
LECTURE 8

1. Hecke algebras and Kazhdan–Lusztig conjecture

Last time we introduced the Verma–BGG theorem, which gives a complete answer to when
[Mλ ∶ Lµ] ≠ 0 and Mµ ⊂Mλ. One could be more ambitious and ask the following question:

Question 1. Can we find a formula or an algorithm that calculates the multiplicities [Mλ ∶ Lµ]
for amy λ,µ?

The climax of this study was when Kazhdan–Lusztig proposed their famous conjecture
in 1979, soon followed by independent proofs given by Beilinson–Bernstein and Brylinski–
Kashiwara using a same geometric method. This method received the name localization theory,
and marked the birth of the subject called geometric representation theory1. The ultimate goal
of this course is to introduce this localization theory.

Roughly speaking, the KL conjecture says:

Conjecture 1.1. In the principle block O0, the multiplicities [Mλ ∶ Lµ] can be calculated using
combinatorial data associated to the Hecke algebra of W .

Let us first define the Hecke algebra of W , which plays a significant role in modern repre-
sentation theory. We will only introduce the basics. There are many good references for this
subject, and I would recommend [EMTW, Sect. 3].

Recall the Weyl group W can be generated by simple reflections s ∈ S subject to the following
relations

● (Order 2) For any s ∈ S, s2 = 1;
● (Braid relation) For any s ≠ t ∈ S,

sts⋯
±
mst

= tst⋯
±
mst

,

where mst ∈ {2,3,4,6}.

It follows that the group algebra ZW is generated by similar generators and relations over Z.
Rougly speaking, the Hecke algebra H of W is a deformation of the group algebra ZW using
an indeterminate q as parameter, where we keep the braid relation but change the order 2
requirement. For reasons I cannot fully explain, q = 0 is not allowed. For reasons I do not want
to explain now, it is more convenient to use v ∶= q−1/2 as the indeterminate. In other words, the
base of this deformation is Spec(A) for A = Z[v±] = Z[q±1/2].

Definition 1.2. The Hecke algebra H ∶=H(W ) is the (unital) associative algebra over Z[v±]
generated by the symbols {δs ∣ s ∈ S} subject to the following relations:

● (Quadratic relation) For any s ∈ S, (δs − v−1)(δs + v) = 0.

Date: Apr 15, 2024.
1When KL made their conjecture, they were inspired by Springer’s geometric theory on representations of

the Weyl group, published a few years ago. Kostant also made many pioneer works on the geometry of adjoint
orbits.
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2 LECTURE 8

● (Braid relation) For any s ≠ t ∈ S,

δsδtδs⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
mst

= δtδsδt⋯
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
mst

.

Warning 1.3. There is another set of conventions, where the quadratic relation is (δs−q)(δs+
1) = 0. These two conventions define equivalent algebras via the change of variables δs ↦ q−1/2δs.
Beware of this issue when comparing the literatures.

Proposition-Definition 1.4. For any w ∈ W , choose a reduced expression w = s1s2⋯s`(w)
and define

δw ∶= δs1δs2⋯δs`(w) .
Then δw ∈ H does not depend on the choice of the reduced expression, and {δw}w∈W is a free
basis of H as a Z[v±]-module. We call it the standard basis of the Hecke algebra H.

Remark 1.5. Taking v = 1, i.e., taking the tensor product H ⊗Z[v±] (Z[v±]/(v − 1)), we recover
the group algebra ZW , and the image of the standard basis is the obvious basis of ZW .

Exercise 1.6. This is Homework 4, Problem 1. Prove:

(1) For w,w′ ∈W such that `(w) + `(w′) = `(ww′), we have

δwδw′ = δww′ .

(2) For w ∈W and s ∈ S, we have

δwδs = { δws if w < ws,
(v−1 − v)δw + δws if w > ws,

and

δsδw = { δsw if w < sw,
(v−1 − v)δw + δsw if w > ws.

Remark 1.7. Note that the above exercise provides an algorithm to calculate the multiplication
of H in terms of the standard basis. In particular, H can be defined via the standard basis and
these relations.

Note that each δs is invertible with inverse given by

δ−1s = δs + (v − v−1).
Hence by the above exercise, we obtain:

Lemma 1.8. Each standard basis element δw is invertible, and we have

δ−1w−1 = δw mod ⟨δw′⟩w′<w.

