
LECTURE 9

1. Standard filtrations

Last time we proved O has enough projectives and injectives. Hence for M,N ∈ O, the vector
space ExtiO(M,N), i ≥ 0 is well-defined. It can be calculated in either of the following methods:

● Choose a projective resolution P ● →M and consider the chain complex HomO(P −●,N).

Then ExtiO(M,N) is the i-th cohomology of this complex.
● Choose an injective resolution N → I● and consider the chain complex HomO(M,I●).

Then ExtiO(M,N) is the i-th cohomology of this complex.

We will prove the following result:

Theorem-Definition 1.1. For an object M ∈ O, the following conditions are equivalent:

(a) The object M admits a finite filtration such that the subquotients are isomorphic to
Verma modules.

(b) For any weight µ and i > 0, ExtiO(M,M∨
µ) = 0.

(c) For any weight µ, Ext1O(M,M∨
µ) = 0.

A filtration as in (a) is called a standard filtration of M . Let O∆ ⊂ O be the full subcategory
of objects admitting standard filtrations.

Via contragradient duality, the above result is equivalent to:

Theorem-Definition 1.2. For an object M ∈ O, the following conditions are equivalent:

(a) The object M admits a finite filtration such that the subquotients are isomorphic to dual
Verma modules.

(b) For any weight λ and i > 0, ExtiO(Mλ,M) = 0.

(c) For any weight λ, Ext1O(Mλ,M) = 0.

A filtration as in (a) is called a costandard filtration of M . Let O∇ ⊂ O be the full subcategory
of objects admitting costandard filtrations.

As a particular case, we obtain

Corollary 1.3. For weights λ,µ and i > 0, we have ExtiO(Mλ,M
∨
µ) = 0.

We will also prove the following result.

Theorem 1.4. Every projective object of O admits a standard filtration.

To prove these results, we need some preparations.

Lemma 1.5. The generalized Verma modules1 Mλ,n admit standard filtrations.

Proof. Recall Mλ,n ≃ indgb(U(b)/I ′λ,n), where I ′λ,n is the left ideal of U(b) generated by the
following elements:

● The element t − λ(t) for any t ∈ t;
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1See [Proof of Lemma 4.10, Lecture 8].
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2 LECTURE 9

● The element x1x2⋯xn for xi ∈ n
+.

By considering the weights, the finite-dimensional b-module U(b)/I ′λ,n has a filtration such

that the subquotients are 1-dimensional. Since the functor indgb is exact, we obtain a standard
filtration of Mλ,n.

�

Lemma 1.6. Let M ∈ O∆ be an object admitting a standard filtration F≤●M with length m.
Let v ∈M be a nonzero highest weight vector with weight λ, and Mλ →M be the unique g-linear
map sending vλ to v. Let i be the smallest index such that the image Im(f) is contained in
F≤iM . Then:

(1) The composition Mλ → M → griM is an isomorphism. In particular, Mλ → M is
injective.

(2) The quotient M/Mλ admits a standard filtration with length m − 1.

Proof. By assumption griM is a Verma module Mµ and the composition Mλ →M → griM is
nonzero. This implies λ ⪯ µ. Since λ is a highest weight of M . We get λ = µ. This implies
Mλ → M → griM is an isomorphism because it preserves the nonzero highest weight vectors.
This proves (1).

For (2), we have a short exact sequence 0 → F≤i−1M →M/Mλ →M/F≤iM → 0. By assump-
tion, F≤i−1M has a standard filtration of length i − 1, and M/F≤iM has one of length m − i. It
follows that M/Mλ admits a standard filtration with length (i − 1) + (m − i) =m − 1.

�

Lemma 1.7. For direct sum decomposition M = M1 ⊕M2 in O, if M admits a standard
filtration, so do M1 and M2.

Proof. We use induction on the length of the standard filtration of M . When the length is 0,
the claim is trivial. If the length is m > 0, then M ≠ 0. Without lose of generality, we can
assume M1 contains a nonzero highest weight vector v of M with weight λ. By Lemma 1.6, we
have injections Mλ ↪M1 ↪M such that M/Mλ admits a standard filtration of length m − 1.
Since M/Mλ ≃ M1/Mλ ⊕M2, by induction hypothesis, we have M1/Mλ,M2 ∈ O∆. It follows
that we also have M1 ∈ O

∆.
�

Proof of Theorem 1.4. In the proof of [Theorem 4.3, Lecture 8], we proved any object in O is a
quotient of a direct sum of some Mλ,n. In general, if a projective object is a quotient of another
object, then it is a direct summand of the latter. It follows that any projective object is a direct
summand of a direct sum of some Mλ,n. Then the claim follows from Lemma 1.5 and Lemma
1.7.

