LECTURE 9

1. Standard filtrations

Last time we proved \mathcal{O} has enough projectives and injectives. Hence for $M, N \in \mathcal{O}$, the vector space $\mathrm{Ext}_{\mathcal{O}}^{i}(M, N), i \geq 0$ is well-defined. It can be calculated in either of the following methods:

- Choose a projective resolution $P^{\bullet \bullet} \rightarrow M$ and consider the chain complex $\operatorname{Hom}_{\mathcal{O}}\left(P^{-\bullet}, N\right)$. Then $\operatorname{Ext}_{\mathcal{O}}^{i}(M, N)$ is the i-th cohomology of this complex.
- Choose an injective resolution $N \rightarrow I^{\bullet}$ and consider the chain complex $\operatorname{Hom}_{\mathcal{O}}\left(M, I^{\bullet}\right)$. Then $\operatorname{Ext}_{\mathcal{O}}^{i}(M, N)$ is the i-th cohomology of this complex.
We will prove the following result:
Theorem-Definition 1.1. For an object $M \in \mathcal{O}$, the following conditions are equivalent:
(a) The object M admits a finite filtration such that the subquotients are isomorphic to Verma modules.
(b) For any weight μ and $i>0$, $\mathrm{Ext}_{\mathcal{O}}^{i}\left(M, M_{\mu}^{\vee}\right)=0$.
(c) For any weight $\mu, \operatorname{Ext}_{\mathcal{O}}^{1}\left(M, M_{\mu}^{\vee}\right)=0$.

A filtration as in (a) is called a standard filtration of M. Let $\mathcal{O}^{\Delta} \subset \mathcal{O}$ be the full subcategory of objects admitting standard filtrations.

Via contragradient duality, the above result is equivalent to:
Theorem-Definition 1.2. For an object $M \in \mathcal{O}$, the following conditions are equivalent:
(a) The object M admits a finite filtration such that the subquotients are isomorphic to dual Verma modules.
(b) For any weight λ and $i>0$, $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M\right)=0$.
(c) For any weight $\lambda, \operatorname{Ext}_{\mathcal{O}}^{1}\left(M_{\lambda}, M\right)=0$.

A filtration as in (a) is called a costandard filtration of M. Let $\mathcal{O}^{\nabla} \subset \mathcal{O}$ be the full subcategory of objects admitting costandard filtrations.

As a particular case, we obtain
Corollary 1.3. For weights λ, μ and $i>0$, we have $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M_{\mu}^{\vee}\right)=0$.
We will also prove the following result.
Theorem 1.4. Every projective object of \mathcal{O} admits a standard filtration.
To prove these results, we need some preparations.
Lemma 1.5. The generalized Verma module ${ }^{1} M_{\lambda, n}$ admit standard filtrations.
Proof. Recall $M_{\lambda, n} \simeq \operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}\left(U(\mathfrak{b}) / I_{\lambda, n}^{\prime}\right)$, where $I_{\lambda, n}^{\prime}$ is the left ideal of $U(\mathfrak{b})$ generated by the following elements:

- The element $t-\lambda(t)$ for any $t \in \mathfrak{t}$;

Date: Apr 22, 2024.
${ }^{1}$ See [Proof of Lemma 4.10, Lecture 8].

- The element $x_{1} x_{2} \cdots x_{n}$ for $x_{i} \in \mathfrak{n}^{+}$.

By considering the weights, the finite-dimensional \mathfrak{b}-module $U(\mathfrak{b}) / I_{\lambda, n}^{\prime}$ has a filtration such that the subquotients are 1-dimensional. Since the functor ind $\mathfrak{b}_{\mathfrak{b}}^{\mathfrak{g}}$ is exact, we obtain a standard filtration of $M_{\lambda, n}$.

Lemma 1.6. Let $M \in \mathcal{O}^{\Delta}$ be an object admitting a standard filtration $\mathrm{F}^{\leq} \cdot M$ with length m. Let $v \in M$ be a nonzero highest weight vector with weight λ, and $M_{\lambda} \rightarrow M$ be the unique \mathfrak{g}-linear map sending v_{λ} to v. Let i be the smallest index such that the image $\operatorname{Im}(f)$ is contained in $\mathrm{F}^{\leq i} M$. Then:
(1) The composition $M_{\lambda} \rightarrow M \rightarrow \operatorname{gr}^{i} M$ is an isomorphism. In particular, $M_{\lambda} \rightarrow M$ is injective.
(2) The quotient M / M_{λ} admits a standard filtration with length $m-1$.

