
LECTURE 6

Last time we proved the Harish-Chandra isomorphism

φHC ∶ Z(g) ∼Ð→ Sym(t)W● .
We obtain isomorphisms between k-schemes:

Spec(Z(g)) ≃ t∗//W● ≃ t∗//W ≃ t//W ≃ g//G,
where

● The 1st isomorphism is due to the Harish-Chandra isomorphism;
● The 2nd isomorphism is given by the tranlation t∗ → t∗, λ↦ λ + ρ;
● The 3rd isomorphism is given by the W -equivariant isomorphism t∗ ≃ t provided by the

Killing form;
● The 4th isomorphism is due to Chevalley’s restriction theorem.

This time, we first give more algebro-geometric results about the above schemes. Then we
study the structure of O.

1. More on Spec(Z(g))
Proposition 1.1 ([H, Sect. 1.10]). The morphism $ ∶ t → t//W● ≃ Spec(Z(g)) is surjective,
and W● acts transitively on the fiber at each closed point.

Remark 1.2. In other words, any character χ ∶ Z(g) → k is the central character χλ for some
Verma module Vλ, and χλ = χµ iff µ = w ⋅ λ for some w ∈W .

Remark 1.3. Similar claim is true for any finite group action on an affine scheme. See [SGA1,
Exp. V, Prop. 1.1].

Theorem 1.4 (Chevalley–Shephard–Todd). Consider the homomorphism Sym(t)W → Sym(t).
We have:

(1) There exists homogeneous elements c1,⋯, cr ∈ Sym(t)W , r = dim(t) such that Sym(t)W
is isomorphic to k[c1,⋯, cr] as graded algebras. In other words, Sym(t)W is a graded
polynomial algebra of transcendence degree dim(t).

(2) There exists homogeneous elements aw ∈ Sym(t), w ∈W such that Sym(t) is isomorphic
to the free Sym(t)W -module generated by them. In other words, Sym(t) is a graded free
Sym(t)W -module of rank #W .

Corollary 1.5. The scheme t//W is an affine space whose dimension is equal to dim(t). Also,
the map t→ t//W is finite and flat.

Remark 1.6. Similar claim is true for any linear action of a finite group H on a k-vector space
V as long as:

● The order #H of the group is relatively prime to char(k) (which is true by our assump-
tion);
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2 LECTURE 6

● The group H admits a set of generators consisting of elements w that act as pseudore-
flections1 on V .

For a proof, see [B, Sect. 5].

Remark 1.7. There is no canonical choice for the generators c1,⋯, cr of the polynomial algebra
Sym(t)W . However, the degrees d1,⋯, dr ∈ Z≥0 of them are determined up to order. Also, we
have #W =∏i di.

Similarly, there is no canonical choice for the generators of Sym(t) as a free Sym(t)W -module.
However, the degrees of these generators are determined up to order.

Example 1.8. For g = sln, recall W ≃ Σn acts on t ≃ ker(k⊕n ΣÐ→ k) in the standard way. It
follows that Sym(t∗) ≃ Fun(t) ≃ k[x1,⋯, xn]/(σ1) and Sym(t∗)W ≃ k[σ1,⋯, σn]/(σ1). Here σi is
the basic symmetric polynomial of degree i, i.e., ∏n

j=1(x + xj) = xn + σ1x
m−1 +⋯σn.

Our next goal is to prove the following:

Theorem 1.9 (Kostant). As a Z(g)-module, U(g) is free.

Remark 1.10. This classical result was first proved by Kostant in the 60’s ([K]) and used to
be considered a hard theorem. The simplified proof below was due to Bernstein–Lunts ([BL]),
after more than 30 years2.

Construction 1.11. We equip U(g) with a U(n−) ⊗ Z(g) ⊗ U(n)op-module structure by the
formula

(u− ⊗ z ⊗ u)(x) ∶= u−xzu.
Here u− ⊗ z ⊗ u ∈ U(n−)⊗Z(g)⊗U(n)op and x ∈ U(g).