�[Theorem 1.4]

Lemma 1.8. Let 0 → K → M → N → 0 be a short exact sequence such that N ∈ O∆. Then
M ∈ O∆ iff K ∈ O∆.

Warning 1.9. K,M ∈ O∆ does not imply N ∈ O∆. This can be seen from the sl2-case and the
short exact sequence 0→M−l−2 →Ml → Ll → 0.

Proof. The “if” part is obvious. For the “only if” part, let M ∈ O∆. Using induction, it is
easy to reduce to the case when N is a Verma module Mµ. Let Mλ →M be as in Lemma 1.6.
Then M/Mλ ∈ O∆. Note that the composition Mλ → M → Mµ is either 0 or an isomorphism
by considering the weights. If this is the zero map, then M/Mλ →Mµ is still a surjection and
we can finish the proof by using induction. Otherwise M ≃K ⊕Mµ and the claim follows from
Lemma 1.7.
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�

Proof of Theorem-Definition 1.1. We first prove (a) ⇒ (b). We prove by induction on i. For
any fixed i, using the long exact sequences

⋯ → ExtiO(F
≤k−1M,M∨

µ) → ExtiO(F
≤kM,M∨

µ) → ExtiO(gr
kM,M∨

µ) → ⋯,

we only need to show ExtiO(gr
kM,M∨

µ) = 0 for any k. By assumption, grkM ≃ Mλ for some
weight λ. The case i = 1 is just [Lemma 3.16, Lecture 8]. For i > 1, let 0 → N → P →Mλ → 0
be a short exact sequence such that P is projective. We have a long exact sequence

⋯ → Exti−1
O (P,M∨

µ) → Exti−1
O (N,M∨

µ) → ExtiO(Mλ,M
∨
µ) → ExtiO(P,M

∨
µ) → ⋯.

Since P is projective, we have Exti−1
O (N,M∨

µ) ≃ ExtiO(Mλ,M
∨
µ). By Theorem 1.4 and Lemma

1.8, N ∈ O∆. Hence by induction hypothesis Exti−1
O (N,M∨

µ) ≃ 0 as desired.
(b) ⇒ (c) is obvious.
It remains to show (c) ⇒ (a).
We prove by induction on length(M). The case length(M) = 0 is obvious. If length(M) > 0,

let λ be a highest weight vector of M and n ∶= dim(Mwt=λ). Then there is a nonzero g-linear
map M⊕n

λ → M . Let2 N1 and N2 be the kernel and cokernel of this map, and M ′ ≠ 0 be the
image of it. We have short exact sequences

0→ N1 →M⊕n
λ →M ′

→ 0,

0→M ′
→M → N2 → 0.

They induce long exact sequences

0→ HomO(M ′,M∨
µ) → HomO(M⊕n

λ ,M∨
µ) → HomO(N1,M

∨
µ) → Ext1O(M

′,M∨
µ) → ⋯

⋯ → HomO(M,M∨
µ) → HomO(M ′,M∨

µ) → Ext1O(N2,M
∨
µ) → Ext1O(M,M∨

µ) →

→ Ext1O(M
′,M∨

µ) → Ext2O(N2,M
∨
µ) → ⋯

By assumption, Ext1O(M,M∨
µ) = 0. We claim Ext1O(N2,M

∨
µ) = 0. Indeed:

● If λ ≠ µ, then HomO(M⊕n
λ ,M∨

µ) = 0 ([Lemma 3.14, Lecture 8]). By the first sequence,

HomO(M ′,M∨
µ) = 0. By the second sequence, Ext1O(N2,M

∨
µ) = 0.

● If λ = µ, note that µ is a highest weight of both M ′ and M and by construction,
(M ′)wt=µ ≃Mwt=µ. Hence we have

HomO(M ′,M∨
µ) ≃ ((M ′

)
wt=µ

)
∗
≃ (Mwt=µ

)
∗
≃ HomO(M,M∨

µ).

By the second sequence, Ext1O(N2,M
∨
µ) = 0.

Note that length(N2) < length(M). By the induction hypothesis, N2 ∈ O
∆. Using (a) ⇒ (b),

we get Ext2O(N2,M
∨
µ) = 0. By the second seqeunce, Ext1O(M

′,M∨
µ) = 0. Now we have two cases:

● If N2 ≠ 0, then length(M ′) < length(M). By the induction hypothesis, M ′ ∈ O∆. Then
M ∈ Olength because it is an extension of N2 by M ′.