Proof. By assumption $\operatorname{gr}^{i} M$ is a Verma module M_{μ} and the composition $M_{\lambda} \rightarrow M \rightarrow \operatorname{gr}^{i} M$ is nonzero. This implies $\lambda \leq \mu$. Since λ is a highest weight of M. We get $\lambda=\mu$. This implies $M_{\lambda} \rightarrow M \rightarrow \mathrm{gr}^{i} M$ is an isomorphism because it preserves the nonzero highest weight vectors. This proves (1).

For (2), we have a short exact sequence $0 \rightarrow \mathrm{~F}^{\leq i-1} M \rightarrow M / M_{\lambda} \rightarrow M / \mathrm{F}^{\leq i} M \rightarrow 0$. By assumption, $\mathrm{F}^{\leq i-1} M$ has a standard filtration of length $i-1$, and $M / \mathrm{F}^{\leq i} M$ has one of length $m-i$. It follows that M / M_{λ} admits a standard filtration with length $(i-1)+(m-i)=m-1$.

Lemma 1.7. For direct sum decomposition $M=M_{1} \oplus M_{2}$ in \mathcal{O}, if M admits a standard filtration, so do M_{1} and M_{2}.

Proof. We use induction on the length of the standard filtration of M. When the length is 0 , the claim is trivial. If the length is $m>0$, then $M \neq 0$. Without lose of generality, we can assume M_{1} contains a nonzero highest weight vector v of M with weight λ. By Lemma 1.6, we have injections $M_{\lambda} \hookrightarrow M_{1} \hookrightarrow M$ such that M / M_{λ} admits a standard filtration of length $m-1$. Since $M / M_{\lambda} \simeq M_{1} / M_{\lambda} \oplus M_{2}$, by induction hypothesis, we have $M_{1} / M_{\lambda}, M_{2} \in \mathcal{O}^{\Delta}$. It follows that we also have $M_{1} \in \mathcal{O}^{\Delta}$.

Proof of Theorem 1.4. In the proof of [Theorem 4.3, Lecture 8], we proved any object in \mathcal{O} is a quotient of a direct sum of some $M_{\lambda, n}$. In general, if a projective object is a quotient of another object, then it is a direct summand of the latter. It follows that any projective object is a direct summand of a direct sum of some $M_{\lambda, n}$. Then the claim follows from Lemma 1.5 and Lemma 1.7
\square [Theorem 1.4
Lemma 1.8. Let $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence such that $N \in \mathcal{O}^{\Delta}$. Then $M \in \mathcal{O}^{\Delta}$ iff $K \in \mathcal{O}^{\Delta}$.

Warning 1.9. $K, M \in \mathcal{O}^{\Delta}$ does not imply $N \in \mathcal{O}^{\Delta}$. This can be seen from the $\mathfrak{s l}_{2}$-case and the short exact sequence $0 \rightarrow M_{-l-2} \rightarrow M_{l} \rightarrow L_{l} \rightarrow 0$.
Proof. The "if" part is obvious. For the "only if" part, let $M \in \mathcal{O}^{\Delta}$. Using induction, it is easy to reduce to the case when N is a Verma module M_{μ}. Let $M_{\lambda} \rightarrow M$ be as in Lemma 1.6 . Then $M / M_{\lambda} \in \mathcal{O}^{\Delta}$. Note that the composition $M_{\lambda} \rightarrow M \rightarrow M_{\mu}$ is either 0 or an isomorphism by considering the weights. If this is the zero map, then $M / M_{\lambda} \rightarrow M_{\mu}$ is still a surjection and we can finish the proof by using induction. Otherwise $M \simeq K \oplus M_{\mu}$ and the claim follows from Lemma 1.7.