We will prove the following stronger result.

Theorem 1.12. Let {aw} be a homogeneous free basis of Sym(t) over Sym(t)W . We view aw
as elements in U(g) via the embedding Sym(t)↪ U(g). Then {aw} is also a free basis of U(g)
over U(n−)⊗Z(g)⊗U(n)op.

Construction 1.13. Consider the PBW filtrations on U(g) and U(n−)⊗Z(g)⊗U(n)op. Taking
associated graded spaces, we obtain a graded Sym(n−)⊗Sym(g)g ⊗Sym(n)-module structure on
Sym(g). By definition, this module structure comes from the obvious graded homomorphism

(1.1) Sym(n−)⊗ Sym(g)g ⊗ Sym(n) multÐÐ→ Sym(g).
This reduces Theorem 1.12 to the following result:

Proposition 1.14. Let {aw} be a homogeneous free basis of Sym(t) over Sym(t)W . We view
aw as homogeneous elements in Sym(g) via the embedding Sym(t) ↪ Sym(g). Then {aw} is
also a free basis of Sym(g) over Sym(n−)⊗ Sym(g)g ⊗ Sym(n).

We also record the following corollary of the proposition.

Corollary 1.15. The map g→ n × g//G × n− is flat. In particular, the map g→ g//G is flat.

Example 1.16. For g = sl2 and the standard basis e, f, h. Recall Sym(t)W = k[h2] and
Sym(g)g = k[Ω], where Ω = h2 + 4ef is the image of the Casimir element. Then the proposition
says k[e, f, h] is free over k[e, f, h2 + 4ef] and any homogeneous basis of k[h] over k[h2] is also
a free basis of k[e, f, h] over k[e, f, h2 + 4ef].

1This means Id −w is of rank 1.
2Gaitsgory also sketched a proof in [G, Cor. 7.3], but I think there is a gap in the second paragaph. It is not

clear what is the logic behind “... it is enough to show that Sym(g/n) is free as a Sym(h)W -module.” In fact,
this reduction is the main point of [BL].
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Warning 1.17. Proposition 1.14 does not follow obviously from Theorem 1.4. Namely, we
have two homomorphisms

Sym(n−)⊗ Sym(g)g ⊗ Sym(n) → Sym(g)
Sym(n−)⊗ Sym(t)W ⊗ Sym(n) → Sym(g).

Theorem 1.4 implies Sym(g) is a free module over the source of the second map, but the images
of these two homomorphisms are in general not the same.

To see this, it is better to pass to dualities. Via the isomorphisms g ≃ g∗, n ≃ (n−)∗ and t ≃ t∗

provided by the Killing form, the above two homomorphisms are given by

Fun(n)⊗ Fun(g)g ⊗ Fun(n−) → Fun(g)(1.2)

Fun(n)⊗ Fun(t)W ⊗ Fun(n−) → Fun(g),(1.3)

which are induced by the decomposition g = n− ⊕ t⊕ n. Now the following exercise says the two
images are not the same even for g = sl3, although they happen to be the same for sl2.

Exercise 1.18. This is Homework 3, Problem 1. Let g = sln and σi ∈ Fun(t)W be as in Example
1.8.

(1) For each 1 < i ≤ n, find the unique element σ̃i ∈ Fun(g)g corresponding to σi via the

Chevalley isomorphim Fun(g)g ≃Ð→ Fun(t)W . In other words, find the unique extension
of σi to an adjoint invariant polynomial function on g.

(2) For g = sl2, prove that (1.2) and (1.3) are both injective and have the same image.
(3) For g = sl3, prove that σ̃3 is contained in the image of (1.2) but not in the image of

(1.3).

Let us return to Bernstein–Lunts’s proof. We need the following general result, which is an
easy exercise in linear algebra.

Lemma 1.19. Let A = ⋃n≥0 Φ≤nA be a filtered algebra and M = ⋃n≥0 Φ≤nM be a filtered A-
module. Let {bi} be a family of elements of M such that their symbols3 {σΦ(bi)} form a free
basis of the gr●ΦA-module gr●ΦM . Then {bi} is a free basis of the A-module M .