Definition 1.9. The Kazhdan–Lusztig involution, or bar involution

H →H, h↦ h

is the Z-linear homomorphism determined by

δs = δ−1s , v = v−1.
Theorem-Definition 1.10. There exist a unique subset {bw}w∈W ⊂H such that for any w ∈W ,

● (Self-duality) bw = bw;
● (Degree bound)

bw = δw + ∑
w′<w

hw′,wδw′

for some polynomials hw′,w ∈ vZ[v] with vanishing constant term.
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This subset is called the Kazhdan–Lusztig basis of H. The coefficients hw′,w are called the
Kazhdan–Lusztig polynomials.

Convention 1.11. We also set hw,w = 1 and hw′,w = 0 if w′ ≰ w.

Example 1.12. We have bId = δId = 1.

Example 1.13. For s ∈ S, an immediate calculation shows bs = δs + v and therefore h1,s = v.

Remark 1.14. You are strongly encouraged to look at [EMTW, Sect. 3.3.1], where the KL
polynomials for the Weyl group of sl3 are calculated.

Now comes the main course.

Conjecture 1.15 (Kazhdan–Lusztig). For any w,w′ ∈W , we have

[Mw′⋅0 ∶ Lw⋅0] = hw′,w(1).

Remark 1.16. According to the Verma–BGG theorem, [Mw′⋅0 ∶ Lw⋅0] ≠ 0 iff w ⋅ 0 ⪯⊂ w′ ⋅ 0. By
(the dominant version of) [Proposition 5.8, Lecture 7], this condition is equivalent to w ≥ w′.
Hence the conjecture would imply hw′,w(1) ≠ 0 iff w′ ≤ w. Note that by definition, the “only
if” part is true.

Remark 1.17. Although the conjecture only uses the value of hw′,w at v = 1, it is not possible
to define this value without knowing the deformation H.

Remark 1.18. You are encouraged to view the Verma module Mw⋅0 as the incarnation of the
standard basis element δw in O, and view the irreducible module Lw⋅0 as the incarnation of the
KL basis element bw. In future lectures, we will introduce their incarnations in the geometry
of G/B.

KL also made the following conjecture, which was latter proved by them using geometric
methods:

Conjecture 1.19 (KL Positivity). The coefficients of hw′,w(v) are non-negative integers.

Remark 1.20. The pair (W,S) satisfies the axioms of a Coxeter system, and Hecke algebra,
as well as the positivity conjecture, make sense for any Coxeter group. However, we no longer
have geometric tools (like the flag variety G/B) to tackle this conjecture, and the first proof,
by Elias–Williamson, only came in 2010’s. For more details, see [EMTW].

2. More on O
We still need a lot of preparations to present the geometric proofs of these conjectures. But

before that, there are some remaining representation-theoretic topics that we need to address.
Let me motivate them via the KL theory2:

● We will study the contragradient duality in O, which is the incarnation of the KL
involution on H.

● We will study the derived category of O, or equivalently, the Ext-groups. It turns out
the coefficients of the KL polynomials are related to the dimensions of these Ext-groups.
But before that, we need to study the projective objects in O.

2We are not following the standard or historical order of presenting the theory of O. Usually people would

first introduce topics listed below, and state the Verma–BGG theorem and KL conjecture much later. I choose

this order for two reasons: (i) I think the multiplicities [Mλ ∶ Lµ] should be put on the central stage of this

story; (ii) I want to highlight the KL conjecture and its geometric proof.
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● We will introduce the translation functors, which allow us to calculate the multiplicities
[Mλ ∶ Lµ] in any integral block3 using the information in the principle block O0.

There are other important topics that we do not have time to cover:

● Soergel’s theory and his proof of the KL conjecture.
● Jantzen’s filtrations and its geometric incarnation.
● Koszul duality and Langlands duality for O.
● More...

3. Contragradient duality

We start with the following obvious construction.

Construction 3.1. Let M be a weight (=semisimple) t-module. We define its dual weight
module as

M∗,wt ∶= ⊕
λ∈t∗

(Mwt=λ)∗

where (Mwt=λ)∗ is a t-module of weight −λ.

