LECTURE 9

1. STANDARD FILTRATIONS
Last time we proved O has enough projectives and injectives. Hence for M, N € O, the vector
space Exty, (M, N),i > 0 is well-defined. It can be calculated in either of the following methods:

e Choose a projective resolution P* - M and consider the chain complex Homep (P~*, N).
Then Extl, (M, N) is the i-th cohomology of this complex.

e Choose an injective resolution N — I* and consider the chain complex Home (M, I°*).
Then Extl, (M, N) is the i-th cohomology of this complex.

We will prove the following result:

Theorem-Definition 1.1. For an object M € O, the following conditions are equivalent:

(a) The object M admits a finite filtration such that the subquotients are isomorphic to

Verma modules. _

(b) For any weight y and i >0, Exto(M, M) = 0.

(c) For any weight pu, Extgy (M, M}Y)=0.
A filtration as in (a) is called a standard filtration of M. Let O® c O be the full subcategory
of objects admitting standard filtrations.

Via contragradient duality, the above result is equivalent to:

Theorem-Definition 1.2. For an object M € O, the following conditions are equivalent:

(a) The object M admits a finite filtration such that the subquotients are isomorphic to dual
Verma modules.
(b) For any weight A and i >0, Exty,(My, M) = 0.
(c) For any weight X, Exté,(My, M) = 0.
A filtration as in (a) is called a costandard filtration of M. Let OV c O be the full subcategory
of objects admitting costandard filtrations.

As a particular case, we obtain
Corollary 1.3. For weights A\, and i >0, we have Ethb(MA,Ml\j) =0.
We will also prove the following result.
Theorem 1.4. Every projective object of O admits a standard filtration.
To prove these results, we need some preparations.
Lemma 1.5. The generalized Verma module&ﬂ My, admit standard filtrations.

Proof. Recall My ,, =~ indg(U(b)/I} ), where I}  is the left ideal of U(b) generated by the
following elements:

e The element t — A(t) for any ¢ € t;

Date: Apr 22, 2024.
ISee [Proof of Lemma 4.10, Lecture 8].
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e The element 129, for z; en*.
By considering the weights, the finite-dimensional b-module U(b)/I} , has a filtration such
that the subquotients are 1-dimensional. Since the functor indi is exact, we obtain a standard
filtration of M) .
O

Lemma 1.6. Let M € O> be an object admitting a standard filtration FS*M with length m.
Let v e M be a nonzero highest weight vector with weight A, and My — M be the unique g-linear

map sending vy to v. Let i be the smallest index such that the image Im(f) is contained in
F<*M. Then:

(1) The composition My — M - gr'M is an isomorphism. In particular, My — M is
mjective.
(2) The quotient M [ M)y admits a standard filtration with length m — 1.
Proof. By assumption gr'M is a Verma module M,, and the composition My — M — gr'M is
nonzero. This implies A < pu. Since A is a highest weight of M. We get A = . This implies
M, - M - gr'M is an isomorphism because it preserves the nonzero highest weight vectors.
This proves (1).

For (2), we have a short exact sequence 0 — F<"*M — M /My - M/F<'M - 0. By assump-
tion, FS"1 M has a standard filtration of length i — 1, and M /F<*M has one of length m —i. It
follows that M /M) admits a standard filtration with length (i = 1) + (m —i) =m - 1.

O

Lemma 1.7. For direct sum decomposition M = My & My in O, if M admits a standard
filtration, so do My and M.

Proof. We use induction on the length of the standard filtration of M. When the length is 0,
the claim is trivial. If the length is m > 0, then M # 0. Without lose of generality, we can
assume M; contains a nonzero highest weight vector v of M with weight A. By Lemma [I.6] we
have injections My - M; = M such that M /M, admits a standard filtration of length m — 1.
Since M /M)y ~ M;/My @ M,, by induction hypothesis, we have M;/My, My € O>. Tt follows
that we also have My € OA.

O

Proof of Theorem[I4) In the proof of [Theorem 4.3, Lecture 8], we proved any object in O is a
quotient of a direct sum of some M) ,,. In general, if a projective object is a quotient of another
object, then it is a direct summand of the latter. It follows that any projective object is a direct
summand of a direct sum of some M) ,. Then the claim follows from Lemma and Lemma,

L7
O[Theorem

Lemma 1.8. Let 0 > K - M — N — 0 be a short exact sequence such that N € O>. Then
MeO? iff K e OA.

Warning 1.9. K, M € O? does not imply N € O2. This can be seen from the sly-case and the
short exact sequence 0 > M_;_ o - M; — L; - 0.

