
LECTURE 7

1. When is [Mλ ∶ Lµ] ≠ 0?

We start with the following basis observation.

Lemma 1.1. Let λ ∈ t∗. If [Mλ ∶ Lµ] ≠ 0, then µ ∈W ⋅ λ and µ ⪯ λ.

Proof. The modules Mλ and Lµ should be contained in the same block; the weights of Lµ
should be a subset of those of Mλ.

�
Recall in [Lemma 1.3, Lecture 5], we proved that for a weight λ ∈ t∗ and a simple root α ∈ ∆,

if ⟨λ + ρ, α̌⟩ ∈ Z≥0, then Msα⋅λ ⊂ Mλ. Note that this condition is equivalent to sα ⋅ λ ⪯ λ. It
follows that we have a partial inverse of Lemma 1.1:

Lemma 1.2. Let λ ∈ t∗ be a weight and α ∈ ∆ be a simple root. If sα ⋅ λ ⪯ λ, then Msα⋅λ ⊂Mλ

and in particular, [Mλ ∶ Lsα⋅λ] ≠ 0.

It turn out this result remains true for any positive root α ∈ Φ+.

Theorem 1.3 (Verma). Let λ ∈ t∗ be a weight and α ∈ Φ+ be any positive1 root. If sα ⋅ λ ⪯ λ,
then Msα⋅λ ⊂Mλ and in particular, [Mλ ∶ Lsα⋅λ] ≠ 0.

Remark 1.4. As indicated by the sl3-case, the proof of Verma’s theorem for general roots should
be more involved than the proof for simple roots. Unfortunately we do not have enough time
to discuss this proof. We refer the interested readers to [H, Sect. 4.5-4.7].

Verma’s theorem gives a sufficient condition for [Mλ ∶ Lµ] ≠ 0. Namely, if there is a chain

(1.1) µ ⪯ sα1 ⋅ µ ⪯ (sα2sα1) ⋅ µ ⪯ ⋯ ⪯ (sαn⋯sα2sα1) ⋅ µ = λ,
with sαi ∈ Φ+, then

Mµ ⊂Msα1
⋅µ ⊂ ⋯ ⊂Mλ,

and in particular [Mλ ∶ Lµ] ≠ 0. It turns out this condition is also necessary.

Definition 1.5. Let λ,µ ∈ t∗. We write µ ⪯⊂ λ2 if there exists a chain like (1.1).

Remark 1.6. It is easy to see (t∗,⪯⊂) is a partially ordered set. Moreover, if µ and λ are
⪯⊂-comparable, then µ ∈W ⋅ λ.

Theorem 1.7 (BGG). Let λ,µ ∈ t∗. If [Mλ ∶ Lµ] ≠ 0, then µ ⪯⊂ λ.

Remark 1.8. Unfortunately we do not have enough time to discuss the algebraic proofs of
the BGG theorem. We refer the interested readers to [H, Sect. 5] for a proof using Jantzen
sum formula. However, we will provide a geometric proof in future lectures, at least when the
stablizer of W● at λ is trivial.

Date: Apr 8, 2024.
1Since sα = s−α, the statement is true for any root. However, the equivalence ⟨λ + ρ, α̌⟩ ∈ Z≥0 ⇔ sα ⋅ λ ⪯ λ

needs α to be positive.
2This notation is not standard. Some authors prefer to denote the usual partial order on t∗ (defined by

positive roots) by ≤ (rather than ⪯) and leave symbol ⪯ for the partial order in this definition. But it is hard to
distinguish these notations on blackboards.
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2 LECTURE 7

Corollary 1.9 (Verma, BGG). For λ,µ ∈ t∗, the following conditions are equivalent:

(i) µ ⪯⊂ λ;
(ii) Mµ ⊂Mλ;
(iii) [Mλ ∶ Lµ] ≠ 0.

Our main goal for this lecture is to explain the content of the above theorems.

Warning 1.10. Note that µ ⪯⊂ λ implies µ ⪯ λ and µ ∈W ⋅λ. The contrary happens to be true
for sl2 and sl3, but is false already for sl4. This can be seen via Example 5.10 below.

2. dimHomO(Mµ,Mλ) ≤ 1

Let me first explain why I wrote Mµ ⊂Mλ rather than “Mλ contains Mµ as a submodule”.
Such notation would not be appropriate unless such embedding is unique if exists. This is
indeed the case.

