sym}(\mathfrak{t})^{W}
$$

is just ϕ_{cl}.
Remark 4.3. The geometric meaning of the above construction is as follows.
Note that $\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}}=\operatorname{Sym}(\mathfrak{g})^{G}$ because G-invariance is equal to \mathfrak{g}-invariance ${ }^{6}$. Hence (4.1) corresponds to the morphisms

$$
(\mathfrak{g} / \mathfrak{n})^{*} \rightarrow \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*} / / G
$$

Since $\operatorname{gr}^{\bullet} \phi$ factors through $\operatorname{gr}^{\bullet}\left(U(\mathfrak{t})^{W \bullet}\right) \simeq \operatorname{Sym}(\mathfrak{t})^{W}$. The above composition factors through $(\mathfrak{g} / \mathfrak{n})^{*} \rightarrow(\mathfrak{b} / \mathfrak{n})^{*} \simeq \mathfrak{t}^{*} \rightarrow \mathfrak{t}^{*} / / W$. In other words, we have

such that the dotted arrow is given by $\operatorname{Spec}\left(\phi_{\mathrm{cl}}\right)$.
It is convenient to get rid of the dual spaces using the Killing form. Namely, Kil induces an isomorphism $\mathfrak{g} \simeq \mathfrak{g}^{*}$ compatible with the G-actions, while Kil $\left.\right|_{\mathfrak{t}}$ induces an isomorphism $\mathfrak{t} \simeq \mathfrak{t}^{*}$ compatible with the W-actions 9^{7}. Via the first isomorphism, the subspaces $\mathfrak{n} \subset \mathfrak{b} \subset \mathfrak{g}$ corresponds to $(\mathfrak{g} / \mathfrak{b})^{*} \subset(\mathfrak{g} / \mathfrak{n})^{*} \subset \mathfrak{g}$. Then the above commutative diagram is identified with

We abuse notations and also view the dotted arrow as $\operatorname{Spec}\left(\phi_{\mathrm{cl}}\right)$.
Remark 4.4. Since the projection $\mathfrak{b} \rightarrow \mathfrak{t}$ has a splitting $\mathfrak{t} \rightarrow \mathfrak{b}$. The above claim implies $\operatorname{Spec}\left(\phi_{\mathrm{cl}}\right)$ can be characterized as the following dotted arrow

We can also prove the existence of this map using group-theoretic method. Namely, consider the normalizer $N_{G}(T)$ of T insider G. Recall we have $W \simeq N_{G}(T) / T$ such that the linear W-action

[^3]on \mathfrak{t} can be identified with the adjoint action of $N_{G}(T) / T$. Then the morphism $\mathfrak{t} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} / / G$ factors through $\mathfrak{t} / / W$ because $N_{G}(T)$ is a subgroup of G.
Warning 4.5. I do not know any group-theoretic proof of 4.2). This is because not $\mathfrak{b} \rightarrow \mathfrak{g} / G$ (the quotient stack) does not factor through \mathfrak{t} : two elements in \mathfrak{b} that have the same image in \mathfrak{t} are not necessarily conjugate to each other. In fact, the 0 -fiber of the map $\mathfrak{g} \rightarrow \mathfrak{g} / / G$ contains exactly the nilpotent elements in \mathfrak{g}.
Theorem 4.6 (Chevalley). The homomorphism
$$
\phi_{\mathrm{cl}}: \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \operatorname{Sym}(\mathfrak{t})^{W}
$$
is an isomorphism. In other words, the natural morphism $\mathfrak{t} / / W \rightarrow \mathfrak{g} / / G$ is an isomorphism.
Proof. As in Remark 4.3 , we can identify ϕ_{cl} with the restriction map Fun $(\mathfrak{g})^{G} \rightarrow \operatorname{Fun}(\mathfrak{t})^{W}$, which is also $\operatorname{Sym}\left(\mathfrak{g}^{*}\right)^{G} \rightarrow \operatorname{Sym}\left(\mathfrak{t}^{*}\right)^{W}$.

This map is injective because if an adjoint-invariant function on \mathfrak{g} vanishes on \mathfrak{t}, then it vanishes on each semisimple elements. But the latter are Zariski dense in \mathfrak{g}.