Proof of Proposition 1.14. The strategy is as follows. We will construct compatible new filtra-
tions on the source and the target of the homomorphism (1.1):

Sym(n− ⊕ n)⊗ Sym(g)g → Sym(g).
Hence we can view Sym(g) as a filtered module over Sym(n− ⊕ n) ⊗ Sym(g)g with respect to
these new filtrations. Then we apply Lemma 1.19.

The desired filtration on Sym(g) can be summarized in a sentence: we ignore the indetermi-
nates contained in n− ⊕ n and only count the degree for those contained in t. In other words,
we define

Φ≤iSym(g) ∶= Sym(n− ⊕ n) ⋅ Sym≤i(t),
where Sym≤●(t) is the standard filtration on Sym(t) given by degrees. For f ∈ Sym(g), let
degt(f) be the minimal index i such that f ∈ Φ≤iSym(g). In other words, it is the t-degree of
the polynomial f .

Note that this filtraiton is compatible with the multiplication. Also note that

(1.4) gr●ΦSym(g) ≃ Sym(n⊕ n−)⊗ Sym●(t)

3For b ∈M , let n ≥ 0 be the smallest index such that b ∈ Φ≤nM . Then the symbol σΦ(b) is the image of b
under the projection Φ≤nM → grnΦM . Note that σΦ is not a linear map!
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as graded commutative algebras, where the grading on the RHS is the standard grading on
Sym●(t).

Consider the injective homomorphisms

Sym(g)g → Sym(g)← Sym(t)W .
We equip the sources with the induced Φ-filtrations. Note that the Φ-filtration on Sym(t)W is
the standard one. By definition, the following diagram commutes4

Sym(g)g ⊂ //

σΦ

��

Sym(g)

σΦ

��

Sym(t)W⊃oo

σΦ

��
gr●Φ(Sym(g)g) ⊂ // gr●ΦSym(g) Sym●(t)W .⊃oo

We have the following key observation:

Lemma 1.20. The injective homomorphisms

gr●Φ(Sym(g)g)→ gr●ΦSym(g)← Sym●(t)W

have the same image.

Let us first finish the proof of the proposition assuming this lemma. We can tensor the
sources with the factor Sym(n⊕ n−) and consider the homomorphisms

Sym(n⊕ n−)⊗ Sym(g)g m1ÐÐ→ Sym(g),
Sym(n⊕ n−)⊗ Sym(t)W m2ÐÐ→ Sym(g).

Via the isomorphism (1.4), the graded homomorphism gr●Φ(m2) is given by the obvious embed-
ding

Sym(n⊕ n−)⊗ Sym●(t)W → Sym(n⊕ n−)⊗ Sym●(t).
Hence the above lemma implies gr●Φ(m1) is also an embedding with the same image. By
Theorem 1.4, the graded homomorphism gr●Φ(m2) exhibits its target as a graded free module
over its source, and the images of {aw} form a basis. Hence the same is true for the graded
homomorphism gr●Φ(m1). Then we win by Lemma 1.19.

�[Proposition 1.14]
It remains to prove Lemma 1.20. We first prove the following elementary result.

Lemma 1.21. For any i ≥ 0, we have:

(1) For any nonzero f ∈ Symi(g)g, we have degt(f) = i.
(2) By (2), taking Φ-symbols gives a map

σiΦ ∶ Symi(g)g → griΦ(Sym(g)g).
We claim the following diagram commutes:

(1.5) Symi(g)g

σi
Φ

��

φcl

≃ // Symi(t)W

griΦ(Sym(g)g) ⊂ // griΦSym(g) Symi(t)W .⊃oo

(3) The map σiΦ ∶ Symi(g)g → griΦ(Sym(g)g) is bijective.

4Warning: the right vercial map is not the identity map. It abandons all non-highest degree terms in a
polynomial.