Proposition 2.1. For λ,µ ∈ t∗, we have

(1) Any nonzero morphism φ ∶Mµ →Mλ is injective;
(2) dimHomO(Mµ,Mλ) ≤ 1.

To prove the proposition, we need the following result:

Proposition 2.2. For λ ∈ t∗, the Verma module Mλ contains a unique irreducible submodule.

Proof. Suppose Mλ has two distinct irrducible submodules L and L′. We must have L∩L′ = 0.
Recall Mλ ≃ U(n−) is n−-modules. Hence these submodules correspond to nonzero left ideals of
R = U(n−). However, this contracts with the following elementary lemma.

Lemma 2.3. Let R be a left Noetherian ring that contains no zero-divisor. Then any nonzero
left ideals have nontrivial intersection.

Proof. We can assume the two ideals are I and Rx for some nonzero element x ∈ R. Suppose
I ∩ Rx = 0. Consider In ∶= I + Ix + ⋯Ixn. Using induction, it is easy to show In−1 ⊂ In but
In−1 ≠ In. This contradicts with the assumption that R is left Noetherian.

�
�[Proposition 2.2]

Example 2.4. For g = sl2, the unique irreducible submodule of Ml is isomorphic to M−l−2 if
l ∈ Z≥0, and is Ml itself otherwise.

Proof of Proposition 2.1. (1) follows from the facts that U(n−) has no zero-divisor. Let φ1, φ2 ∶
Mµ →Mλ be two nonzero morphisms. We only need to show φ1 = cφ2 for some scalar. By (1),
both morhisms are injective. Let L be the unique irreducible submodule of Mµ. We obtain
two injective morphisms L → Mµ ⇉ Mλ. Since L is irreducible, the image of each morphism
must be the unique irreducible submodule L′ of Mλ. Recall dimHomO(L,L′) ≤ 1 ([Lemma 2.7,
Lecture 6]). Hence there exists a scalar c such that φ1∣L = cφ2∣L. But this implies φ1 = cφ2
because otherwise φ1 − cφ2 would be injective by (1).

�[Proposition 2.1]
Combining the two propositions, we actually have:

Corollary 2.5. For λ ∈ t∗, the unique irreducible submodule of Mλ is also a Verma module.

Proof. Let Lµ ↪Mλ be the unique irreducible submodule. The composition Mµ ↠ Lµ ↪Mλ

must be injective by Proposition 2.1(1). It follows that Mµ ≃ Lµ.
�
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3. Dominant and antidominant weights

The following combinatorial results characterize the maximal and minimal elements for the
poset (t∗,⪯⊂).

Proposition-Definition 3.1. For λ ∈ t∗, the following conditions are equivalent:

(i) λ is a maximal element with respect to the partial order ⪯⊂;
(ii) For any positive root α ∈ Φ+, ⟨λ + ρ, α̌⟩ ∉ Z<0.
(iii) For any positive root α ∈ Φ+, λ ⊀ sα ⋅ λ;
(iv) For any w ∈W , λ ⊀ w ⋅ λ.

We say λ is dot-dominant3 if it satisfies the above conditions.

It is easy to see (i)⇔(ii)⇔(iii)⇐(iv). For a complete proof, see [H, Sect. 3.4-3.5]. Also
see [G, Sect. 3.7] for a quick proof when λ is either integral or generic.

Dually, we have

Proposition-Definition 3.2. For λ ∈ t∗, the following conditions are equivalent:

(i) λ is a minimal element with respect to the partial order ⪯⊂;
(ii) For any positive root α ∈ Φ+, ⟨λ + ρ, α̌⟩ ∉ Z>0.
(iii) For any positive root α ∈ Φ+, λ ⊁ sα ⋅ λ;
(iv) For any w ∈W , λ ⊁ w ⋅ λ.

We say λ is dot-antidominant if it satisfies the above conditions.

Example 3.3. For g = sl2 and the coordinate l = ⟨λ, α̌⟩, λ is dot-dominant iff l ≠ −2,−3,⋯,
while it is dot-antidominant iff l ≠ 0,1,⋯.