Proof. The “if” part is obvious. For the “only if” part, let M e O?. Using induction, it is
easy to reduce to the case when N is a Verma module M,,. Let My - M be as in Lemma
Then M /M) € OA. Note that the composition My — M — M,, is either 0 or an isomorphism
by considering the weights. If this is the zero map, then M /My — M, is still a surjection and
we can finish the proof by using induction. Otherwise M ~ K @ M, and the claim follows from
Lemma
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O

Proof of Theorem-Definition[I.1, We first prove (a) = (b). We prove by induction on i. For
any fixed 4, using the long exact sequences

= Ext (FSF7' M, M) — Extgy (FSF M, M))) — Extg(gr* M, M) — -+,

we only need to show Extéf)(grkM, M}) =0 for any k. By assumption, gr* M ~ M, for some
weight A. The case ¢ = 1 is just [Lemma 3.16, Lecture 8]. For i >1,let 0 > N - P > M) -0
be a short exact sequence such that P is projective. We have a long exact sequence

= Extgy (P, M) > Exty ' (N, M))) —» Extio(Mx, M})) —» Exto (P, M) — ---.

Since P is projective, we have Extl,’ (NN, M) =~ Ethb(MA,M/\j). By Theorem H and Lemma
N € O?. Hence by induction hypothesis Extiy! (N, M) =0 as desired.

(b) = (c¢) is obvious.

It remains to show (¢) = (a).

We prove by induction on length(M). The case length(M) =0 is obvious. If length(M) > 0,
let A be a highest weight vector of M and n := dim(M"**). Then there is a nonzero g-linear
map MP" — M. Letﬂ N; and N3 be the kernel and cokernel of this map, and M’ # 0 be the
image of it. We have short exact sequences

0- Ny > M$™ > M' -0,
0> M - M- Ny - 0.
They induce long exact sequences
0 = Homo (M, M) - Homo (MZ", M) - Homo (N1, M))) > Exte (M, M) — -
- = Homo (M, M,]) - Homp (M', M}]) - Exté(Ng,Ml) - Extgy (M, M) -
— Exty (M, M))) — Exty(Na, M) — -

By assumption, Extg, (M, M) =0. We claim EXt}Q(NQ,M;/) =0. Indeed:
o If X\ # p, then Homo(M$", M) = 0 ([Lemma 3.14, Lecture 8]). By the first sequence,
Homo (M, M};) = 0. By the second sequence, Ext}g(Ng,M/\j) =0.
e If A\ = pu, note that p is a highest weight of both M’ and M and by construction,
(M")w=H ~ M=+ Hence we have
Homo (M', M))) = (M")" )" = (M™")* =~ Homo (M, M))).
By the second sequence, Extg(Ny, M) =0.
Note that length(NNy) < length(M). By the induction hypothesis, Ny € O2. Using (a) = (b),
we get Exts ( Ny, M) = 0. By the second seqeunce, Exte, (M, M) =0. Now we have two cases:
e If Ny # 0, then length(M") < length(M). By the induction hypothesis, M’ € O®. Then
M e O""&* because it is an extension of Ny by M.
o If Ny =0, then M ~ M’. An argument similar to that in the last paragraph implies
Homo (N1, M,;) = 0. Note that u can be any weight. This forces N1 = 0 and therefore
M ~ M$". Then it is clear M e O,
O[Theorem-Definition

Lemma 1.10. Let M € O, and M' € O, such that x # x'. Then Ext'(M,N) =0 for any i > 0.

2The following language can be rewritten in the language of spectral sequences.
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Proof. Let P* - M be a projective resolution of M. We can replace each P~ by its image
under the functor O — O, and obtain a projective resolution of M contained in O,. Now the
claim follows from the case i = 0.

O

Ezxercise 1.11. This is Homework 4, Problem 4. Let A be a weight. Prove:
(1) If M € O such that wt(M) n {u|p > A} = @, then Extl, (M, MY) =0 for i >
(2) Extly(Ly, My) =0 for i>0.
(3) Combining (1) and (2), deduce Extip(My, L,) = 0 and Extlp(L,, MY) = 0 for i > 0 and
HF A

2. BGG RECIPROCITY

The following result follows from Theorem-Definition by dévissage.

Proposition-Definition 2.1. Let M € O2, then for any standard filtration of M, the multi-
plicity of My in the subquotients does mot depend on the filtration. We denote this number by
(M : My). Moreover, we have

(M : My) ~ dim(Homep (M, MY)).
Theorem 2.2 (BGG reciprocity). For weights A, p € t*, we have
(P My) = [My : L,] = [My: Ly].
Proof. The last identity follows from L), ~ L,,. The first one follows from Proposition-Definition

and [Corollary 4.9, Lecture 8|.
O

Remark 2.3. The previous discussions on standard filtrations and BGG reciprocity can be
axiomized using the language of highest weight categories. See |[CPS].