Proof of Theorem-Definition 1.1. We first prove $(a) \Rightarrow(b)$. We prove by induction on i. For any fixed i, using the long exact sequences

$$
\cdots \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(\mathrm{~F}^{\leq k-1} M, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(\mathrm{~F}^{\leq k} M, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(\mathrm{gr}^{k} M, M_{\mu}^{\vee}\right) \rightarrow \cdots
$$

we only need to show $\operatorname{Ext}_{\mathcal{O}_{\mathcal{O}}}\left(\operatorname{gr}^{k} M, M_{\mu}^{\vee}\right)=0$ for any k. By assumption, $\mathrm{gr}^{k} M \simeq M_{\lambda}$ for some weight λ. The case $i=1$ is just [Lemma 3.16, Lecture 8]. For $i>1$, let $0 \rightarrow N \rightarrow P \rightarrow M_{\lambda} \rightarrow 0$ be a short exact sequence such that P is projective. We have a long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i-1}\left(P, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i-1}\left(N, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{i}\left(P, M_{\mu}^{\vee}\right) \rightarrow \cdots
$$

Since P is projective, we have $\operatorname{Ext}_{\mathcal{O}}^{i-1}\left(N, M_{\mu}^{\vee}\right) \simeq \operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, M_{\mu}^{\vee}\right)$. By Theorem 1.4 and Lemma 1.8. $N \in \mathcal{O}^{\Delta}$. Hence by induction hypothesis $\operatorname{Ext}_{\mathcal{O}}^{i-1}\left(N, M_{\mu}^{\vee}\right) \simeq 0$ as desired.
(b) $\Rightarrow(c)$ is obvious.

It remains to show $(c) \Rightarrow(a)$.
We prove by induction on length (M). The case length $(M)=0$ is obvious. If length $(M)>0$, let λ be a highest weight vector of M and $n:=\operatorname{dim}\left(M^{\mathrm{wt}=\lambda}\right)$. Then there is a nonzero \mathfrak{g}-linear $\operatorname{map} M_{\lambda}^{\oplus n} \rightarrow M . \operatorname{Let}^{2} N_{1}$ and N_{2} be the kernel and cokernel of this map, and $M^{\prime} \neq 0$ be the image of it. We have short exact sequences

$$
\begin{aligned}
& 0 \rightarrow N_{1} \rightarrow M_{\lambda}^{\oplus n} \rightarrow M^{\prime} \rightarrow 0, \\
& 0 \rightarrow M^{\prime} \rightarrow M \rightarrow N_{2} \rightarrow 0 .
\end{aligned}
$$

They induce long exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M^{\prime}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M_{\lambda}^{\oplus n}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(N_{1}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(M^{\prime}, M_{\mu}^{\vee}\right) \rightarrow \cdots \\
& \cdots \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M^{\prime}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(N_{2}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(M, M_{\mu}^{\vee}\right) \rightarrow \\
& \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(M^{\prime}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{2}\left(N_{2}, M_{\mu}^{\vee}\right) \rightarrow \cdots
\end{aligned}
$$

By assumption, $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M, M_{\mu}^{\vee}\right)=0$. We claim $\operatorname{Ext}_{\mathcal{O}}^{1}\left(N_{2}, M_{\mu}^{\vee}\right)=0$. Indeed:

- If $\lambda \neq \mu$, then $\operatorname{Hom}_{\mathcal{O}}\left(M_{\lambda}^{\oplus n}, M_{\mu}^{\vee}\right)=0([$ Lemma 3.14, Lecture 8]). By the first sequence, $\operatorname{Hom}_{\mathcal{O}}\left(M^{\prime}, M_{\mu}^{\vee}\right)=0$. By the second sequence, $\operatorname{Ext}_{\mathcal{O}}^{1}\left(N_{2}, M_{\mu}^{\vee}\right)=0$.
- If $\lambda=\mu$, note that μ is a highest weight of both M^{\prime} and M and by construction, $\left(M^{\prime}\right)^{\mathrm{wt}=\mu} \simeq M^{\mathrm{wt}=\mu}$. Hence we have

$$
\operatorname{Hom}_{\mathcal{O}}\left(M^{\prime}, M_{\mu}^{\vee}\right) \simeq\left(\left(M^{\prime}\right)^{\mathrm{wt}=\mu}\right)^{*} \simeq\left(M^{\mathrm{wt}=\mu}\right)^{*} \simeq \operatorname{Hom}_{\mathcal{O}}\left(M, M_{\mu}^{\vee}\right)
$$