Example 3.4. For g = sl3 and the positive simple roots α1, α2, a weight λ = c1α1 + c2α2 is dot-
dominant iff 2c1−c2, 2c2−c1 ≠ −2,−3,⋯, while it is dot-antidominant iff 2c1−c2, 2c2−c1 ≠ 0,1,⋯.

Note that the Verma–BGG theorem implies the following result, which we can prove directly.

Proposition 3.5. If λ ∈ t∗ is dot-antidominant, then Mλ is irreducible.

Proof. By Lemma 1.1, if [Mλ ∶ Lµ] ≠ 0, then µ = w ⋅ λ ⪯ λ for some w ∈ W . Since λ is
dot-antidominant, we have w ⋅ λ ⊀ λ. Hence we must have w ⋅ λ = λ. In this case, we have
[Mλ ∶ Lλ] = 1 by considering the highest weight subspaces.

�
Dot-dominant Verma modules also have categorical meaning:

Proposition 3.6. If λ ∈ t∗ is dot-dominant, then Mλ is projective, i.e., HomO(Mλ,−) is exact.

Proof. We only need to prove Mλ is a projective object in the block O$(λ). This follows from
the following calculation:

Lemma 3.7. If λ ∈ t∗ is dot-dominant, then HomO$(λ)(Mλ,N)→ Nwt=λ is an isomorphism.

Proof. The map in question is the composition

HomO$(λ)(Mλ,N) ≃ Homb(kλ,N)→ Homt(kλ,N) ≃ Nwt=λ.

Hence we only need to show any t-linear map kλ → N is b-linear, i.e., any λ-weight vector v of
N is annihilated by n. By the linkage-principle, any weight µ of N satisfies µ ⪯ w ⋅ λ for some

3This terminology is also not standard. Some authors (including [H]) just say λ is dominant, while others
(including BGG and [G]) say λ+ρ is dominant. To avoid ambiguity, many people advocate to adopt the second

convention and use the equivalent words “λ is dot-dominant”.
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w ∈ W . Since λ is dot-dominant, we have w ⋅ λ ⊁ λ and therefore µ ⊁ λ. This implies n ⋅ v = 0
because weights of n ⋅ v would be higher than λ = wt(v).

�
�[Proposition 3.6]

4. Structure of Oχ
The blocks O$(λ) behave differently when λ varies. To describe this phenomenon, we need

to review some conditions on λ.

Definition 4.1. For λ ∈ t∗, we say:

● λ is integral if ⟨λ, α̌⟩ ∈ Z for any α ∈ Φ.
● λ is dot-regular if w ⋅ λ ≠ λ for any w ≠ Id.
● λ is dot-singular if it is not dot-regular.
● λ is generic if ⟨λ, α̌⟩ ∉ Z for any α ∈ Φ.

Example 4.2. For g = sl2 and the coordinate l = ⟨λ, α̌⟩, λ is integral iff l is an integer; it is
dot-regular iff l ≠ −1; it is generic iff l is not an integer.

Example 4.3. For g = sl3 and the positive simple roots α1, α2, a weight λ = c1α1 + c2α2 is
integral iff 2c1−c2 and 2c2−c1 are integers; it it dot-regular iff 2c1−c2 and 2c2−c1 are nonzero;
it is generic iff 2c1 − c2 and 2c2 − c1 are not integers.

Remark 4.4. By the theory of Weyl chambers, a weight λ is dot-regular iff sα ⋅ λ ≠ λ for any
α ∈ Φ, which is equivalent to ⟨λ + ρ, α̌⟩ ≠ 0. In particular any generic weight is dot-regular.

Remark 4.5. One can show λ ∈ t∗ is dot-regular iff the morphism $ ∶ t∗ → Spec(Z(g)) ≃ t∗//W
is regular (=smooth) at the point λ.

Remark 4.6. Note that for any w ∈W , λ is integral (resp. dot-regular, dot-singular, generic) iff
w(λ) is so. Indeed, this follows from ⟨λ, α̌⟩ = ⟨w(λ),w(α̌)⟩ and ⟨ρ, α̌⟩ = 1.

Note that by definition each linkage class W ⋅λ contains at least a dot-(anti)dominant element.
However, the sl2-case implies such element is not unique. As we will soon see, if λ is integral,
such dot-(anti)dominant element is unique. In general, the number of dot-(anti)dominant ele-
ments in W ⋅ λ depends on the residue class of λ.