To prove the surjectivity, we first find generators of $\operatorname{Sym}\left(\mathfrak{t}^{*}\right)^{W}$ as follows. Recall the subset P^{+}of dominant integral weights, i.e.,

$$
P^{+}:=\left\{\lambda \in \mathfrak{t}^{*} \mid\langle\lambda, \check{\alpha}\rangle \in \mathbb{Z}^{\geq 0} \text { for all } \alpha \in \Delta\right\} .
$$

Note that P^{+}spans \mathfrak{t}^{*}. In fact, for each $\alpha \in \Delta$, we can find fundamental dominant weights ω_{α} such that

$$
\left\langle\omega_{\alpha}, \check{\beta}\right\rangle=\delta_{\alpha \beta}, \alpha, \beta \in \Delta
$$

Then $\left\{\omega_{\alpha}\right\}$ is a basis of \mathfrak{t}^{*} and $P^{+}=\mathbb{Z}^{\geq 0}\left\{\omega_{\alpha}\right\}$. A direct calculation shows that $\left\{\lambda^{n} \mid \lambda \in P^{+}\right\}$ span $\operatorname{Sym}^{n}\left(\mathfrak{t}^{*}\right)$. Hence the sums

$$
b_{\lambda, n}:=\sum_{w \in W} w\left(\lambda^{n}\right), \lambda \in P^{+}, n \geq 0
$$

span $\operatorname{Sym}\left(\mathfrak{t}^{*}\right)^{W}$.
It remains to show each $b_{\lambda, n}$ is contained in the image of ϕ_{cl}. We need the following wellknown fact.

Theorem 4.7 (Weyl). For any $\lambda \in P^{+}$, there is a unique finite-dimensional irreducible \mathfrak{g}-module L_{λ} with higheset weight λ.

For $\lambda \in P^{+}, n \geq 0$, consider the function $a_{\lambda, n} \in \operatorname{Fun}(\mathfrak{g})$ defined by

$$
a_{\lambda, n}(x):=\operatorname{tr}\left(x^{n} ; L_{\lambda}\right)
$$

i.e., its value at any $x \in \mathfrak{g}$ is the trace of the action of x^{n} on L_{λ}. It is easy to see $a_{\lambda, n}$ is \mathfrak{g}-invariant $\|^{8}$ and thereby G-invariant.

Now the following exercise implies each $b_{\lambda, n}$ is contained in the image of ϕ_{cl}. Indeed, this follows from induction on λ with respect to the partial ordering $\left\{^{9}\right.$.

Exercise 4.8. This is Homework 2, Problem 5. Let $\lambda \in P^{+}$be a dominant integral weight and $n \geq 0$. Prove there exists scalars $c_{\lambda^{\prime}} \in k, \lambda^{\prime}<\lambda$ such that

$$
\phi_{\mathrm{cl}}\left(a_{\lambda, n}\right)=\left.a_{\lambda, n}\right|_{\mathfrak{t}}=\frac{1}{\# \operatorname{Stab}_{W}(\lambda)} b_{\lambda, n}+\sum_{\lambda^{\prime}<\lambda} c_{\lambda^{\prime}} b_{\lambda^{\prime}, n}
$$

where $\operatorname{Stab}_{W}(\lambda) \subset W$ is the stablizer of the W-action at λ.

[^4]Combining all the previous discussion, we finish the proof of Theorem 0.1.

References

[H1] Humphreys, James E. Introduction to Lie algebras and representation theory. Vol. 9. Springer Science \& Business Media, 2012.
[H2] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.

[^0]: ${ }^{1}$ Because $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{[\alpha, \beta]}$ whenever $\alpha, \beta, \alpha+\beta \in \Phi^{+}$.
 ${ }^{2}$ Otherwise it is a nonzero vector with weight $\beta-\alpha$ but the latter is not a root because $\Phi=\Phi^{+} \sqcup \Phi^{-}$.

[^1]: ${ }^{3}$ Note that $\operatorname{gr}{ }^{\bullet} U(\mathfrak{t})$ is also isomorphic to $\operatorname{Sym}(\mathfrak{t})$. To distinguish them, we always use $U(\mathfrak{t})$ to denote the filtered commutative ring while use $\operatorname{Sym}(t)$ to denote the graded commutative ring.

[^2]: ${ }^{4}$ Warning: in general, taking invariance is only left exact. (Memory method: it is given by $\operatorname{Hom}_{\mathfrak{g}}(k,-)$.) Hence we need the existence of a splitting.
 ${ }^{5}$ Note that $\operatorname{Rep}(W)_{\mathrm{fd}}$ is also semisimple

[^3]: ${ }^{6}$ Because $\operatorname{Rep}(G) \rightarrow \mathfrak{g}$-mod is fully faithful when G is connected.
 ${ }^{7}$ Both claims follow from the fact that Kil is invariant with respect to the adjoint \mathfrak{g}-action and thereby to the adjoint G-action. Here we use $W \simeq N_{G}(T) / T$.

[^4]: ${ }^{8}$ Recall L_{λ} is $G_{\text {sc }}$-integrable ([Theorem 6.4, Lecture 3]). Hence $a_{\lambda, n}$ is $G_{\text {sc }}$-invariant, and thereby \mathfrak{g}-invariant.
 ${ }^{9}$ Recall $\lambda^{\prime} \leq \lambda$ iff $\lambda-\lambda^{\prime} \in \mathbb{Z}^{\geq 0} \Phi^{+}$. See [Definition 2.15, Lecture 2].