By the second sequence, $\operatorname{Ext}_{\mathcal{O}}^{1}\left(N_{2}, M_{\mu}^{\vee}\right)=0$.
Note that length $\left(N_{2}\right)<$ length (M). By the induction hypothesis, $N_{2} \in \mathcal{O}^{\Delta}$. Using $(a) \Rightarrow(b)$, we get $\operatorname{Ext}_{\mathcal{O}}^{2}\left(N_{2}, M_{\mu}^{\vee}\right)=0$. By the second seqeunce, $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M^{\prime}, M_{\mu}^{\vee}\right)=0$. Now we have two cases:

- If $N_{2} \neq 0$, then length $\left(M^{\prime}\right)<$ length (M). By the induction hypothesis, $M^{\prime} \in \mathcal{O}^{\Delta}$. Then $M \in \mathcal{O}^{\text {length }}$ because it is an extension of N_{2} by M^{\prime}.
- If $N_{2}=0$, then $M \simeq M^{\prime}$. An argument similar to that in the last paragraph implies $\operatorname{Hom}_{\mathcal{O}}\left(N_{1}, M_{\mu}^{\vee}\right)=0$. Note that μ can be any weight. This forces $N_{1}=0$ and therefore $M \simeq M_{\lambda}^{\oplus n}$. Then it is clear $M \in \mathcal{O}^{\Delta}$.
[Theorem-Definition 1.1]
Lemma 1.10. Let $M \in \mathcal{O}_{\chi}$ and $M^{\prime} \in \mathcal{O}_{\chi^{\prime}}$ such that $\chi \neq \chi^{\prime}$. Then $\operatorname{Ext}^{i}(M, N)=0$ for any $i \geq 0$.

[^0]Proof. Let $P^{\bullet} \rightarrow M$ be a projective resolution of M. We can replace each P^{-n} by its image under the functor $\mathcal{O} \rightarrow \mathcal{O}_{\chi}$ and obtain a projective resolution of M contained in \mathcal{O}_{χ}. Now the claim follows from the case $i=0$.

Exercise 1.11. This is Homework 4, Problem 4. Let λ be a weight. Prove:
(1) If $M \in \mathcal{O}$ such that $\operatorname{wt}(M) \cap\{\mu \mid \mu \geq \lambda\}=\varnothing$, then $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M, M_{\lambda}^{\vee}\right)=0$ for $i \geq q^{3}$
(2) $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\lambda}, M_{\lambda}^{\vee}\right)=0$ for $i>0$.
(3) Combining (1) and (2), deduce $\operatorname{Ext}_{\mathcal{O}}^{i}\left(M_{\lambda}, L_{\mu}\right)=0$ and $\operatorname{Ext}_{\mathcal{O}}^{i}\left(L_{\mu}, M_{\lambda}^{\vee}\right)=0$ for $i>0$ and $\mu \ngtr \lambda$.

2. BGG RECIPROCITY

The following result follows from Theorem-Definition 1.1 by dévissage.
Proposition-Definition 2.1. Let $M \in \mathcal{O}^{\Delta}$, then for any standard filtration of M, the multiplicity of M_{λ} in the subquotients does not depend on the filtration. We denote this number by ($M: M_{\lambda}$). Moreover, we have

$$
\left(M: M_{\lambda}\right) \simeq \operatorname{dim}\left(\operatorname{Hom}_{\mathcal{O}}\left(M, M_{\lambda}^{\vee}\right)\right)
$$

Theorem 2.2 (BGG reciprocity). For weights $\lambda, \mu \in \mathfrak{t}^{*}$, we have

$$
\left(P_{\mu}: M_{\lambda}\right)=\left[M_{\lambda}^{\vee}: L_{\mu}\right]=\left[M_{\lambda}: L_{\mu}\right]
$$

Proof. The last identity follows from $L_{\mu}^{\vee} \simeq L_{\mu}$. The first one follows from Proposition-Definition 2.1 and [Corollary 4.9, Lecture 8].

Remark 2.3. The previous discussions on standard filtrations and BGG reciprocity can be axiomized using the language of highest weight categories. See CPS].

Remark 2.4. In \mathcal{O}, or any highest weight category, if an object admits both a standard filtration and a costandard filtration, then it is called a tilting object. One can show the set of indecomposable tilting objects is bijective to the set of irreducible objects. Tilting objects play important roles in representation theory. For a geometry-oriented ${ }^{4}$ introduction, see $\overline{B B M}$.