The following lemma is obvious.

Lemma 3.2. Let M be a weight t-module. The embedding

M∗,wt ≃ ⊕
λ∈t∗

(Mwt=λ)∗ ↪ ∏
λ∈t∗

(Mwt=λ)∗ ≃M∗

identifies M∗,wt as the subspace of vectors v such that U(t) ⋅ v is finite-dimensional.

Using the root decomposition of g, it is easy to deduce the following.

Corollary 3.3. Let M be a weight g-module, then M∗,wt is a sub-g-module of M∗.

For a Verma module Mλ, the above construction would define a lowest weight module, which
can no longer belong to O. Hence we need to find a way to correct the signs of the weights.

Construction 3.4. Consider the automorphism of the root system (E,Φ) given by multipli-
cation by −1. By the classification of semisimple Lie algebras, we obtain an automorphism
τ ∶ g→ g of the Lie algebra g, which is called the Cartan involution on g. Note that τ ○τ = Id.

We abuse notation and let τ ∶ g−mod → g−mod be the automorphism induced by τ . Note
that the functor τ is compatible with the forgetful functors to Vect, and sends weight modules
to weight modules. Also, τ(M)wt=λ ≃Mwt=−λ.

Remark 3.5. By construction, the restriction τ ∣t is multiplication by −1. Note that τ(b) = b−

because Φ+ is sent to Φ− = −Φ+.

Example 3.6. For g = sln, the Cartan involution is given by τ(A) = −AT .

Construction 3.7. Let C ⊂ g−mod be the full subcategory of weight g-modules such that each
weight subspace is finite-dimensional. For M ∈ C, define

M∨ ∶= τ(M∗,wt).
Note that

(M∨)wt=λ ≃ (Mwt=λ)∗.
In particular, the λ-weight subspaces of M∨ and M have equal dimensions.

3For non-integral blocks, inspired by early works of Jantzen, Soergel ([S]) reduced the problem to the study
of an integral block for another semisimple Lie algebra whose Weyl group is W[λ]. See [H, Sect. 13.13] and the

references there for more information.
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The following lemma is obvious:

Lemma 3.8. The functor

Cop → C, M ↦M∨.

is a contravariant involution, i.e., (M∨)∨ ≃M .

Theorem 3.9. If M belongs to O, so does M∨. In particular, the functor

Oop → O, M ↦M∨.

is a contravariant involution. We call it the contragradient duality on O.

Proof. It is easy to see O ⊂ C is closed under extensions. Hence the theorem follows from the
following proposition.

�

Proposition 3.10. For any λ ∈ t∗, we have L∨λ ≃ Lλ.

Proof. Since Lλ is an irreducible g-module, so is L∨λ. By contruction, L∨λ has highest weight λ,

and (L∨λ)wt=λ is 1-dimensional. For any λ-weight vector v ∈ L∨λ, we have n ⋅ v = 0 by considering
the weights. This induces a nonzero g-linear map Mλ → L∨λ sending vλ to v. Since L∨λ is
irreducible, this map is surjective. Therefore it must identify L∨λ with the unique irreducible
quotient of Mλ.

�

Corollary 3.11. Each block of O is stable under the contragradient duality.

Definition 3.12. For any λ ∈ t∗, we call M∨
λ the dual Verma module corresponding to Mλ.

Corollary 3.13. For any λ ∈ t∗, the dual Verma module M∨
λ has a unique irreducible submodule

isomorphic to L∨λ ≃ Lλ.

Lemma 3.14. For λ,µ ∈ t∗, we have dimHomO(Mλ,M
∨
µ) = δλ,µ. In particular, any composi-

tion Mλ↠ Lλ ↪M∨
λ is a generator of the 1-dimensional vector space HomO(Mλ,M

∨
λ ).

Proof. Knowing a g-linear map Mλ →M∨
µ is equivalent to knowing a λ-weight vector v in M∨

µ

such that n ⋅ v = 0. By definition, this is equivalent to knowing a functional f ∶ Mµ → k such
that

● It factors as Mµ↠Mwt=λ
µ → k;

● It annilates n− ⋅Mµ.