● If N2 = 0, then M ≃ M ′. An argument similar to that in the last paragraph implies
HomO(N1,M

∨
µ) = 0. Note that µ can be any weight. This forces N1 = 0 and therefore

M ≃M⊕n
λ . Then it is clear M ∈ O∆.

�[Theorem-Definition 1.1]

Lemma 1.10. Let M ∈ Oχ and M ′ ∈ Oχ′ such that χ ≠ χ′. Then Exti(M,N) = 0 for any i ≥ 0.

2The following language can be rewritten in the language of spectral sequences.
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Proof. Let P ● → M be a projective resolution of M . We can replace each P −n by its image
under the functor O → Oχ and obtain a projective resolution of M contained in Oχ. Now the
claim follows from the case i = 0.

�

Exercise 1.11. This is Homework 4, Problem 4. Let λ be a weight. Prove:

(1) If M ∈ O such that wt(M) ∩ {µ ∣µ ⪰ λ} = ∅, then ExtiO(M,M∨
λ ) = 0 for i ≥ 03.

(2) ExtiO(Lλ,M
∨
λ ) = 0 for i > 0.

(3) Combining (1) and (2), deduce ExtiO(Mλ, Lµ) = 0 and ExtiO(Lµ,M
∨
λ ) = 0 for i > 0 and

µ ⊁ λ.

2. BGG reciprocity

The following result follows from Theorem-Definition 1.1 by dévissage.

Proposition-Definition 2.1. Let M ∈ O∆, then for any standard filtration of M , the multi-
plicity of Mλ in the subquotients does not depend on the filtration. We denote this number by
(M ∶Mλ). Moreover, we have

(M ∶Mλ) ≃ dim(HomO(M,M∨
λ )).

Theorem 2.2 (BGG reciprocity). For weights λ,µ ∈ t∗, we have

(Pµ ∶Mλ) = [M∨
λ ∶ Lµ] = [Mλ ∶ Lµ].

Proof. The last identity follows from L∨µ ≃ Lµ. The first one follows from Proposition-Definition
2.1 and [Corollary 4.9, Lecture 8].

�

Remark 2.3. The previous discussions on standard filtrations and BGG reciprocity can be
axiomized using the language of highest weight categories. See [CPS].

Remark 2.4. In O, or any highest weight category, if an object admits both a standard filtra-
tion and a costandard filtration, then it is called a tilting object. One can show the set of
indecomposable tilting objects is bijective to the set of irreducible objects. Tilting objects play
important roles in representation theory. For a geometry-oriented4 introduction, see [BBM].

3. Translation functors

Construction 3.1. Let V be a finite-dimensional g-module. Consider the functor

g−mod→ g−mod, M ↦ V ⊗M,

where (recall) the g-module structure on V ⊗M is given by the Lebniz rule. It is easy to see this
functor preserves O. We denote the obtained functor by TV ∶ O → O. Note that TV is exact.

Lemma 3.2. The functor TV ∶ O → O commutes with contragradient duality.

Proof. For any finite dimensional g-module, we have V ∨ ≃ V because L∨λ ≃ Lλ.
�

Lemma 3.3. The functor TV ∗ is both left and right adjoint to TV . In particular, TV preserves
both projectives and injectives.

3Hint: Step 1: reduce to the case M = Lµ with $(µ) = $(λ) and µ ã λ. Step 2: consider 0 → K → Mµ →
Lµ → 0 and note that wt(K) ≺ µ.

4You should ask experts in representation theory for other good references.
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Proof. We have the unit and pairing maps k → V ⊗ V ∗ and V ∗ ⊗ V → k, which induce natural
transformations Tk → TV ⊗V ∗ and TV ∗⊗V → Tk. Note that Tk ≃ Id and TV ⊗V ′ ≃ TV ○ TV ′ . Hence
we obtain natural transformations Id → TV ○ TV ∗ and TV ∗ ○ TV → Id. Now the duality data
between V and V ∗ are translated exactly to the djunction data between TV and TV ∗ .

�

Remark 3.4. It follows formally that TV ∗ and TV are adjoint in the derived sense, i.e.
Exti(TV (M),N) ≃ Exti(M,TV ∗(N)).

Lemma 3.5. For any weight λ, the module TV (Mλ) admits a standard filtration F≤k(TV (Mλ))

such that the highest weights of grk(TV (Mλ)) is (non-strictly) decreasing in k. Moreover,

(TV (Mλ) ∶Mµ) = dimV wt=µ−λ.