3. Translation functors

Construction 3.1. Let V be a finite-dimensional \mathfrak{g}-module. Consider the functor

$$
\mathfrak{g}-\bmod \rightarrow \mathfrak{g}-\bmod , M \mapsto V \otimes M
$$

where (recall) the \mathfrak{g}-module structure on $V \otimes M$ is given by the Lebniz rule. It is easy to see this functor preserves \mathcal{O}. We denote the obtained functor by $T_{V}: \mathcal{O} \rightarrow \mathcal{O}$. Note that T_{V} is exact.

Lemma 3.2. The functor $T_{V}: \mathcal{O} \rightarrow \mathcal{O}$ commutes with contragradient duality.
Proof. For any finite dimensional \mathfrak{g}-module, we have $V^{\vee} \simeq V$ because $L_{\lambda}^{\vee} \simeq L_{\lambda}$.

Lemma 3.3. The functor $T_{V *}$ is both left and right adjoint to T_{V}. In particular, T_{V} preserves both projectives and injectives.

[^1]Proof. We have the unit and pairing maps $k \rightarrow V \otimes V^{*}$ and $V^{*} \otimes V \rightarrow k$, which induce natural transformations $T_{k} \rightarrow T_{V \otimes V^{*}}$ and $T_{V^{*} \otimes V} \rightarrow T_{k}$. Note that $T_{k} \simeq \mathrm{Id}$ and $T_{V \otimes V^{\prime}} \simeq T_{V} \circ T_{V^{\prime}}$. Hence we obtain natural transformations $\mathrm{Id} \rightarrow T_{V} \circ T_{V^{*}}$ and $T_{V^{*}} \circ T_{V} \rightarrow \mathrm{Id}$. Now the duality data between V and V^{*} are translated exactly to the djunction data between T_{V} and $T_{V^{*}}$.

Remark 3.4. It follows formally that $T_{V^{*}}$ and T_{V} are adjoint in the derived sense, i.e. $\operatorname{Ext}^{i}\left(T_{V}(M), N\right) \simeq \operatorname{Ext}^{i}\left(M, T_{V^{*}}(N)\right)$.

Lemma 3.5. For any weight λ, the module $T_{V}\left(M_{\lambda}\right)$ admits a standard filtration $\mathrm{F}^{\leq k}\left(T_{V}\left(M_{\lambda}\right)\right)$ such that the highest weights of $\operatorname{gr}^{k}\left(T_{V}\left(M_{\lambda}\right)\right.$) is (non-strictly) decreasing in k. Moreover,

$$
\left(T_{V}\left(M_{\lambda}\right): M_{\mu}\right)=\operatorname{dim} V^{\mathrm{wt}=\mu-\lambda}
$$

Proof. Follows from the projection formula

$$
\operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}\left(V_{1}\right) \otimes V_{2} \simeq \operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}\left(V_{1} \otimes V_{2}\right), V_{1} \in \mathfrak{b}-\bmod , V_{2} \in \mathfrak{g}-\bmod
$$

Indeed, any finite-dimensional weight \mathfrak{b}-module, such as $V \otimes k_{\lambda}$, admits a finite filtration whose subquotients are 1-dimensional modules with decreasing weights.

Construction 3.6. Let χ_{1}, χ_{2} be two central characters. For any finite-dimensional \mathfrak{g}-module V, consider the composition

$$
T_{\chi_{1}, V, \chi_{2}}: \mathcal{O}_{\chi_{1}} \rightarrow \mathcal{O} \xrightarrow{T_{V}} \mathcal{O} \rightarrow \mathcal{O}_{\chi_{2}}
$$

We call such functors the translation functors. It follows that $T_{\chi_{1}, V, \chi_{2}}$ is exact, and is both left and right adjoint to $T_{\chi_{2}, V^{*}, \chi_{1}}$.
Construction 3.7. Let λ and μ be weights such that $\mu-\lambda$ is integral. Then the W-orbit (for the linear action) $W(\mu-\lambda)$ contains a unique dominant integral weigth ν. Consider the finite-dimensional \mathfrak{g}-module L_{ν}. We write

$$
T_{\lambda}^{\mu}:=T_{\varpi(\lambda), L_{\nu}, \varpi(\mu)}: \mathcal{O}_{\varpi(\lambda)} \rightarrow \mathcal{O}_{\varpi(\mu)} .
$$