Here the second condition is due to τ(n) = n−. Since Mµ is free over U(n−), we have Mµ ≃
(n− ⋅Mµ)⊕Mwt=µ

µ . Hence λ ≠ µ implies f = 0. In the case λ = µ, f is determined by a functional

Mwt=λ
λ → k, and the space of it is 1-dimensional.

�

Remark 3.15. The content of the lemma can be summarized as: the objects {M∨
λ}λ∈t∗ is right

orthogonal to the objects {Mλ}λ∈t∗ in O. Next time, we will prove this claim remains true even

in the derived category. In other words, ExtiO(Mλ,M
∨
µ) = 0 for i > 0. For now, let us prove the

case i = 1.

Lemma 3.16. For λ,µ ∈ t∗, Ext1O(Mλ,M
∨
µ) = 0.

Proof. We need to show any following short exact sequence in O splits:

(3.1) 0→M∨
µ → N →Mλ → 0.
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Consider the b-linear map kλ → Mλ. By pullback along this map, we obtain a short exact
sequence of b-modules:

0→M∨
µ → N ′ → kλ → 0,

where N ′ = N ×Mλ
kλ. By the universal property of Mλ, we only need to show this sequence

splits.
Note that wt(N ′) = wt(M∨

µ) ∪ {λ} = {µ′ ∣µ′ ≤ µ} ∪ {λ}. If λ ⊀ µ, then wt(N ′) contains no
weight strictly greater than λ. Hence any λ-weight vector would give a desired splitting. If
λ ≺ µ, we can pass to duality of (3.1) and obtain a short exact sequence

0→M∨
λ → N∨ →Mµ → 0.

By the previous case, this sequence splits. Hence so is the original one.
�

Example 3.17. For g = sl2 and the coordinate l = ⟨λ, α̌⟩, we have:

● If l ∉ Z≥0, then Ml ≃ Ll ≃M∨
l .

● If l ∈ Z≥0, then we have a nonsplit short exact sequence 0→ Ll →M∨
l → L−l−2 → 0.

Remark 3.18. In future lectures, we will see the contragradient duality corresponds to the
Verdier duality in geometry, and the latter can be related to the KL involution.

4. Projective modules

Recall the following definitions.

Definition 4.1. Let A be an abelian category. We say an object P ∈ A is projective if the
functor HomA(P,−) is exact.

We say A has enough projectives if every object M ∈ A admits a surjection P ↠M such
that P is projective.

For an object M ∈ A, we say a surjection P ↠M exhibits P as a projective cover of M if
P is projective and the map P ↠M is an essential surjection, i.e., for any proper subobject
Q ⊂ P , the composition Q→ P →M is not surjective.

Dually, we have:

Definition 4.2. Let A be an abelian category. We say an object I ∈ A is injective if the
corresponding object in Aop is projective.

We say A has enough injectives if Aop has enough projectives.
For an object M ∈ A, we say an injection M ↪ I exhibits I as an injective hull of M if the

corresponding morphism in Aop gives a projective cover.

We will prove the following two theorems. The second one can be viewed as a blackbox4.

Theorem 4.3. The category O has enough projectives and injectives.

Theorem 4.4. Let A be an abelian category that has enough projectives and every object of A
has finite length. Then:

(1) Any object M ∈ A admits a projective cover, and any two projective covers P1 ↠ M
and P2 ↠M are isomorphic5.

(2) Any indecomposable projective object P ∈ A admits a unique irreducible quotient.

4I fail to find a good reference for this well-known result, hence I provide a proof in the appendix.
5However, the isomorphism P1 → P2 is not unique. Therefore, we can not say the projective cover.
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(3) There is a bijection:

{Isomorphism classes of irreducible objects in A} ≃
{Isomorphism classes of indecomposable projective objects in A}

L←→ P

such that (i) P is isomorphic to a projective cover of L; (ii) L is isomorphic to the
irreducible quotient of P .

(4) If P and L correspond to each other in (3), then for any M ∈ A, we have

dimHomA(P,M) = [M ∶ L].

Remark 4.5. We leave the dual version of the above theorem (for injective objects) to the
readers.

Remark 4.6. In general, if an abelian category A has enough projectives (resp. injectives),
then we can define the bounded above6 (resp. bounded below) derived category D−(A) (resp.
D+(A)). However, it is much subtler to define the unbounded derived category.