Remark 2.4. In O, or any highest weight category, if an object admits both a standard filtra-
tion and a costandard filtration, then it is called a tilting object. One can show the set of
indecomposable tilting objects is bijective to the set of irreducible objects. Tilting objects play
important roles in representation theory. For a geometry—orientedﬁ introduction, see |BBM].

3. TRANSLATION FUNCTORS
Construction 3.1. Let V' be a finite-dimensional g-module. Consider the functor
g-mod - g—mod, M -V @ M,
where (recall) the g-module structure on V@ M is given by the Lebniz rule. It is easy to see this
functor preserves O. We denote the obtained functor by Ty : O — O. Note that Ty is exact.

Lemma 3.2. The functor Ty : O - O commutes with contragradient duality.

Proof. For any finite dimensional g-module, we have V'V ~ V because LY =~ L.
O

Lemma 3.3. The functor Ty« is both left and right adjoint to Ty . In particular, Ty preserves
both projectives and injectives.

3Hint: Step 1: reduce to the case M = L, with w(p) = w(A) and p # X. Step 2: consider 0 - K — M, —
L, — 0 and note that wt(K) < p.
4You should ask experts in representation theory for other good references.
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Proof. We have the unit and pairing maps k -V ® V* and V* ® V — k, which induce natural
transformations T — Ty gy+ and Ty+gy — T). Note that Ty ~ Id and Ty gy ~ Ty o Ty Hence
we obtain natural transformations Id — Ty o Ty« and Ty« o Ty, — Id. Now the duality data
between V and V* are translated exactly to the djunction data between Ty and Ty .

O

Remark 3.4. It follows formally that Ty- and Ty are adjoint in the derived sense, i.e.

Ext'(Ty (M), N) = Ext' (M, Ty« (N)).

Lemma 3.5. For any weight X, the module Ty (My) admits a standard filtration F<*(Ty (My))
such that the highest weights of gr*(Ty (My)) is (non-strictly) decreasing in k. Moreover,

(Ty (My) : M) = dim V=2,
Proof. Follows from the projection formula
ind (V1) ® Vo ~ind} (V1 ® V3), Vi € b—-mod, V5 € g-mod.

Indeed, any finite-dimensional weight b-module, such as V ® k), admits a finite filtration whose
subquotients are 1-dimensional modules with decreasing weights.
O

Construction 3.6. Let x1,x2 be two central characters. For any finite-dimensional g-module
V', consider the composition

Ty
TX1,V,X2 : OXI -0 0~ OXz'

We call such functors the translation functors. It follows that T, v, is eract, and is both
left and right adjoint to Ty, v+ y, -

Construction 3.7. Let A and p be weights such that p — X\ is integral. Then the W-orbit
(for the linear action) W(u— \) contains a unique dominant integral weigth v. Consider the
finite-dimensional g-module L,. We write

T3 = To(a) Lo () : Om(2) = Om(u)-
Note that wo(-v) is also dominant and integral. By definition, we have

A
T3 = To(u), Ly ) @ (A)

which is both left and right adjoint to T} because L_yo) = L,’ﬂ
Recall the following definition:

Definition 3.8. Let (E,®) be the root system of g. For A\, u € F, we say they belong to the
same dot-Weyl facet if the signs of (A + p, &) and (u + p, &) are the same for any « € P.
For X\ € E, let F be the dot-Weyl facet containing it.

Definition 3.9. For a dot-Weyl facet F), its upper closure Fy is the subset of y € E such
that
>0 if (A+p,a)>0,
(+p,a)s =0 if (A +p,a) =0,
<0 if (A+p,a)<0

S5Here L} is the usual linear dual of L,. It is not the contragradient dual. Note that wo(v) is indeed the
lowest weight of L.
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Remark 3.10. When equipped with the standard topology, F is a locally closed subset of E,
and both the closure Fy and the upper closure F Y are unions of dot-Weyl facets.

Note that each dot-Weyl facet is contained in the upper closure of a unique dot-Weyl
chamber, i.e., open dot-Weyl facet. Also, A is dot-regular iff F) is a dot-Weyl chamber.

Example 3.11. For sl and the coordinate [ := (), &), there are three facets: (—oo,-1), {-1}
and (-1, 00). Note that {-1} is contained in the upper closure of (—oco,-1).