Note that $w_{0}(-\nu)$ is also dominant and integral. By definition, we have

$$
T_{\mu}^{\lambda}=T_{\varpi(\mu), L_{-w_{0}(\nu)}, \varpi(\lambda)},
$$

which is both left and right adjoint to T_{λ}^{μ} because $L_{-w_{0}(\nu)} \simeq L_{\nu}^{* 5}$
Recall the following definition:
Definition 3.8. Let (E, Φ) be the root system of \mathfrak{g}. For $\lambda, \mu \in E$, we say they belong to the same dot-Weyl facet if the signs of $\langle\lambda+\rho, \check{\alpha}\rangle$ and $\langle\mu+\rho, \check{\alpha}\rangle$ are the same for any $\alpha \in \Phi$.

For $\lambda \in E$, let F_{λ} be the dot-Weyl facet containing it.
Definition 3.9. For a dot-Weyl facet F_{λ}, its upper closure F_{λ}^{+}is the subset of $\mu \in E$ such that

$$
\langle\mu+\rho, \check{\alpha}\rangle \begin{cases}>0 & \text { if }\langle\lambda+\rho, \check{\alpha}\rangle>0 \\ =0 & \text { if }\langle\lambda+\rho, \check{\alpha}\rangle=0 \\ \leq 0 & \text { if }\langle\lambda+\rho, \check{\alpha}\rangle<0\end{cases}
$$

[^2]Remark 3.10. When equipped with the standard topology, F_{λ} is a locally closed subset of E, and both the closure \bar{F}_{λ} and the upper closure F_{λ}^{+}are unions of dot-Weyl facets.

Note that each dot-Weyl facet is contained in the upper closure of a unique dot-Weyl chamber, i.e., open dot-Weyl facet. Also, λ is dot-regular iff F_{λ} is a dot-Weyl chamber.
Example 3.11. For $\mathfrak{s l}_{2}$ and the coordinate $l:=\langle\lambda, \check{\alpha}\rangle$, there are three facets: $(-\infty,-1),\{-1\}$ and $(-1, \infty)$. Note that $\{-1\}$ is contained in the upper closure of $(-\infty,-1)$.

We have the following theorem. For complete proofs and its generalization to non-integral weights, see $\left[\mathrm{H}\right.$, Sect. $7{ }^{6}$.
Theorem 3.12. Let λ and μ be dot-antidominant integral weights such that $F_{\mu} \subset \overline{F_{\lambda}}$. Then for any $w \in W$

$$
T_{\lambda}^{\mu}\left(M_{w \cdot \lambda}\right) \simeq M_{w \cdot \mu}, T_{\lambda}^{\mu}\left(M_{w \cdot \lambda}^{\vee}\right) \simeq M_{w \cdot \mu}^{\vee}
$$

and

$$
T_{\lambda}^{\mu}\left(L_{w \cdot \lambda}\right) \simeq\left\{\begin{array}{rc}
L_{w \cdot \mu} & \text { if } F_{w \cdot \mu} \subset F_{w \cdot \lambda}^{+} \\
0 & \text { otherwise }
\end{array}\right.
$$

Sketch. Let $\nu \in W(\mu-\lambda)$ be the unique dominant integral weight in this orbit. Write $V:=L_{\nu}$. By Lemma 3.5. $T_{\lambda}^{\mu}\left(M_{w \cdot \lambda}\right)$ admits a standard filtration and the multiplicity

$$
\left(T_{\lambda}^{\mu}\left(M_{w \cdot \lambda}\right): M_{w^{\prime} \cdot \mu}\right)=\operatorname{dim} V^{\mathrm{wt}=w^{\prime} \cdot \mu-w \cdot \lambda}
$$

The RHS is nonzero unless $w^{\prime} \cdot \mu-w \cdot \lambda \leq \nu$. Now a combinatorial argument (see H, Lemma 7.5]) shows the latter can happen only if $w^{\prime} \cdot \mu=w \cdot \mu$, and in this case the multplicity is 1 because $w \cdot \mu-w \cdot \lambda=w(\mu-\lambda) \in W(\nu)$. This implies $T_{\lambda}^{\mu}\left(M_{w \cdot \lambda}\right) \simeq M_{w \cdot \mu}$.