But this subtlety does not occur for O. We will see O has finite projective (resp. injective)
dimension and thereby only the bounded derived category Db(A) is needed.

Let us first assume the above theorems and study the projective objects in O. The story for
injective objects can be obtained using the contragradient duality.

Notation 4.7. For any λ ∈ t∗, we denote a projective cover of Lλ by Pλ (which is well-defined
up to non-unique isomorphisms).

Similarly, we denote an injective hull of Lλ by Iλ.

Exercise 4.8. This is Homework 4, Problem 2. For any λ ∈ t∗, prove:

(1) The surjection Pλ↠ Lλ factors as Pλ →Mλ → Lλ.
(2) The obtained map Pλ →Mλ is surjective and exhibits Pλ as a projective cover of Mλ.

Corollary 4.9. For any M ∈ O, we have

dimHomO(Pλ,M) = [M ∶ Lλ].

To prove Thorem 4.3, we need the following lemma

Lemma 4.10. For χ =$(λ), the functor

Oχ → Vect, M ↦Mwt=λ.

is representable.

Remark 4.11. If λ is dot-dominant, then the above functor is represented by the Verma module
Mλ. See [Lemma 3.7, Lecture 7]. The proof below is a slight modification of that proof.

Proof. For any n ∈ Z>0, let Iλ,n ⊂ U(g) be the left ideal genetated by the following elements:

● The element t − λ(t) for any t ∈ t;
● The element x1x2⋯xn for xi ∈ n+.

Let Mλ,n ∶= U(g)/Iλ,n be the quotient U(g)-module. Note that Mλ,1 is just the Verma module.
It is easy to see Mλ,n ∈ O. Let Mλ,n,χ ∈ Oχ be the corresponding direct summand in the block
Oχ.

6We always use cohomological convention when talking about chain complices.
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We claim for n large enough, the module Mλ,n,χ represents the desired functor7.
Indeed, for any N ∈ Oχ, HomO(Mλ,n,N) ≃ HomOχ(Mλ,n,χ,N) is the set of λ-weight vector v

in N such that (n+)n ⋅ v = 0. Then we win because weights occuring in Oχ have upper bounded
with respect to the partial order ⪯.

�

Proof of Thoerem 4.3. By the contragradient duality, we only need to prove O has enough
projectives. By the block decomposition, we only need to prove Oχ has enough projectives.
Using dévissage, we only need to show any irreducbile Lλ ∈ Oχ admits a surjection P ↠ Lλ
with P being projective.

Let P ∈ Oχ represents the functor in Lemma 4.10, i.e., HomOχ(P,M) ≃Mwt=λ. This functor
is exact and therefore P is projective. Taking M ∶= Lλ, any nonzero highest weight vector of
Lλ gives a nonzero morphism P → Lλ. Since Lλ is irreducible, this morphism is surjective as
desired.

�[Thoerem 4.3]

Exercise 4.12. This is Homework 4, Problem 3. For λ ∈ t∗, let P ↠ Lλ be the surjection
constructed in the above proof, i.e., P represents the functor

Oχ → Vect, M ↦Mwt=λ.

Prove:

(1) This map factors as P → Pλ↠ Lλ. Moreover, P → Pλ is surjective.
(2) For g = sl2, the obtained map P → Pλ happens to be an isomorphism8.
(3) In general, P → Pλ is not an isomorphism9.

Appendix A. Projective covers in Artinian and Noetherian category

Proof of Theorem 4.4(1). We first prove projective covers are isomorphic if they exist. This is

true for any abelian category. Let P1
p1Ð→M and P2

p2Ð→M be projective covers of M ∈ A. By

the lifting property of P1, the morphism P1
p1Ð→ M factors as P1

φÐ→ P2
p2Ð→ M . The morphism

P1
φÐ→ P2 must be surjective because otherwise P2

p2Ð→M is not essential. By the lifting property

of P2, the identity morphism P2 = P2 factors as P2
ϕÐ→ P1

φÐ→ P2. The morphism P2
ϕÐ→ P1 must

be surjective because otherwise P1
p1Ð→M is not essential. But P2

ϕÐ→ P1 is also injective because
φ is a left inverse of it. It follows that both ϕ and φ are isomorphisms.