We have the following theorem. For complete proofs and its generalization to non-integral
weights, see [H| Sect. 7]|ﬂ

Theorem 3.12. Let A and p be dot-antidominant integral weights such that F, c Fy. Then
for any weW
TiL(Mw‘A) ~ My, Tf\L(lev;.A) = Ml\z/ru
and
Ly, if Fy,cEY
i ~ wp wp & Hapns
T (Lwa) = { 0 otherwise.

Sketch. Let v e W(u—\) be the unique dominant integral weight in this orbit. Write V := L,.
By Lemma T{'(My.n) admits a standard filtration and the multiplicity

(T4 (Mur) : M) = dim VW=,

The RHS is nonzero unless w’ -y —w- A < v. Now a combinatorial argument (see [H, Lemma
7.5]) shows the latter can happen only if w’' -y = w- u, and in this case the multplicity is 1
because w -y —w- A =w(p—A) € W(v). This implies T (My.2) = M.y

The statement for dual Verma modules follows from the contragradient duality.

Now consider the chain M,y = L.\ = M, . Since Tf is exact, we obtain a chain M,,., -
Ty (Lwx) = My, This forces T{'(Ly.x) = Ly, or 0 ([Lemma 3.14, Lecture 8]).

It remains to pinpoint these two cases. Since the exact functor T)’f sends My.a to My,
there exists a unique composition factor L.y of M.y such that T)’\‘(qu) ~ Ly By the last
paragraph, we must have w’-u =w - u. Now we have two cases:

o If F,., is contained in the upper closure F! ,, then a combinatorial argument shows
w'- X =w- X and therefore T} (Ly.») = L., as desired.

e If F,.,, is not contained in the upper closure F! ,, then there exists a reflection s, such
that sqw - A < w- A\ while sqw-pu = w-pu. By Verma’s theorem, there exists a proper
embedding Mj_..n © My,.» which is sent to an isomorphism by T)’\‘. Hence L,,.», which
is a quotient of My,.x/Ms_w-», is sent to 0 as desired.

O
The following result is a formal consequence of the above theorem:

Theorem 3.13. Let A and p be dot-antidominant integral weights such that F\ = F,,. Then

T;f :Ox(n) = Ox(u) 18 an equivalence.

Proof. By the previous theorem, the exact functor F':= T} is left adjoint to the exact functor
G = T;‘, and they induce a bijection between the sets of irreducible objects. In general, such
adjoint functors are inverse to each other.

Proof: we only to show the adjunctions Id - G o F' and F o G — Id are equivalences. We will
prove the first equivalence and the second follows similarly. Note that for any object M, M and
G o F(M) have the same composition factors and multiplicities. Hence we only need to show

M — G o F(M) is injective. Since F' sends nonzero objects to nonzero objects, we only need to

63ee |Gl Sect. 4.23] for a simplified proof in a special case.
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show F(M) — F oG o F(M) is injective. By the axiom of adjoint functors, this morphism has
a left inverse, hence is indeed injective.
O

Remark 3.14. The above theorems essentially reduce the study about any integral block O, to
the principle block O o)-

Example 3.15. Any dot-regular integral block O, is equivalent to the principle block O q)-
Indeed, this is the special case of the above theorem when A = 0 and u € w () is dot-
antidominant. Note that the equivalence T} preserves (dual) Verma modules and irreducible
modules.

Example 3.16. For g = sl; and the coordinate [ := (A, &), then O ) = O for [ € 7% such
that the short exact sequence 0 > M_o - My - Ly - 0 is sent to 0 > M_;_ o > M; - L; - 0.

On the other hand, the translation functor Oy = Og(-1) sends this sequence to 0 —
M_y - M4 - 0 - 0. Note that L_5 is sent to L_; and —1 € F'*,, while Lg is sent to 0 and
-1¢Fy.

Construction 3.17. Let p be any dot-antidominant integral weight. The functor TE, :
Ox(-p) = Oy is not covered by the above theorems (although its adjoint r.r is). Recall
the most singular block O,y is semi-simple and contains a unique irreducible object L_,,
which is both projective and injective ([Example 4.16, Lecture 7]). It follows that

By =T (L)
18 both projective and injective.

Exercise 3.18. This is Homework 4, Problem 5. Let p be any dot-antidominant integral weight.
Provd’t

(1) For any we W, (2, : My.,) =1 and there is a surjection =, - M,.

(2) For any we W, (P, : M,.,) >1 and there is a surjection P, - M,.

(3) There exists an isomorphism Z, ~ P, compatible with the surjections to M,,.

(4) For any we W, [M,.,: L,] = 1@

Remark 3.19. For dot-antidominant weight 4, the projective P, is called the big projective
module, which plays an important role in representation theory.
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