LECTURE 6 5

Proof. Let f ∈ Symi(g)g be any nonzero element. By definition, we have

f ∈ ⊕
0≤j≤i

Symi−j(n− ⊕ n) ⋅ Symj(t).

Let fj ∈ Symi−j(n− ⊕ n) ⋅ Symj(t) be the j-th entry of f with respect to the above direct sum
decomposition, i.e., the part of f whose t-degree is j.

By the construction of φcl
5, we have

φcl(f) = fi ∈ Symi(t)
Since φcl is an isomorphism, we obtain fi ≠ 0. In particular, degt(f) = i. This proves (1).

By definition, we also have σiΦ(f) = fi because this is the sum of the highest t-degree terms.
This proves (2).

The commutative diagram in (2) implies σiΦ is injective. It remains to show it is surjective.

Let h ∈ griΦ(Sym(g)g) be any nonzero element and h ∈ Φ≤i(Sym(g)g) be a lifting of it, i.e.,

h = σΦ(h). Note that degt(h) = i. Write h = h0 + h1 + ⋯ + hd such that hj ∈ Symj(g)g and
hd ≠ 0. By (1) and (2), either hj = 0 or degt(hj) = j. It follows that we must have d = i and

degt(h−hi) < i. This implies h = σΦ(h) = σiΦ(hi) with hi ∈ Symi(g)g. In other words, the given
map is surjective as desired.

�

Warning 1.22. The digram (1.5) would not commute if we dropped the superscripts i from

Symi(−). In other words, the following diagram does not commute

Sym(g)g

σΦ

��

φcl

≃ // Sym(t)W

σΦ

��
gr●Φ(Sym(g)g) ⊂ // gr●ΦSym(g) Sym●(t)W .⊃oo

Proof of Lemma 1.20. This follows from Lemma 1.21 by a diagram chasing.
�[Lemma 1.20]

2. Category O is Artinian and Noetherian

The next few lectures are devoted to the algebraic study of O. In this section, we prove any
object in O has finite length. This was promised in the second lecture.

We first recall the following corollary of Proposition 1.1.

Proposition 2.1 (Linkage principle). Verma modules Mλ and Mµ belong to the same block iff
µ = w ⋅ λ for some w ∈W .

We also recall the following corollary of [Theorem 2.18, Proposition 3.6, Lecture 2]:

Proposition 2.2. Each Verma module Mλ has a unique irreducible quotient Lλ, whose highest
weight is equal to λ. Any irreducible object in O is of such form.

Corollary 2.3. If the irreducible module Lµ is isomorphic to a subquotient of the Verma module
Mλ, then µ = w ⋅ λ for some w ∈W . In particular, Mλ has only finitely many non-isomorphic
irreducible subquotients.

Theorem 2.4. Each object M ∈ O is both Artinian and Noetherian.

5Recall it kills any factor in Sym≥1(n− ⊕ n).
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Remark 2.5. By Jordan–Hölder, M is both Artinian and Noetherian iff there exists a finite
filtration 0 =M0 ⊂M1 ⊂ ⋯ ⊂Mn =M such that each Mi/Mi−1 is a (nonzero) irreducible object.
Moreover, for each irreducible object Lλ ∈ O, its multiplicity in the collection of such quotients
does not depend on the choice of the filtration, and is denoted by [M ∶ Lλ]. This implies n does
not depend on the choice of the filtration, and is called the length of M , i.e., length(M). The
numbers [M ∶ Lλ] and length(M) are basic objects in the study of O (and any representation
theory).

Proof. Since M can be written as a quotient of a successive extension of Verma modules ([Propo-
sition 3.6, Lecture 2]), we only need to prove the theorem for Verma modules M = Mλ. By
Corollary 2.3, we only need to prove for any finite filtration of Mλ, the multiplicity of each
Lµ (µ = w ⋅ λ, w ∈ W ) that appears in the graded pieces is uniformly bounded. Recall Lµ is a
weight module with highest weight µ. Since any module in O is a weight module (with respect
to the t-action), the aforementioned multiplicity is bounded by the dimension of the µ-weight
subspace of Mλ. But this is finite by ([Corollary 3.8, Lecture 2]).