The statement for dual Verma modules follows from the contragradient duality.
Now consider the chain $M_{w \cdot \lambda} \rightarrow L_{w \cdot \lambda} \hookrightarrow M_{w \cdot \lambda}^{\vee}$. Since T_{λ}^{μ} is exact, we obtain a chain $M_{w \cdot \mu} \rightarrow$ $T_{\lambda}^{\mu}\left(L_{w \cdot \lambda}\right) \hookrightarrow M_{w \cdot \mu}^{\vee}$. This forces $T_{\lambda}^{\mu}\left(L_{w \cdot \lambda}\right) \simeq L_{w \cdot \mu}$ or 0 ([Lemma 3.14, Lecture 8]).

It remains to pinpoint these two cases. Since the exact functor T_{λ}^{μ} sends $M_{w \cdot \lambda}$ to $M_{w \cdot \mu}$, there exists a unique composition factor $L_{w^{\prime} \cdot \lambda}$ of $M_{w \cdot \lambda}$ such that $T_{\lambda}^{\mu}\left(L_{w^{\prime} \cdot \lambda}\right) \simeq L_{w \cdot \mu}$. By the last paragraph, we must have $w^{\prime} \cdot \mu=w \cdot \mu$. Now we have two cases:

- If $F_{w \cdot \mu}$ is contained in the upper closure $F_{w \cdot \lambda}^{+}$, then a combinatorial argument shows $w^{\prime} \cdot \lambda=w \cdot \lambda$ and therefore $T_{\lambda}^{\mu}\left(L_{w \cdot \lambda}\right) \simeq L_{w \cdot \mu}$ as desired.
- If $F_{w \cdot \mu}$ is not contained in the upper closure $F_{w \cdot \lambda}^{+}$, then there exists a reflection s_{α} such that $s_{\alpha} w \cdot \lambda<w \cdot \lambda$ while $s_{\alpha} w \cdot \mu=w \cdot \mu$. By Verma's theorem, there exists a proper embedding $M_{s_{\alpha} w \cdot \lambda} \subset M_{w \cdot \lambda}$ which is sent to an isomorphism by T_{λ}^{μ}. Hence $L_{w \cdot \lambda}$, which is a quotient of $M_{w \cdot \lambda} / M_{s_{\alpha} w \cdot \lambda}$, is sent to 0 as desired.

The following result is a formal consequence of the above theorem:
Theorem 3.13. Let λ and μ be dot-antidominant integral weights such that $F_{\lambda}=F_{\mu}$. Then $T_{\lambda}^{\mu}: \mathcal{O}_{\varpi(\lambda)} \rightarrow \mathcal{O}_{\varpi(\mu)}$ is an equivalence.
Proof. By the previous theorem, the exact functor $F:=T_{\lambda}^{\mu}$ is left adjoint to the exact functor $G:=T_{\mu}^{\lambda}$, and they induce a bijection between the sets of irreducible objects. In general, such adjoint functors are inverse to each other.

Proof: we only to show the adjunctions Id $\rightarrow G \circ F$ and $F \circ G \rightarrow$ Id are equivalences. We will prove the first equivalence and the second follows similarly. Note that for any object M, M and $G \circ F(M)$ have the same composition factors and multiplicities. Hence we only need to show $M \rightarrow G \circ F(M)$ is injective. Since F sends nonzero objects to nonzero objects, we only need to

[^3]show $F(M) \rightarrow F \circ G \circ F(M)$ is injective. By the axiom of adjoint functors, this morphism has a left inverse, hence is indeed injective.

Remark 3.14. The above theorems essentially reduce the study about any integral block \mathcal{O}_{χ} to the principle block $\mathcal{O}_{\varpi(0)}$.
Example 3.15. Any dot-regular integral block \mathcal{O}_{χ} is equivalent to the principle block $\mathcal{O}_{\varpi(0)}$. Indeed, this is the special case of the above theorem when $\lambda=0$ and $\mu \in \varpi^{-1}(\chi)$ is dotantidominant. Note that the equivalence T_{0}^{μ} preserves (dual) Verma modules and irreducible modules.