Now we prove any M ∈ A admits a projective cover. Let P
pÐ→M be a surjection such that P

is projective and length(P ) is minimal among all such surjections. We claim this is a projective

cover. We only need to show p is an essential surjection. Suppose Q
iÐ→ P is a subobject such

that q ∶= p○i is surjective. We only need to show i is an isomorphism. We can assume length(Q)
7By Yoneda lemma, this claim implies Mλ,n,χ and Mλ,n+1,χ are isomorphic for n >> 0. In fact, one can

directly prove the obvious map Mλ,n+1,χ → Mλ,n,χ is an isomorphism for n >> 0. Sketch: let I′λ,n ⊂ U(b) be

the left ideal generated by the same set of elements. Then Mλ ≃ indg
b
(U(b)/I′λ,n). We have

I′λ,n/I′λ,n+1 ≃ ⊕
α1,⋯,αn∈Φ+

kλ+∑ni=1 αi

as U(b)-modules. Hence we have a short exact sequence in O:

0→ ⊕
α1,⋯,αn∈Φ+

Mλ+∑ni=1 αi →Mλ,n+1 →Mλ,n → 0.

Now for n >> 0, the kernel will not be contained in the block Oχ by considering the weights.
8Hint: using Corollary 4.9.
9Hint: what we have learned so far can (at least) prove this for sl3 and sl4.
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is minimal among all such subobjects. By the lifting property of P , the morphism P
pÐ→ M

factors as P
rÐ→ Q

qÐ→M . Consider the composition Q
iÐ→ P

rÐ→ Q. It must be surjective because
otherwise Im(r ○ i) ⊂ Q would contradict the minimal assumption about length(Q). But then
r ○ i must be an isomorphism because length(ker(r ○ i)) = length(Q) − length(Q) = 0. It follows
that Q is a direct summand of P and therefore is also projective. Then we must have Q ≃ P
because of the minimal assumption about length(P ).

�[Theorem 4.4(1)]
To prove (2), recall the following well-known result:

Lemma A.1. Let A be any abelian category and M ∈ A be an indecomposable object of finite
length. Then:

(i) Any φ ∶M →M is either an isomorphism or nilpotent.
(ii) If φ,ϕ ∶M →M is such that φ + ϕ is an isomorphism, then one of them is an isomor-

phism.

Proof. It is obvious that (ii) follows from (i). To prove (i), suppose φ is not nilpotent. The
descending chain M ⊃ Im(φ) ⊃ Im(φ2) ⊃ ⋯ must stablize at a nonzero subobject N ⊂M . Then
φ stablizes N and φ∣N ∶ N → N is an isomorphism. Also, for n >> 0, φn induces a surjection
ϕn ∶ M → N . By definition ϕn∣N = (φ∣N)n. Hence φn∣N is also an isomorphism. Then N is a
direct summand of M . Since M is indecomposable, we must have N ≃ M and therefore φ is
surjective. By considering lengths, it is an isomorphism.

�

Proof of Theorem 4.4(2). Suppose P ↠ L1 and P ↠ L2 are two non-isomorphic irreducible
quotients. Let K1 ⊂ P and K2 ⊂ P be the kernels. Then the morphism K1 ⊕K2 → P must be
surjective. By the lifting property of P , the identity morphism P = P factors as P →K1⊕K2 →
P . Let φi be the composition P → Ki → P . Then φ1 + φ2 = Id. By the above lemma, one of
φ1, φ2 is an isomorphism. But this is absurd.

�[Theorem 4.4(2)]

Proof of Theorem 4.4(3). Let L be an irreducible object and P be a projective cover of it. Then
P is indecomposble because otherwise P ↠ L is not essential. Also, by (2), L is the unique
irreducible quotient of P .

On the other hand, let P be an indecomposable object and L be the unique irreducible
quotient of it. We only need to show P ↠ L is essential. But the same proof as in (1) suffices
for this purpose.

�[Theorem 4.4(3)]

Proof of Theorem 4.4(4). Using dévissage, we can reduce to the case when M is irreducible. In
this case, both sides are either 0 or 1, depending on whether M and L are isomorphic.

�[Theorem 4.4(4)]
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