�

Proposition 2.6. For any M,N ∈ O, the vector space HomO(M,N) is finite dimensional.

Proof. By dévissage, we only need to show HomO(Lλ, Lµ) is finite dimensional. This is a
subspace of HomO(Mλ, Lµ). And the latter is a subspace of the λ-weight subspace of Lµ,
which is finite-dimensional.

�
Note that the above argument actually shows

Lemma 2.7. For any λ ∈ t∗, HomO(Lλ, Lλ) = k ⋅ Id is 1-dimensional.

3. The sl3 case

The following exercises are about the principle block O$(0) for g = sl3.

Exercise 3.1. This is Homework 3, Problem 2. Consider g = sl3 and its standard Borel b and
Cartan subalgebras t. Let α1 and α2 be the two simple positive roots.

(1) Prove: the elements in W ⋅ 0 is given by

0 s1 ⋅ 0 s2 ⋅ 0 s1s2 ⋅ 0 s2s1 ⋅ 0 w0 ⋅ 0
0 −α1 −α2 −2α1 − α2 −α1 − 2α2 −2α1 − 2α2.

Here w0 = s1s2s1 = s2s1s2 is the longest element in W .
(2) Prove: M−2α1−2α2 is irreducible.
(3) Prove: M−α1−2α2 contains M−2α1−2α2 as a submodule6 and the quotient is irreducible7.

Deduce length(M−α1−2α2) = 2 and [M−α1−2α2 ∶ L−α1−2α2] = [M−α1−2α2 ∶ L−2α1−2α2] = 1.

Remark 3.2. By symmetry, M−2α1−α2 has length 2, and contains M−2α1−2α2 as a submodule.

Exercise 3.3. This is Homework 3, Problem 3. We continue with the case g = sl3.

(1) Prove: M0 contains M−α1 and M−α2 as submodules and [M0 ∶ L−α1] = [M0 ∶ L−α2] = 1.
(2) Prove: M−α2 contains M−2α1−α2 as a submodule and [M−α2 ∶ L−2α1−α2] = 1.

6Hint: [Lemma 1.3, Lecture 5].
7Hint: count the dimension of the (−2α1 − 2α2)-weight subspace of M−α1−2α2 .
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(3) Prove: there exists a (unique) dotted arrow making the following diagram commutes8:

M−α1

⊂ // M0

M−2α1−α2

⊂ //

99

M−α2 .

⊂

cc

Exercise 3.4. This is Homework 3, Problem 4. We continue with the case g = sl3. Prove: for
λ,µ ∈W ⋅ 0, [Mλ ∶ Lµ] ≠ 0 iff λ ⪰ µ.

Remark 3.5. You may want to play with the above example for more time. E.g., can you find
upper or lower bounds, or even the exact value, of length(M0)?

Let us draw the set W ⋅ 0 for sl3 in a directed graph:

s1 ⋅ 0 // 0

s1s2 ⋅ 0

::

// s2 ⋅ 0

dd

w0 ⋅ 0 //

dd

s2s1 ⋅ 0.

::

aa

Here an edge between two vertices means there exists an injective map between the correspond-
ing Verma modules. This defines a partial order ⪯⊂ on W ⋅ 09 such that λ ⪯⊂ µ iff Mλ ⊂ Mµ.
The above exercises claim this partial order is exactly the partial order ⪯ defined using positive
roots.

Note that

● M0 contains any other Verma module in this block as a submodule;
● Mw0⋅0 is contained in any other Verma module in this block and is irreducible.
● All the generating relation is of the form w′ ⋅ 0 → w ⋅ 0 with w′ = sαw, α ∈ Φ+ and
l(w′) > l(w). Here l(w) is the length of an element w ∈ W , defined as the minimal
length of any expression of w as products of simple reflections. Note that w0 is actually
sα1+α2 .

All these results remain true for general g, and even for any other block Oχ after suitable
modifications. These are the main contents of the following lectures.
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