Definition 4.7. We define4:

● Let Λ ⊂ t∗ be the subset of integral weights.
● Let Λr ∶= ZΦ ⊂ t∗ be the subset of Z-spans of roots.

Remark 4.8. Using the axioms of root systems, it is easy to see Λr ⊂ Λ, and they are lattices
in t∗. In other words, they are free abelian groups of rank dim(t∗) and Λr ⊗Z k ≃ Λ⊗Z k ≃ t∗.

In general, these two lattices are different. For example, for g = sl2 and the coordinate
l = ⟨λ, α̌⟩, Λr = 2Z while Λ = Z.

Notation 4.9. For λ ∈ t∗, we write [λ] ∈ t∗/Λ for its residue class.

We have the following combinatorial results, see [H, Sect. 3.4-3.5] for their proofs.

4Some authors use the notations Λsc for Λ and Λad for Λr because they are exactly the lattices appearing in
the root data of Gsc and Gad.
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Theorem 4.10. For [λ] ∈ t∗/Λ, let Φ[λ] ⊂ Φ be the subset of roots α such that ⟨λ, α̌⟩ ∈ Z and

W[λ] ⊂W be the subgroup of elements w such that w(λ)−λ ∈ Λr
5. Then (RΦ[λ],Φ[λ]) is a root

system and W[λ] is the Weyl group of it.

Lemma 4.11. For λ ∈ t∗, if µ ∈W[λ] ⋅ λ, then Φ[µ] = Φ[λ] and W[µ] =Wλ.

Lemma 4.12. For λ ∈ t∗, the orbit W[λ] ⋅ λ contains exactly one dot-dominant (resp. dot-
antidominant) element.

Remark 4.13. Note that Φ[λ] = Φ and W[λ] =W if λ is integral.

Remark 4.14. It is easy to see if λ,µ ∈ t∗ are ⪯⊂-comparable, then µ ∈W[λ] ⋅ λ. Hence Lemma
4.12 implies for any λ ∈ t∗, there is a unique dot-dominant (resp. dot-antidominant) weight λ+

(resp. λ−) such that λ ⪯⊂ λ+ (resp. λ− ⊂ λ).

Corollary 4.15. We have:

(1) If λ ∈ t∗ is dot-dominant, then Mµ ⊂Mλ for any µ ∈W[λ] ⋅ λ.
(2) If λ ∈ t∗ is dot-antidominant, then Mµ ⊃Mλ for any µ ∈W[λ] ⋅ λ.

Let us look at some examples.

Example 4.16. The negative half sum −ρ is integral and dot-singular, and is both dot-
dominant and dot-antidominant. It follows that M−ρ is irreducible and projective. Note that
M−ρ is the only irreducible object in the block O$(−ρ) and Hom(M−ρ,M−ρ) = k ⋅ Id ([Lemma
2.7, Lecture 6]). These formally imply

HomO$(−ρ)(M−ρ,−) ∶ O$(−ρ) → Vectfd

is an equivalence.
The block O$(−ρ) is the so-called most singular block. The structure of the most singular

block is boring.

Remark 4.17. Any generic weight λ ∈ t∗ is dot-regular, and is both dot-dominant and dot-
antidominant. It follows that there are #W Verma modules in a generic block O$(λ) and
each of them is both irreducible and projective. These formally imply O$(λ) is semisimple and
contains #W irreducible objects.

The structure of any generic block is boring.

Remark 4.18. The 0 weight is integral and dot-regular. It is the unique dot-dominant element
in the orbit W ⋅ 0. The unique dot-antidominant element is

w0 ⋅ 0 = w0(ρ) − ρ = −2ρ ∈W ⋅ 0.
Here recall w0 is the longest element in W , which is the unique element sending Φ+ to Φ−.

The block O$(0) is the so-called principle block. As we have seen in the sl3-case, the
structure of the principle block is interesting.

Proposition 4.19. If λ is integral, then O$(λ) is indecomposable.

Proof. We can assume λ is dot-antidominant. Suppose O$(λ) ≃ O1 ⊕O2. Recall any Verma
module Mµ is indecomposable because it has a unique irreducible quotient. It follows that each
Mµ in the block O$(λ) is contained either in O1 or O2. However, by Corollary 4.15, and Mλ

is contained in each Mµ as a submodule. It follows that all Verma modules in the block are
contained either in O1 or O2. This implies either O2 ≃ 0 or O1 ≃ 0.