Example 3.16. For $\mathfrak{g}=\mathfrak{s l}_{2}$ and the coordinate $l:=\langle\lambda, \check{\alpha}\rangle$, then $\mathcal{O}_{\varpi(0)} \simeq \mathcal{O}_{\varpi(l)}$ for $l \in \mathbb{Z}^{\geq 0}$ such that the short exact sequence $0 \rightarrow M_{-2} \rightarrow M_{0} \rightarrow L_{0} \rightarrow 0$ is sent to $0 \rightarrow M_{-l-2} \rightarrow M_{l} \rightarrow L_{l} \rightarrow 0$.

On the other hand, the translation functor $\mathcal{O}_{\varpi(0)} \rightarrow \mathcal{O}_{\varpi(-1)}$ sends this sequence to $0 \rightarrow$ $M_{-1} \rightarrow M_{-1} \rightarrow 0 \rightarrow 0$. Note that L_{-2} is sent to L_{-1} and $-1 \in F_{-2}^{+}$, while L_{0} is sent to 0 and $-1 \notin F_{0}^{+}$.

Construction 3.17. Let μ be any dot-antidominant integral weight. The functor $T_{-\rho}^{\mu}$: $\mathcal{O}_{\varpi(-\rho)} \rightarrow \mathcal{O}_{\varpi(\mu)}$ is not covered by the above theorems (although its adjoint $T_{\mu}^{-\rho}$ is). Recall the most singular block $\mathcal{O}_{\varpi(-\rho)}$ is semi-simple and contains a unique irreducible object $L_{-\rho}$, which is both projective and injective ([Example 4.16, Lecture 7]). It follows that

$$
\Xi_{\mu}:=T_{-\rho}^{\mu}\left(L_{-\rho}\right)
$$

is both projective and injective.
Exercise 3.18. This is Homework 4, Problem 5. Let μ be any dot-antidominant integral weight. Prove 7
(1) For any $w \in W,\left(\Xi_{\mu}: M_{w \cdot \mu}\right)=1$ and there is a surjection $\Xi_{\mu} \rightarrow M_{\mu}$.
(2) For any $w \in W,\left(P_{\mu}: M_{w \cdot \mu}\right) \geq 1$ and there is a surjection $P_{\mu} \rightarrow M_{\mu}$.
(3) There exists an isomorphism $\Xi_{\mu} \simeq P_{\mu}$ compatible with the surjections to M_{μ}.
(4) For any $w \in W,\left[M_{w \cdot \mu}: L_{\mu}\right]=11^{8}$

Remark 3.19. For dot-antidominant weight μ, the projective P_{μ} is called the big projective module, which plays an important role in representation theory.

References

[BBM] Beilinson, A., R. Bezrukavnikov, and I. Mirkovic. Tilting Exercises. Moscow Mathematical Journal 4, no. 3 (2004): 547-557.
[CPS] Scott, L., Brian Parshall, and E. Cline. Finite dimensional algebras and highest weight categories. (1988): 85-99.
[G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people. mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.
[H] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.

[^4]
[^0]: ${ }^{2}$ The following language can be rewritten in the language of spectral sequences.

[^1]: ${ }^{3}$ Hint: Step 1: reduce to the case $M=L_{\mu}$ with $\varpi(\mu)=\varpi(\lambda)$ and $\mu \nsucceq \lambda$. Step 2: consider $0 \rightarrow K \rightarrow M_{\mu} \rightarrow$ $L_{\mu} \rightarrow 0$ and note that $\mathrm{wt}(K)<\mu$.
 ${ }^{4}$ You should ask experts in representation theory for other good references.

[^2]: ${ }^{5}$ Here L_{ν}^{*} is the usual linear dual of L_{μ}. It is not the contragradient dual. Note that $w_{0}(\nu)$ is indeed the lowest weight of L_{μ}.

[^3]: ${ }^{6}$ See G. Sect. 4.23] for a simplified proof in a special case.

[^4]: ${ }^{7}$ Hint: Lemma 3.5 for (1); Theorem 2.2 and [Corollary 4.15, Lecture 7] for (2). For (3), first find a surjection $\Xi_{\mu} \rightarrow P_{\mu}$ then use (1) and (2).
 ${ }^{8}$ See G. Proposition 4.20] for a different proof of this fact.