Proof. Follows from the projection formula

indgb(V1) ⊗ V2 ≃ indgb(V1 ⊗ V2), V1 ∈ b−mod, V2 ∈ g−mod.

Indeed, any finite-dimensional weight b-module, such as V ⊗kλ, admits a finite filtration whose
subquotients are 1-dimensional modules with decreasing weights.

�

Construction 3.6. Let χ1, χ2 be two central characters. For any finite-dimensional g-module
V , consider the composition

Tχ1,V,χ2 ∶ Oχ1 → O
TV
ÐÐ→ O → Oχ2 .

We call such functors the translation functors. It follows that Tχ1,V,χ2
is exact, and is both

left and right adjoint to Tχ2,V ∗,χ1 .

Construction 3.7. Let λ and µ be weights such that µ − λ is integral. Then the W -orbit
(for the linear action) W (µ − λ) contains a unique dominant integral weigth ν. Consider the
finite-dimensional g-module Lν . We write

Tµλ ∶= T$(λ),Lν ,$(µ) ∶ O$(λ) → O$(µ).

Note that w0(−ν) is also dominant and integral. By definition, we have

Tλµ = T$(µ),L−w0(ν),$(λ),

which is both left and right adjoint to Tµλ because L−w0(ν) ≃ L
∗
ν

5

Recall the following definition:

Definition 3.8. Let (E,Φ) be the root system of g. For λ,µ ∈ E, we say they belong to the
same dot-Weyl facet if the signs of ⟨λ + ρ, α̌⟩ and ⟨µ + ρ, α̌⟩ are the same for any α ∈ Φ.

For λ ∈ E, let Fλ be the dot-Weyl facet containing it.

Definition 3.9. For a dot-Weyl facet Fλ, its upper closure F +
λ is the subset of µ ∈ E such

that

⟨µ + ρ, α̌⟩

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

> 0 if ⟨λ + ρ, α̌⟩ > 0,
= 0 if ⟨λ + ρ, α̌⟩ = 0,
≤ 0 if ⟨λ + ρ, α̌⟩ < 0

5Here L∗ν is the usual linear dual of Lµ. It is not the contragradient dual. Note that w0(ν) is indeed the

lowest weight of Lµ.



6 LECTURE 9

Remark 3.10. When equipped with the standard topology, Fλ is a locally closed subset of E,
and both the closure Fλ and the upper closure F +

λ are unions of dot-Weyl facets.
Note that each dot-Weyl facet is contained in the upper closure of a unique dot-Weyl

chamber, i.e., open dot-Weyl facet. Also, λ is dot-regular iff Fλ is a dot-Weyl chamber.

Example 3.11. For sl2 and the coordinate l ∶= ⟨λ, α̌⟩, there are three facets: (−∞,−1), {−1}
and (−1,∞). Note that {−1} is contained in the upper closure of (−∞,−1).

We have the following theorem. For complete proofs and its generalization to non-integral
weights, see [H, Sect. 7]6.

Theorem 3.12. Let λ and µ be dot-antidominant integral weights such that Fµ ⊂ Fλ. Then
for any w ∈W

Tµλ (Mw⋅λ) ≃Mw⋅µ, T
µ
λ (M∨

w⋅λ) ≃M
∨
w⋅µ

and

Tµλ (Lw⋅λ) ≃ {
Lw⋅µ if Fw⋅µ ⊂ F +

w⋅λ,
0 otherwise.

Sketch. Let ν ∈W (µ − λ) be the unique dominant integral weight in this orbit. Write V ∶= Lν .
By Lemma 3.5, Tµλ (Mw⋅λ) admits a standard filtration and the multiplicity

(Tµλ (Mw⋅λ) ∶Mw′⋅µ) = dimV wt=w′⋅µ−w⋅λ.

The RHS is nonzero unless w′ ⋅ µ − w ⋅ λ ⪯ ν. Now a combinatorial argument (see [H, Lemma
7.5]) shows the latter can happen only if w′ ⋅ µ = w ⋅ µ, and in this case the multplicity is 1
because w ⋅ µ −w ⋅ λ = w(µ − λ) ∈W (ν). This implies Tµλ (Mw⋅λ) ≃Mw⋅µ.