�

5It is clear that Φ[λ] only depends on the residue class [λ]. For W[λ], it is enough to show w(λ) − λ ∈ Λr

whenever λ ∈ Λ. This can be reduced to the case w = sα, and a direct calculation shows the claim is true.
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Exercise 4.20. This is Homework 3, Problem 5. For any weight λ ∈ t∗, let Oλ ⊂ O be the
full subcategory containing those objects M whose composition factors are of the form Lµ for
µ ∈W[λ] ⋅ λ. Prove:

(1) Each Oλ is indecomposable.
(2) For M ∈ O, suppose we have a decomposition M ≃M1⊕M2 as t-modules such that the

set wt(M1) − wt(M2) ∶= {λ1 − λ2 ∣λi ∈ wt(Mi)} has empty intersection with Λr, then
this is also a decomposition of g-modules.

(3) For any central character χ of Z(g), we have a direct sum decomposition

Oχ ≃ ⊕
λ∈$−1(χ) is dot-antidominant

Oλ.

(4) Conclude that
O ≃ ⊕

λ is dot-antidominant

Oλ.

Remark 4.21. Some authors (including [H]) prefer to call the full subcategories Oλ the blocks
of O. This is different from our convention when λ is not integral. We made this choice because
we will give geometric incarnations to O$(λ) even for non-integral λ.

5. The Bruhat order

Let λ be a integral, dot-regular and dot-antidominant weight. As suggested by the sl3-case,
the block O$(λ) = Oλ is interesting. This block contains #W Verma modules, labelled by
weights W ⋅ λ. In this subsection, we can give a more combinatorial description of the partial
order ⪯⊂ when restricted to W ⋅ λ.

Recall the following definition:

Definition 5.1. For w ∈W , its length is defined to be

`(w) ∶= #{α ∈ Φ+ ∣w(α) ∈ Φ−}.
Example 5.2. We have `(Id) = 0.

The following results are well-known (see. e.g. [H, Sect. 0.3-0.4]).

Proposition-Definition 5.3. For w ∈W , the length `(w) is the length of the shortest presen-
tation w = s1s2⋯s` such that each si is a simple reflection (coresponding to a simple positive
root). In particular `(w) = `(w−1). Any such presentation with ` = `(w) is called a reduced
presentation of w.

Lemma 5.4. For any reflection sα, α ∈ Φ, the numbder `(wsα) − `(w) is positive (resp. nega-
tive) iff w(α) is positive (resp. negative).

Lemma 5.5. There exists a longest element w0 ∈W such that w0(Φ+) = Φ−. By definition,
w0 = w−1

0 and `(w0) = #Φ+ = dim(n).

Proposition-Definition 5.6. For w,w′ ∈W , the following conditions are equivalent:

(a) There exists a chain w′ = w[0],w[1],⋯,w[m] = w such that w[i+1] = sαiw[i] for αi ∈ Φ
and `(w[i+1]) > `(w[i]);

(b) There exists a chain w′ = w[0],w[1],⋯,w[m] = w such that w[i+1] = w[i]sαi for αi ∈ Φ
and `(w[i+1]) > `(w[i]);

(c) There exists a reduced presentation w = s1s2⋯s` such that w′ = si1⋯sim for a substring
1 ≤ i1 < ⋯ < im ≤ `;

We write w′ ≤ w if they satisfy the above conditions. This defines a partial order on W , which
is called the Bruhat order.
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Remark 5.7. By definition, for any w ∈W , we have 1 ≤ w ≤ w0.

We will review more properties of the Burhat order when we need them. For now, we state
the following combinatorial result. For a proof, see [H, Sect. 5.2].

Proposition 5.8. Let λ be a integral, dot-regular and dot-antidominant weight. Then w′ ⋅λ ⪯⊂
w ⋅ λ iff w′ ≤ w.

Warning 5.9. There is a critical typo in [H, Sect. 5.2]. See the online erratum to the book.

Example 5.10. For g = sl4 and W ≃ Σ4, consider w′ = (1423) and w = (2341). It is easy to
check w′ ≤ w is false while w′ ⋅ λ ⪯ w ⋅ λ is true. In particular, ⪯ and ⪯⊂ are different partial
orders.
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