The statement for dual Verma modules follows from the contragradient duality.
Now consider the chain Mw⋅λ↠ Lw⋅λ ↪M∨

w⋅λ. Since Tµλ is exact, we obtain a chain Mw⋅µ↠
Tµλ (Lw⋅λ) ↪M∨

w⋅µ. This forces Tµλ (Lw⋅λ) ≃ Lw⋅µ or 0 ([Lemma 3.14, Lecture 8]).

It remains to pinpoint these two cases. Since the exact functor Tµλ sends Mw⋅λ to Mw⋅µ,
there exists a unique composition factor Lw′⋅λ of Mw⋅λ such that Tµλ (Lw′⋅λ) ≃ Lw⋅µ. By the last
paragraph, we must have w′ ⋅ µ = w ⋅ µ. Now we have two cases:

● If Fw⋅µ is contained in the upper closure F +
w⋅λ, then a combinatorial argument shows

w′ ⋅ λ = w ⋅ λ and therefore Tµλ (Lw⋅λ) ≃ Lw⋅µ as desired.
● If Fw⋅µ is not contained in the upper closure F +

w⋅λ, then there exists a reflection sα such
that sαw ⋅ λ ≺ w ⋅ λ while sαw ⋅ µ = w ⋅ µ. By Verma’s theorem, there exists a proper
embedding Msαw⋅λ ⊂Mw⋅λ which is sent to an isomorphism by Tµλ . Hence Lw⋅λ, which
is a quotient of Mw⋅λ/Msαw⋅λ, is sent to 0 as desired.

�
The following result is a formal consequence of the above theorem:

Theorem 3.13. Let λ and µ be dot-antidominant integral weights such that Fλ = Fµ. Then
Tµλ ∶ O$(λ) → O$(µ) is an equivalence.

Proof. By the previous theorem, the exact functor F ∶= Tµλ is left adjoint to the exact functor

G ∶= Tλµ , and they induce a bijection between the sets of irreducible objects. In general, such
adjoint functors are inverse to each other.

Proof: we only to show the adjunctions Id→ G ○F and F ○G→ Id are equivalences. We will
prove the first equivalence and the second follows similarly. Note that for any object M , M and
G ○ F (M) have the same composition factors and multiplicities. Hence we only need to show
M → G ○F (M) is injective. Since F sends nonzero objects to nonzero objects, we only need to

6See [G, Sect. 4.23] for a simplified proof in a special case.
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show F (M) → F ○G ○F (M) is injective. By the axiom of adjoint functors, this morphism has
a left inverse, hence is indeed injective.

�

Remark 3.14. The above theorems essentially reduce the study about any integral block Oχ to
the principle block O$(0).

Example 3.15. Any dot-regular integral block Oχ is equivalent to the principle block O$(0).
Indeed, this is the special case of the above theorem when λ = 0 and µ ∈ $−1(χ) is dot-
antidominant. Note that the equivalence Tµ0 preserves (dual) Verma modules and irreducible
modules.

Example 3.16. For g = sl2 and the coordinate l ∶= ⟨λ, α̌⟩, then O$(0) ≃ O$(l) for l ∈ Z≥0 such
that the short exact sequence 0→M−2 →M0 → L0 → 0 is sent to 0→M−l−2 →Ml → Ll → 0.

On the other hand, the translation functor O$(0) → O$(−1) sends this sequence to 0 →
M−1 → M−1 → 0 → 0. Note that L−2 is sent to L−1 and −1 ∈ F +

−2, while L0 is sent to 0 and
−1 ∉ F +

0 .

Construction 3.17. Let µ be any dot-antidominant integral weight. The functor Tµ−ρ ∶

O$(−ρ) → O$(µ) is not covered by the above theorems (although its adjoint T −ρµ is). Recall
the most singular block O$(−ρ) is semi-simple and contains a unique irreducible object L−ρ,
which is both projective and injective ([Example 4.16, Lecture 7]). It follows that

Ξµ ∶= T
µ
−ρ(L−ρ)

is both projective and injective.

Exercise 3.18. This is Homework 4, Problem 5. Let µ be any dot-antidominant integral weight.
Prove7:

(1) For any w ∈W , (Ξµ ∶Mw⋅µ) = 1 and there is a surjection Ξµ↠Mµ.
(2) For any w ∈W , (Pµ ∶Mw⋅µ) ≥ 1 and there is a surjection Pµ↠Mµ.
(3) There exists an isomorphism Ξµ ≃ Pµ compatible with the surjections to Mµ.
(4) For any w ∈W , [Mw⋅µ ∶ Lµ] = 18.

Remark 3.19. For dot-antidominant weight µ, the projective Pµ is called the big projective
module, which plays an important role in representation theory.
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